Relationship between the Dietary Inflammatory Index and Cardiovascular Health among Children
Abstract
:1. Introduction
2. Materials and Methods
2.1. Population and Sample Group Characteristics
2.2. Socio-Demographic Variables, Parental Phenotypes, Peri- and Postnatal Factors
2.3. Anthropometric Variables and Indexes in Childhood
- Boys: D (kg/cm3) = 1.1690–0.0788 × log (Σ skinfolds)
- Girls: D (kg/cm3) = 1.2063–0.0999 × log (Σ skinfolds)
2.4. Arterial Pressure in Childhood
2.5. Obesity and Hypertension in Childhood
2.6. Nutrient Intake and Diet Quality
2.7. Dietary Inflammatory Index
2.8. Statistical Analyses
2.8.1. Random Forest (Decision Trees)
2.8.2. Models of Logistic and Linear Regression
3. Results
4. Discussion
Measures of Obesity and Dietary Inflammation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization (WHO). Mortality and Global Health Estimates 2019. Available online: https://www.who.int/data/gho/data/themes/mortality-and-global-health-estimates (accessed on 27 January 2021).
- Giugliano, D.; Ceriello, A.; Esposito, K. The Effects of Diet on Inflammation. Emphasis on the Metabolic Syndrome. J. Am. Coll. Cardiol. 2006, 48, 677–685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cavicchia, P.P.; Steck, S.E.; Hurley, T.G.; Hussey, J.R.; Ma, Y.; Ockene, I.S.; Hébert, J.R. A new dietary inflammatory index predicts interval changes in serum high-sensitivity C-reactive protein. J. Nutr. 2009, 139, 2365–2372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shivappa, N.; Steck, S.E.; Hurley, T.G.; Hussey, J.R.; Hébert, J.R. Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr. 2014, 17, 1689–1696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erlinger, T.P.; Platz, E.A.; Rifai, N.; Helzlsouer, K.J. C-Reactive Protein and the Risk of Incident Colorectal Cancer. J. Am. Med. Assoc. 2004, 291, 585–590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ridker, P.M.; Glynn, R.J.; Hennekens, C.H. C-reactive protein adds to the predictive value of total and HDL cholesterol in determining risk of first myocardial infarction. Circulation 1998, 97, 2007–2011. [Google Scholar] [CrossRef] [Green Version]
- Pearson, T.A.; Mensah, G.A.; Alexander, R.W.; Anderson, J.L.; Cannon, R.O.; Criqui, M.; Fadl, Y.Y.; Fortmann, S.P.; Hong, Y.; Myers, G.L.; et al. Markers of inflammation and cardiovascular disease: Application to clinical and public health practice: A statement for healthcare professionals from the centers for disease control and prevention and the American Heart Association. Circulation 2003, 107, 499–511. [Google Scholar] [CrossRef]
- Navarro, P.; Shivappa, N.; Hébert, J.R.; Mehegan, J.; Murrin, C.M.; Kelleher, C.C.; Phillips, C.M. Predictors of the dietary inflammatory index in children and associations with childhood weight status: A longitudinal analysis in the Lifeways Cross-Generation Cohort Study. Clin. Nutr. 2020, 39, 2169–2179. [Google Scholar] [CrossRef]
- Quintanilha, B.J.; Pinto Ferreira, L.R.; Ferreira, F.M.; Neto, E.C.; Sampaio, G.R.; Rogero, M.M. Circulating plasma microRNAs dysregulation and metabolic endotoxemia induced by a high-fat high-saturated diet. Clin. Nutr. 2020, 39, 554–562. [Google Scholar] [CrossRef]
- Moreno-Aliaga, M.; Alfredo, M. Adiposity and proinflammatory state: The chicken or the egg “Functional composition of mushrooms and legumes with possible anti-inflammatory properties”. Adipocytes 2005, 1, 1–16. [Google Scholar]
- Varkaneh, H.K.; Fatahi, S.; Tajik, S.; Rahmani, J.; Zarezadeh, M.; Shab-Bidar, S. Dietary inflammatory index in relation to obesity and body mass index: A meta-analysis. Nutr. Food Sci. 2018, 48, 702–721. [Google Scholar] [CrossRef]
- Da Silva, M.S.; Rudkowska, I. Dairy nutrients and their effect on inflammatory profile in molecular studies. Mol. Nutr. Food Res. 2015, 59, 1249–1263. [Google Scholar] [CrossRef] [PubMed]
- Ahluwalia, N.; Andreeva, V.A.; Kesse-Guyot, E.; Hercberg, S. Dietary patterns, inflammation and the metabolic syndrome. Diabetes Metab. 2013, 39, 99–110. [Google Scholar] [CrossRef] [PubMed]
- Nettleton, J.A.; Steffen, L.M.; Schulze, M.B.; Jenny, N.S.; Barr, R.G.; Bertoni, A.G.; Jacobs, D.R. Associations between markers of subclinical atherosclerosis and dietary patterns derived by principal components analysis and reduced rank regression in the Multi-Ethnic Study of Atherosclerosis (MESA). Am. J. Clin. Nutr. 2007, 85, 1615–1625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kulsum-Mecci, N.; Goss, C.; Kozel, B.A.; Garbutt, J.M.; Schechtman, K.B.; Dharnidharka, V.R. Effects of Obesity and Hypertension on Pulse Wave Velocity in Children. Am. J. Hypertens. 2017, 19, 221–226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Getz, G.S.; Reardon, C.A. Nutrition and cardiovascular disease. Arterioscler. Thromb. Vasc. Biol. 2007, 27, 2499–2506. [Google Scholar] [CrossRef] [Green Version]
- Grundy, S.M. Pre-diabetes, metabolic syndrome, and cardiovascular risk. J. Am. Coll. Cardiol. 2012, 59, 635–643. [Google Scholar] [CrossRef] [Green Version]
- Marcason, W. What is the anti-inflammatory diet? J. Am. Diet. Assoc. 2010, 110, 1780. [Google Scholar] [CrossRef]
- World Medical Association (WMA). Ethical principles for medical research involving human subjects. JAMA 2000, 284, 3045–3046. [Google Scholar]
- Weiner, J.S.; Lourie, J.A. Practical Human Biology; Academic Press: London, UK; New York, NY, USA, 1981. [Google Scholar]
- Mccarthy, H.D. Body fat measurements in children as predictors for the metabolic syndrome: Focus on waist circumference. Proc. Nutr. Soc. 2006, 65, 385–392. [Google Scholar] [CrossRef]
- Ahmad, N.; Adam, S.I.M.; Nawi, A.M.; Hassan, M.R.; Ghazi, H.F. Abdominal Obesity Indicators: Waist Circumference or Waist-to-hip Ratio in Malaysian Adults Population. Int. J. Prev. Med. 2016, 7, 82. [Google Scholar] [CrossRef]
- de Onis, M.; Onyango, A.W.; Borghi, E.; Siyam, A.; Nishida, C.; Siekmann, J. Development of a WHO growth reference for school-aged children and adolescents. Bull. World Health Organ. 2007, 85, 660–667. [Google Scholar] [CrossRef] [PubMed]
- Brook, C.G. Determination of body composition of children from skinfold measurements. Arch. Dis. Child. 1971, 46, 182–184. [Google Scholar] [CrossRef] [PubMed]
- Siri, W.E. Body composition from fluid spaces and density. In Techniques for Measuring Body Compositions; Brozeck, J., Henschel, A., Eds.; National Academy of Sciences: Washington, DC, USA, 1961. [Google Scholar]
- Peltz, G.; Aguirre, M.T.; Sanderson, M.; Fadden, M.K. The role of fat mass index in determining obesity. Am. J. Hum. Biol. 2010, 22, 639–647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National High Blood Pressure Education Program Working Group on High Blood Pressure in Children and Adolescents. The fourth report on the diagnosis, evaluation, and treatment of high blood pressure in children and adolescents. Pediatrics 2004, 114, 555–576. [Google Scholar] [CrossRef]
- Serra-Majem, L.; Ribas, L.; Ngo, J.; Ortega, R.M.; García, A.; Pérez-Rodrigo, C.; Aranceta, J. Food, youth and the Mediterranean diet in Spain. Development of KIDMED, Mediterranean Diet Quality Index in children and adolescents. Public Health Nutr. 2004, 7, 931–935. [Google Scholar] [CrossRef]
- Hercberg, S.; Deheeger, M.; Preziosi, P. Portions Alimentaires: Manuel-Photos Pour L’estimation des Quantités; SU-VI-MAX (France); Polytechnica: Palaiseau, France, 2002. [Google Scholar]
- Ortega, R.; López-Sobaler, A.; Andrés, P.; Requejo, A.; Aparicio, A.; Molinero, L. DIAL Software for Assessing Diets and Food Calculations (for Windows, Version 1.0). 2008. Available online: http://www.alceingenieria.net/nutricion.htm (accessed on 27 January 2021).
- López-Sobaler, A.M.; Aparicio, A.; González-Rodríguez, L.G.; Cuadrado-Soto, E.; Rubio, J.; Marcos, V.; Sanchidrián, R.; Santos, S.; Pérez-Farinós, N.; Dal Re, M.A.; et al. Adequacy of usual vitamin and mineral intake in Spanish children and adolescents: ENALIA study. Nutrients 2017, 9, 131. [Google Scholar] [CrossRef] [Green Version]
- López-Sobaler, A.M.; Aparicio, A.; Rubio, J.; Marcos, V.; Sanchidrián, R.; Santos, S.; Pérez-Farinós, N.; Dal-Re, M.A.; Villar-Villalba, C.; Yusta-Boyo, M.J.; et al. Adequacy of usual macronutrient intake and macronutrient distribution in children and adolescents in Spain: A National Dietary Survey on the Child and Adolescent Population, ENALIA 2013–2014. Eur. J. Nutr. 2019, 58, 705–719. [Google Scholar] [CrossRef] [Green Version]
- Silvente, V.B.; Hurtado, J.M.R.; Baños, R.V. Cómo aplicar árboles de decisión en SPSS. Rev. D’innovació Recer. Educ. 2013, 6, 65–79. [Google Scholar] [CrossRef]
- Bawaked, R.A.; Schröder, H.; Ribas-Barba, L.; Izquierdo-Pulido, M.; Pérez-Rodrigo, C.; Fíto, M.; Serra-Majem, L. Association of diet quality with dietary inflammatory potential in youth. Food Nutr. Res. 2017, 61, 1328961. [Google Scholar] [CrossRef] [Green Version]
- Monfort-Pires, M.; Crisma, A.R.; Bordin, S.; Ferreira, S.R.G. Greater expression of postprandial inflammatory genes in humans after intervention with saturated when compared to unsaturated fatty acids. Eur. J. Nutr. 2018, 57, 2887–2895. [Google Scholar] [CrossRef]
- Wang, X.; Ouyang, Y.; Liu, J.; Zhu, M.; Zhao, G.; Bao, W.; Hu, F.B. Fruit and vegetable consumption and mortality from all causes, cardiovascular disease, and cancer: Systematic review and dose-response meta-analysis of prospective cohort studies. BMJ 2014, 349, g4490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miqueleiz, E.; Lostao, L.; Ortega, P.; Santos, J.M.; Astasio, P.; Regidor, E. Patrón socioeconómico en la alimentación no saludable en niños y adolescentes en España. Atencion Primaria 2014, 46, 433–439. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Alvira, J.M.; Bammann, K.; Pala, V.; Krogh, V.; Barba, G.; Eiben, G.; Hebestreit, A.; Veidebaum, T.; Reisch, L.; Tornaritis, M.; et al. Country-specific dietary patterns and associations with socioeconomic status in European children: The IDEFICS study. Eur. J. Clin. Nutr. 2014, 68, 811–821. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Alvira, J.M.; Börnhorst, C.; Bammann, K.; Gwozdz, W.; Krogh, V.; Hebestreit, A.; Barba, G.; Reisch, L.; Eiben, G.; Iglesia, I.; et al. Prospective associations between socio-economic status and dietary patterns in European children: The Identification and Prevention of Dietary- and Lifestyle-induced Health Effects in Children and Infants (IDEFICS) study. Br. J. Nutr. 2015, 113, 517–525. [Google Scholar] [CrossRef] [Green Version]
- Cutler, G.J.; Flood, A.; Hannan, P.; Neumark-Sztainer, D. Multiple Sociodemographic and Socioenvironmental Characteristics Are Correlated with Major Patterns of Dietary Intake in Adolescents. J. Am. Diet. Assoc. 2011, 111, 230–240. [Google Scholar] [CrossRef]
- Gabel, L.; Ridgers, N.D.; Gatta, P.A.D.; Arundell, L.; Cerin, E.; Robinson, S.; Daly, R.M.; Dunstan, D.W.; Salmon, J. Associations of sedentary time patterns and TV viewing time with inflammatory and endothelial function biomarkers in children. Pediatr. Obes. 2016, 11, 194–201. [Google Scholar] [CrossRef]
- Tremblay, M.S.; LeBlanc, A.G.; Kho, M.E.; Saunders, T.J.; Larouche, R.; Colley, R.C.; Goldfield, G.; Gorber, S.C. Systematic review of sedentary behaviour and health indicators in school-aged children and youth. Int. J. Behav. Nutr. Phys. Act. 2011, 8, 98. [Google Scholar] [CrossRef] [Green Version]
- Borghese, M.M.; Tremblay, M.S.; Leduc, G.; Boyer, C.; Bélanger, P.; LeBlanc, A.G.; Francis, C.; Chaput, J.P. Independent and combined associations of total sedentary time and television viewing time with food intake patterns of 9- to 11-year-old Canadian children. Appl. Physiol. Nutr. Metab. 2014, 39, 937–943. [Google Scholar] [CrossRef]
- Correa-Rodríguez, M.; González-Jiménez, E.; Rueda-Medina, B.; Tovar-Gálvez, M.I.; Ramírez-Vélez, R.; Correa-Bautista, J.E.; Schmidt-RioValle, J. Dietary inflammatory index and cardiovascular risk factors in Spanish children and adolescents. Res. Nurs. Health 2018, 41, 448–458. [Google Scholar] [CrossRef]
- Davis, A.; Liu, R.; Kerr, J.A.; Wake, M.; Grobler, A.; Juonala, M.; Liu, M.; Baur, L.; Burgner, D.; Lycett, K. Inflammatory diet and preclinical cardiovascular phenotypes in 11–12 year-olds and mid-life adults: A cross-sectional population-based study. Atherosclerosis 2019, 285, 93–101. [Google Scholar] [CrossRef] [Green Version]
- Aslani, Z.; Qorbani, M.; Hébert, J.R.; Shivappa, N.; Motlagh, M.E.; Asayesh, H.; Mahdavi-Gorabi, A.; Kelishadi, R. Association of Dietary Inflammatory Index with anthropometric indices in children and adolescents: The weight disorder survey of the Childhood and Adolescence Surveillance and Prevention of Adult Non-communicable Disease (CASPIAN)-IV study. Br. J. Nutr. 2019, 121, 340–350. [Google Scholar] [CrossRef] [PubMed]
- Sethna, C.B.; Alanko, D.; Wirth, M.D.; Shivappa, N.; Hebert, J.R.; Khan, S.; Sen, S. Dietary inflammation and cardiometabolic health in adolescents. Pediatr. Obes. 2021, 16, e12706. [Google Scholar] [CrossRef] [PubMed]
Total | Male | Female | |||||
---|---|---|---|---|---|---|---|
N | N(%)/ Mean (sd) | N | N(%)/ Mean (sd) | N | N(%)/ Mean (sd) | p-Value | |
Socio-economic characteristics | |||||||
Age (years) | 365 | 9.6 (1.1) | 190 | 9.7 (1.1) | 175 | 9.6 (1.2) | 0.267 |
Place of residence within Region of Madrid | |||||||
North | 365 | 128 (35.1) | 190 | 62 (32.6) | 175 | 66 (37.7) | 0.575 |
Centre | 150 (41.1) | 80 (42.1) | 70 (40.0) | ||||
South | 87 (23.8) | 48 (25.3) | 39 (22.3) | ||||
Mother’s level of education | |||||||
Primary school | 304 | 21 (6.9) | 156 | 13 (8.3) | 148 | 8 (5.4) | 0.364 |
High school | 30 (9.9) | 14 (9.0) | 16 (10.8) | ||||
Middle school | 52 (17.1) | 31 (19.9) | 21 (14.2) | ||||
Higher Education | 201 (66.1) | 98 (62.8) | 103 (69.6) | ||||
Father’s level of education | |||||||
Primary school | 300 | 31 (10.3) | 154 | 18 (11.7) | 146 | 13 (8.9) | 0.108 |
High school | 34 (11.3) | 15 (9.7) | 19 (13.0) | ||||
Middle School | 49 (16.3) | 32 (20.8) | 17 (11.6) | ||||
Higher Education | 186 (62.0) | 89 (57.8) | 97 (66.4) | ||||
Screen time (min/week) | 145 | 466.8 (463.9) | 72 | 604.4 (496.6) | 73 | 331.1 (386.8) | <0.001 |
Physical activity (min/week) | 144 | 425.2 (265.1) | 51 | 444.9 (330.6) | 65 | 406.0 (180.4) | 0.385 |
Nutritional status and WHO standard Z scores for size, early school age | |||||||
Height (cm) | 365 | 141.7 (9.0) | 190 | 142.4 (8.1) | 175 | 141.0 (9.9) | 0.142 |
Weight (kg) | 365 | 37.3 (9.0) | 190 | 37.9 (8.8) | 175 | 36.7 (9.2) | 0.186 |
BMI (kg/m2) | 365 | 18.4 (2.9) | 190 | 18.5 (2.9) | 175 | 18.2 (3.0) | 0.335 |
WC(cm) | 362 | 65.9 (8.9) | 188 | 66.5 (8.9) | 174 | 65.3 (8.9) | 0.186 |
Fat mass (kg) | 365 | 9.5 (5.1) | 190 | 9.5 (4.9) | 175 | 9.6 (5.3) | 0.906 |
BFM (%) | 365 | 24.1 (7.8) | 190 | 23.8 (7.3) | 175 | 24.5 (8.4) | 0.340 |
FMI (kg/m2) | 365 | 4.6 (2.2) | 190 | 4.6 (2.1) | 175 | 4.7 (2.3) | 0.626 |
HAZ | 365 | 0.4 (0.9) | 190 | 0.5 (0.9) | 175 | 0.2 (1.0) | 0.004 |
WAZ | 185 | 0.6 (1.1) | 94 | 0.8 (1.1) | 91 | 0.4 (1.1) | 0.012 |
BMIZ | 365 | 0.6 (1.1) | 190 | 0.7 (1.1) | 175 | 0.4 (1.1) | 0.034 |
Obesity | 365 | 41 (11.2) | 190 | 24 (12.6) | 175 | 17 (9.7) | 0.643 |
Hemodynamic variables | |||||||
SBP (mmHg) | 365 | 103.4 (15.1) | 190 | 103.8 (15.9) | 175 | 102.9 (14.2) | 0.569 |
DBP (mmHg) | 365 | 63.0 (10.9) | 190 | 63.0 (11.3) | 175 | 63.0 (10.5) | 0.981 |
MAP (mmHg) | 365 | 76.5 (10.9) | 190 | 76.6 (11.4) | 175 | 76.3 (10.4) | 0.806 |
Hypertension | 365 | 52 (14.2) | 190 | 29 (15.3) | 175 | 23 (13.1) | 0.563 |
Total | Boys | Girls | |||||
---|---|---|---|---|---|---|---|
N | Mean (Std) | N | Mean (Std) | N | Mean (Std) | p-Value | |
Carbohydrate (% energy) | 358 | 46.6 (5.5) | 185 | 46.9 (5.4) | 173 | 46.4 (5.6) | 0.421 |
Total Fat (% energy) | 358 | 36.6 (5.2) | 185 | 36.4 (5.2) | 173 | 36.7 (5.2) | 0.641 |
Protein (% energy) | 358 | 16.4 (2.5) | 185 | 16.4 (2.7) | 173 | 16.5 (2.3) | 0.826 |
PUFA (% energy) | 353 | 4.4 (1.3) | 182 | 4.5 (1.4) | 171 | 4.3 (1.0) | 0.362 |
SFA (% energy) | 353 | 13.4 (2.9) | 182 | 13.6 (3.3) | 171 | 13.2 (2.6) | 0.121 |
MUFA (% energy) | 353 | 16.0 (2.9) | 182 | 15.8 (2.9) | 171 | 16.1 (2.8) | 0.291 |
PUFA + MUFA/SFA | 358 | 1.6 (0.3) | 185 | 1.5 (0.3) | 173 | 1.6 (0.3) | 0.036 |
Fibre (mg)/1000 kcal | 358 | 9.5 (2.9) | 185 | 9.4 (2.6) | 173 | 9.7 (3.2) | 0.246 |
Cholesterol (mg)/1000 kcal | 358 | 149.8 (43.1) | 185 | 144.9 (41.4) | 173 | 155.0 (44.3) | 0.027 |
KIDMED Index | 347 | 6.6 (1.7) | 178 | 6.5 (1.7) | 169 | 6.8 (1.7) | 0.076 |
DII | 352 | 1.5 (5.6) | 182 | 0.9 (5.6) | 170 | 2.1 (5.4) | 0.038 |
Dietary Inflammatory Index * | ||||
---|---|---|---|---|
N (%)/Mean (sd) | ||||
Total | <P50 | >P50 | p-Value | |
Current intakes | ||||
Energy intake (Kcal/d) | 2267.1 (406.8) | 2331.2 (602.9) | 1805.6 (369.7) | <0.001 |
Carbohydrate (% energy) | 46.6 (5.5) | 47.8 (5.2) | 45.4 (5.7) | <0.001 |
Total Fat (% energy) | 36.6 (5.2) | 35.2 (4.9) | 38.1 (5.1) | <0.001 |
Protein (% energy) | 16.4 (2.5) | 16.7 (2.2) | 16.2 (2.7) | 0.077 |
PUFA (% energy) | 16.0 (2.9) | 15.4 (2.5) | 16.5 (3.0) | <0.001 |
SFA (% energy) | 4.4 (1.3) | 4.5 (1.4) | 4.4 (1.2) | 0.365 |
MUFA (% energy) | 13.4 (2.9) | 12.6 (2.6) | 14.2 (3.0) | <0.001 |
PUFA + MUFA/SFA | 1.6 (0.3) | 1.6 (0.3) | 1.5 (0.3) | 0.001 |
Fibre (mg)/1000 kcal | 9.5 (2.9) | 10.2 (2.7) | 8.7 (2.0) | <0.001 |
Cholesterol (mg)/1000 kcal | 149.8 (43.1) | 143.2 (40.6) | 155.7 (44.6) | 0.006 |
Kidmed Index | 6.94(1.48) | 6.31(1.79) | 0.001 |
Dietary Inflammatory Index * | |||||
---|---|---|---|---|---|
N (%)/Mean (sd) | |||||
Total | <P50 | >P50 | p-Value | ||
DII * | 1.496 (5.549) | −2.355 (5.257) | 5.347 (2.074) | <0.001 | |
Age (years) | 9.6 (1.1) | 9.7 (1.1) | 9.6 (1.2) | 0.310 | |
Sex (Female) | 175 (47.9) | 85 (48.3) | 85 (48.3) | 0.542 | |
Place of residence within Region of Madrid | |||||
North | 128 (35.1) | 65 (36.9) | 56 (31.8) | 0.135 | |
Centre | 150 (41.1) | 76 (43.2) | 69 (39.2) | ||
South | 87 (23.8) | 35 (19.9) | 51 (29.0) | ||
Mother’s level of education | |||||
Primary school | 21 (6.9) | 5 (3.3) | 16 (11.0) | 0.030 | |
High school | 30 (9.9) | 12 (8.0) | 18 (12.3) | ||
Middle school | 52 (17.1) | 25 (16.7) | 24 (16.4) | ||
Higher Education | 201 (66.1) | 108 (72.0) | 88 (60.3) | ||
Father’s level of education | |||||
Primary school | 31 (10.3) | 11 (7.4) | 18 (12.3) | 0.001 | |
High school | 34 (11.3) | 15 (10.1) | 18 (12.3) | ||
Middle school | 49 (16.3) | 14 (9.5) | 34 (23.3) | ||
Higher Education | 186 (62.0) | 108 (73.0) | 76 (52.1) | ||
Screen time (min/week) | 466.8 (463.9) | 435.7 (441.1) | 480.1 (481.6) | 0.579 | |
Physical activity (min/week) | 425.2 (265.1) | 414.4 (175.5) | 454.9 (323.8) | 0.387 | |
HAZ | 0.4 (0.9) | 0.3 (0.9) | 0.4 (0.9) | 0.491 | |
WAZ | 0.6 (1.1) | 0.5 (1.0) | 0.8 (1.1) | 0.054 | |
BMIZ | 0.6 (1.1) | 0.4 (1.1) | 0.7 (1.1) | 0.017 | |
WC (cm) | 65.9 (8.9) | 79.6 (9.5) | 80.2 (10.5) | 0.034 | |
Waist-height ratio | 0.5 (0.1) | 0.5 (0.05) | 0.5 (0.1) | 0.004 | |
Fat mass (kg) | 9.5 (5.1) | 9.1 (4.6) | 10.1 (5.4) | 0.051 | |
BFM (%) | 24.1 (7.8) | 23.3 (7.4) | 25.1 (8.2) | 0.027 | |
FMI (kg/m2) | 4.6 (2.2) | 4.4 (2.0) | 4.9 (2.4) | 0.017 | |
SBP (mmHg) | 103.4 (15.1) | 102.7 (14.4) | 104.1 (15.9) | 0.408 | |
DBP (mmHg) | 63.0 (10.9) | 61.8 (11.0) | 63.9 (10.8) | 0.064 | |
MAP (mmHg) | 76.5 (10.9) | 75.4 (10.8) | 77.3 (11.1) | 0.108 |
Dietary Inflammatory Index * | |||||
---|---|---|---|---|---|
Total N (%) | <P50 N (%) | >P50 N (%) | p-Value | ||
BMI | Normal weight | 229 (62.7) | 115 (65.3) | 104 (59.1) | 0.082 |
Overweight | 95 (26.0) | 48 (27.3) | 46 (26.1) | ||
Obesity | 41 (11.2) | 13 (7.4) | 26 (14.8) | ||
Hypertension | Yes | 52 (14.2) | 18 (10.2) | 32 (18.2) | 0.047 |
CVRF | No CVRF | 288 (78.9) | 151 (85.8) | 128 (72.7) | 0.023 |
Hypertension | 36 (9.9) | 12 (6.8) | 22 (12.5) | ||
Obesity | 25 (6.8) | 7 (4.0) | 16 (9.1) | ||
Hypertension and obesity | 16 (4.4) | 6 (3.4) | 10 (5.7) |
β | p | OR | CI 95% | |
---|---|---|---|---|
Model 1 †: Hypertension (No/Yes) | ||||
Dietary Inflammatory Index (<p50/>p50) * | 0.735 | 0.023 | 2.085 | (1.107–3.927) |
Dietary Inflammatory Index * | −0.220 | 0.386 | 0.802 | (0.487–1.320) |
KIDMED Index | 0.086 | 0.357 | 1.090 | (0.908–1.308) |
Dietary Inflammatory Index (<p50/>p50) * | 0.829 | 0.003 | 2.290 | (1.316–3.985) |
Dietary Inflammatory Index * | −0.068 | 0.759 | 0.934 | (0.605–1.442) |
KIDMED Index | 0.064 | 0.431 | 1.066 | (0.909–1.251) |
Dietary Inflammatory Index (<p50/>p50) * | 1.957 | 0.026 | - | 0.240–3.674 |
Dietary Inflammatory Index * | 0.578 | 0.403 | - | −0.792–1.965 |
KIDMED Index | 0.054 | 0.836 | - | −0.463–0.507 |
Dietary Inflammatory Index (<p50/>p50) * | 0.015 | 0.012 | - | 0.003–0.027 |
Dietary Inflammatory Index * | −0.004 | 0.461 | - | −0.013–0.006 |
KIDMED Index | 0.000 | 0.929 | - | −0.004–0.003 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mora-Urda, A.I.; Martín-Almena, F.J.; Montero López, M.d.P. Relationship between the Dietary Inflammatory Index and Cardiovascular Health among Children. Int. J. Environ. Res. Public Health 2022, 19, 15706. https://doi.org/10.3390/ijerph192315706
Mora-Urda AI, Martín-Almena FJ, Montero López MdP. Relationship between the Dietary Inflammatory Index and Cardiovascular Health among Children. International Journal of Environmental Research and Public Health. 2022; 19(23):15706. https://doi.org/10.3390/ijerph192315706
Chicago/Turabian StyleMora-Urda, Ana Isabel, Francisco Javier Martín-Almena, and María del Pilar Montero López. 2022. "Relationship between the Dietary Inflammatory Index and Cardiovascular Health among Children" International Journal of Environmental Research and Public Health 19, no. 23: 15706. https://doi.org/10.3390/ijerph192315706
APA StyleMora-Urda, A. I., Martín-Almena, F. J., & Montero López, M. d. P. (2022). Relationship between the Dietary Inflammatory Index and Cardiovascular Health among Children. International Journal of Environmental Research and Public Health, 19(23), 15706. https://doi.org/10.3390/ijerph192315706