Research Priorities and Trends on Bioenergy: Insights from Bibliometric Analysis
Abstract
:1. Introduction
2. Methodology
2.1. Data Sources
2.2. Data Analysis
3. Results and Discussion
3.1. Characteristics of Annual Publication Outputs
3.2. Country/Territory Characteristics
3.2.1. Country/Territory Publication Distribution
3.2.2. Country/Territory Academic Cooperation
3.2.3. Bioenergy Development Features of Countries
3.3. Institution Characteristics
3.3.1. Institution Publication Distribution
3.3.2. Academic Cooperation among Institutions
3.4. Author Publication Distribution
3.5. Main Journals Distribution
3.6. Author Keyword Analysis: Identifying Prominent Research Areas
3.7. Main Research Analysis of the Six Clusters
3.7.1. Cluster A: Biodiesel and Transesterification
3.7.2. Cluster B: Biogas and Anaerobic Digestion
3.7.3. Cluster C: Bioethanol and Fermentation
3.7.4. Cluster D: Bio-Oil and Pyrolysis
3.7.5. Cluster E: Microalgae and Lipid
3.7.6. Cluster F: Biohydrogen and Gasification or Dark Fermentation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hansen, S.; Mirkouei, A.; Diaz, L.A. A comprehensive state-of-technology review for upgrading bio-oil to renewable or blended hydrocarbon fuels. Renew. Renew. Sustain. Energy Rev. 2020, 118, 109548. [Google Scholar] [CrossRef]
- Yu, S.; Hu, X.; Li, L.; Chen, H. Does the development of renewable energy promote carbon reduction? Evidence from Chinese provinces. J. Environ. Manag. 2020, 268, 110634. [Google Scholar] [CrossRef] [PubMed]
- Azevedo, S.G.; Santos, M.; Antón, J.R. Supply chain of renewable energy: A bibliometric review approach. Biomass Bioenergy 2019, 126, 70–83. [Google Scholar] [CrossRef]
- Yüksel, I. Global warming and renewable energy sources for sustainable development in Turkey. Renew. Energy 2008, 33, 802–812. [Google Scholar] [CrossRef]
- BP. Statistical Review of World Energy 2020. 2020. Available online: https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html (accessed on 18 October 2021).
- IRENA. Global Renewables Outlook. 2020. Available online: https://www.irena.org/publications/2020/Apr/Global-Renewables-Outlook-2020 (accessed on 18 October 2021).
- Liu, D.; Liu, M.; Xiao, B.; Guo, X.; Niu, D.; Qin, G.; Jia, H. Exploring biomass power generation’s development under encouraged policies in China. J. Clean. Prod. 2020, 258, 120786. [Google Scholar] [CrossRef]
- Muench, S.; Guenther, E. A systematic review of bioenergy life cycle assessments. Appl. Energy 2013, 112, 257–273. [Google Scholar] [CrossRef]
- Saxena, R.C.; Adhikari, D.K.; Goyal, H.B. Biomass-based energy fuel through biochemical routes: A review. Renew. Sustain. Energy Rev. 2009, 13, 167–178. [Google Scholar] [CrossRef]
- Long, H.; Li, X.; Wang, H.; Jia, J. Biomass resources and their bioenergy potential estimation: A review. Renew. Sustain. Energy Rev. 2013, 26, 344–352. [Google Scholar] [CrossRef]
- Lee, S.Y.; Sankaran, R.; Chew, K.W.; Tan, C.H.; Krishnamoorthy, R.; Chu, D.-T.; Show, P.-L. Waste to bioenergy: A review on the recent conversion technologies. BMC Energy 2019, 1, 1–22. [Google Scholar] [CrossRef]
- Guo, M.; Song, W.; Buhain, J. Bioenergy and biofuels: History, status, and perspective. Renew. Sustain. Energy Rev. 2015, 42, 712–725. [Google Scholar] [CrossRef]
- Ebadian, M.; van Dyk, S.; McMillan, J.D.; Saddler, J. Biofuels policies that have encouraged their production and use: An international perspective. Energy Policy 2020, 147, 111906. [Google Scholar] [CrossRef]
- IPCC. Global Warming of 1.5 °C. 2018. Available online: https://www.ipcc.ch/sr15/ (accessed on 18 October 2021).
- Bjurström, A.; Polk, M. Climate change and interdisciplinarity: A co-citation analysis of IPCC Third Assessment Report. Scientometrics 2011, 87, 525–550. [Google Scholar] [CrossRef]
- Mlambo-Thata, B. Evaluating Electronic Resource Programmes and Provision: Case Studies from Africa and Asia. Learn. Publ. 2010, 23, 266–267. [Google Scholar] [CrossRef]
- Wang, Y.; Lai, N.; Zuo, J.; Chen, G.; Du, H. Characteristics and trends of research on waste-to-energy incineration: A bibliometric analysis, 1999–2015. Renew. Sustain. Energy Rev. 2016, 66, 95–104. [Google Scholar] [CrossRef]
- Wang, L.; Zhao, L.; Mao, G.; Zuo, J.; Du, H. Way to accomplish low carbon development transformation: A bibliometric analysis during 1995–2014. Renew. Sustain. Energy Rev. 2017, 68, 57–69. [Google Scholar] [CrossRef]
- Ferrari, G.; Pezzuolo, A.; Nizami, A.-S.; Marinello, F. Bibliometric Analysis of Trends in Biomass for Bioenergy Research. Energies 2020, 13, 3714. [Google Scholar] [CrossRef]
- Kumar, R.; Strezov, V.; Weldekidan, H.; He, J.; Singh, S.; Kan, T.; Dastjerdi, B. Lignocellulose biomass pyrolysis for bio-oil production: A review of biomass pre-treatment methods for production of drop-in fuels. Renew. Sustain. Energy Rev. 2020, 123, 109763. [Google Scholar] [CrossRef]
- Liu, W.; Gu, M.; Hu, G.; Li, C.; Liao, H.; Tang, L.; Shapira, P. Profile of developments in biomass-based bioenergy research: A 20-year perspective. Scientometrics 2014, 99, 507–521. [Google Scholar] [CrossRef]
- Mao, G.; Liu, X.; Du, H.; Zuo, J.; Wang, L. Way forward for alternative energy research: A bibliometric analysis during 1994–2013. Renew. Sustain. Energy Rev. 2015, 48, 276–286. [Google Scholar] [CrossRef]
- Wang, B.; Tao, F.; Fang, X.; Liu, C.; Liu, Y.; Freiheit, T. Smart Manufacturing and Intelligent Manufacturing: A Comparative Review. Engineering 2021, 7, 738–757. [Google Scholar] [CrossRef]
- Konur, O. The scientometric evaluation of the research on the production of bioenergy from biomass. Biomass Bioenergy 2012, 47, 504–515. [Google Scholar] [CrossRef]
- van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheah, W.Y.; Sankaran, R.; Show, P.L.; Ibrahim, T.N.B.T.; Chew, K.W.; Culaba, A.; Chang, J.-S. Pretreatment methods for lignocellulosic biofuels production: Current advances, challenges and future prospects. Biofuel Res. J. 2020, 7, 1115. [Google Scholar] [CrossRef] [Green Version]
- Al-Saadi, A.; Mathan, B.; He, Y. Esterification and transesterification over SrO–ZnO/Al2O3 as a novel bifunctional catalyst for biodiesel production. Renew. Energy 2020, 158, 388–399. [Google Scholar] [CrossRef]
- Shaban, M.; Hosny, R.; Rabie, A.M.; Shim, J.-J.; Ahmed, S.A.; Betiha, M.A.; Negm, N.A. Zinc aluminate nanoparticles: Preparation, characterization and application as efficient and economic catalyst in transformation of waste cooking oil into biodiesel. J. Mol. Liq. 2020, 302, 112377. [Google Scholar] [CrossRef]
- Karpagam, R.; Rani, K.; Ashokkumar, B.; Ganesh Moorthy, I.; Dhakshinamoorthy, A.; Varalakshmi, P. Green energy from Coelastrella sp. M-60: Bio-nanoparticles mediated whole biomass transesterification for biodiesel production. Fuel 2020, 279, 118490. [Google Scholar] [CrossRef]
- Mofijur, M.; Siddiki, S.Y.A.; Shuvho, M.B.A.; Djavanroodi, F.; Fattah, I.M.R.; Ong, H.C.; Chowdhury, M.A.; Mahlia, T.M.I. Effect of nanocatalysts on the transesterification reaction of first, second and third generation biodiesel sources- A mini-review. Chemosphere 2021, 270, 128642. [Google Scholar] [CrossRef]
- Goga, G.; Chauhan, B.S.; Mahla, S.K.; Cho, H.M. Performance and emission characteristics of diesel engine fueled with rice bran biodiesel and n-butanol. Energy Rep. 2019, 5, 78–83. [Google Scholar] [CrossRef]
- Anwar, M.; Rasul, M.G.; Ashwath, N. A pragmatic and critical analysis of engine emissions for biodiesel blended fuels. Fuel 2020, 270, 117513. [Google Scholar] [CrossRef]
- Saluja, R.K.; Kumar, V.; Sham, R. Stability of biodiesel—A review. Renew. Sustain. Energy Rev. 2016, 62, 866–881. [Google Scholar] [CrossRef]
- IEA. Outlook for biogas and biomethane: Prospects for organic growth. 2020. Available online: https://www.iea.org/reports/outlook-for-biogas-and-biomethane-prospects-for-organic-growth# (accessed on 18 October 2021).
- Mao, C.; Feng, Y.; Wang, X.; Ren, G. Review on research achievements of biogas from anaerobic digestion. Renew. Sustain. Energy Rev. 2015, 45, 540–555. [Google Scholar] [CrossRef]
- Jha, B.; Isha, A.; Trivedi, A.; Chandra, R.; Subbarao, P.M.V. Anaerobic co-digestion of rice straw and de-oiled rice bran for biomethane production. Energy Rep. 2021, 7, 704–710. [Google Scholar] [CrossRef]
- Astill, G.M.; Shumway, C.R. Profits from pollutants: Economic feasibility of integrated anaerobic digester and nutrient management systems. J. Environ. Manag. 2016, 184, 353–362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lisowyj, M.; Wright, M.M. A review of biogas and an assessment of its economic impact and future role as a renewable energy source. Rev. Chem. Eng. 2020, 36, 401–421. [Google Scholar] [CrossRef]
- Sun, Q.; Li, H.; Yan, J.; Liu, L.; Yu, Z.; Yu, X. Selection of appropriate biogas upgrading technology-a review of biogas cleaning, upgrading and utilisation. Renew. Sustain. Energy Rev. 2015, 51, 521–532. [Google Scholar] [CrossRef]
- Tarrsini, M.; Teoh, Y.P.; Shuit, S.H.; Ooi, Z.X.; Ng, Q.H.; Kunasundari, B. Evolution toward the utilization of mango leaves as lignocellulosic material in bioethanol production: A review of process parameter and integrated technologies. Environ. Prog. Sustain. Energy 2019, 38, e13233. [Google Scholar] [CrossRef]
- Robak, K.; Balcerek, M. Review of Second Generation Bioethanol Production from Residual Biomass. Food Technol. Biotechnol. 2018, 56, 174–187. [Google Scholar] [CrossRef]
- Bridgwater, A.V. Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy 2012, 38, 68–94. [Google Scholar] [CrossRef]
- Hansen, J.; Sato, M. Regional climate change and national responsibilities. Environ. Res. Lett. 2016, 11, 034009. [Google Scholar] [CrossRef] [Green Version]
- Chowdhury, H.; Loganathan, B. Third-generation biofuels from microalgae: A review. Curr. Opin. Green Sustain. Chem. 2019, 20, 39–44. [Google Scholar] [CrossRef]
- Dave, N.; Selvaraj, R.; Varadavenkatesan, T.; Vinayagam, R. A critical review on production of bioethanol from macroalgal biomass. Algal Res. 2019, 42, 101606. [Google Scholar] [CrossRef]
- de Jesus, S.S.; Ferreira, G.F.; Moreira, L.S.; Filho, R.M. Biodiesel production from microalgae by direct transesterification using green solvents. Renew. Energy 2020, 160, 1283–1294. [Google Scholar] [CrossRef]
- Pereira, M.V.; Dassoler, A.F.; Antunes, P.W.; Goncalves, R.F.; Cassini, S.T. Indigenous microalgae biomass cultivation in continuous reactor with anaerobic effluent: Effect of dilution rate on productivity, nutrient removal and bioindicators. Environ. Technol. 2020, 41, 1780–1792. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Ummalyma, S.B.; Sahoo, D. Bioremediation and biomass production of microalgae cultivation in river watercontaminated with pharmaceutical effluent. Bioresour. Technol. 2020, 307, 123233. [Google Scholar] [CrossRef]
- Bagchi, S.K.; Rao, P.S.; Mallick, N. Development of an oven drying protocol to improve biodiesel production for an indigenous chlorophycean microalga Scenedesmus sp. Bioresour. Technol. 2015, 180, 207–213. [Google Scholar] [CrossRef] [PubMed]
- Suparmaniam, U.; Lam, M.K.; Uemura, Y.; Lim, J.W.; Lee, K.T.; Shuit, S.H. Insights into the microalgae cultivation technology and harvesting process for biofuel production: A review. Renew. Sustain. Energy Rev. 2019, 115, 109361. [Google Scholar] [CrossRef]
- Raheem, A.; Prinsen, P.; Vuppaladadiyam, A.K.; Zhao, M.; Luque, R. A review on sustainable microalgae based biofuel and bioenergy production: Recent developments. J. Clean. Prod. 2018, 181, 42–59. [Google Scholar] [CrossRef]
- Cao, L.; Yu, I.K.M.; Xiong, X.; Tsang, D.C.W.; Zhang, S.; Clark, J.H.; Hu, C.; Ng, Y.H.; Shang, J.; Ok, Y.S. Biorenewable hydrogen production through biomass gasification: A review and future prospects. Environ. Res. 2020, 186, 109547. [Google Scholar] [CrossRef]
- Liu, W.; Liu, C.; Gogoi, P.; Deng, Y. Overview of Biomass Conversion to Electricity and Hydrogen and Recent Developments in Low-Temperature Electrochemical Approaches. Engineering 2020, 6, 1351–1363. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, L.; Xu, P.; Liu, B.; Shuai, Y.; Li, B. Hydrogen production through biomass gasification in supercritical water: A review from exergy aspect. Int. J. Hydrogen Energy 2019, 44, 15727–15736. [Google Scholar] [CrossRef]
- Singh, L.; Wahid, Z.A. Methods for enhancing bio-hydrogen production from biological process: A review. J. Ind. Eng. Chem. 2015, 21, 70–80. [Google Scholar] [CrossRef]
- Arimi, M.M.; Knodel, J.; Kiprop, A.; Namango, S.S.; Zhang, Y.; Geißen, S.-U. Strategies for improvement of biohydrogen production from organic-rich wastewater: A review. Biomass Bioenergy 2015, 75, 101–118. [Google Scholar] [CrossRef]
No. | Country | TPs | PP (%) | TC | CPP |
---|---|---|---|---|---|
1 | USA | 8545 | 18.1 | 333,413 | 39.0 |
2 | China | 6917 | 14.6 | 175,891 | 25.4 |
3 | India | 4400 | 9.3 | 121,805 | 27.7 |
4 | Brazil | 3024 | 6.4 | 57,064 | 18.9 |
5 | Germany | 2077 | 4.4 | 54,111 | 26.1 |
6 | Spain | 1885 | 4.0 | 70,437 | 37.4 |
7 | England | 1661 | 3.5 | 64,762 | 39.0 |
8 | Malaysia | 1634 | 3.5 | 62,900 | 38.5 |
9 | Italy | 1613 | 3.4 | 44,765 | 27.8 |
10 | South Korea | 1555 | 3.3 | 36,034 | 23.2 |
11 | Canada | 1461 | 3.1 | 49,125 | 33.6 |
12 | Japan | 1438 | 3.0 | 42,002 | 29.2 |
13 | Turkey | 1212 | 2.6 | 48,115 | 39.7 |
14 | France | 1097 | 2.3 | 33,762 | 30.8 |
15 | Sweden | 1078 | 2.3 | 39,017 | 36.2 |
16 | Iran | 1030 | 2.2 | 20,045 | 19.5 |
17 | Australia | 995 | 2.1 | 31,900 | 32.1 |
18 | Thailand | 897 | 1.9 | 17,789 | 19.8 |
19 | Taiwan | 849 | 1.8 | 26,067 | 30.7 |
20 | Poland | 833 | 1.8 | 10,133 | 12.2 |
No. | Institution | Country | TPs | PP (%) | TC | CPP |
---|---|---|---|---|---|---|
1 | CAS | China | 885 | 1.9 | 27,064 | 30.6 |
2 | University Malaya | Malaysia | 452 | 1.0 | 23,067 | 51.0 |
3 | University of Sao Paulo | Brazil | 438 | 0.9 | 9997 | 22.8 |
4 | Indian Institutes of Technology | Indian | 395 | 0.8 | 22,528 | 57.0 |
5 | Technical University of Denmark | Denmark | 355 | 0.8 | 18,085 | 50.9 |
6 | Tsinghua University | China | 336 | 0.7 | 12,812 | 38.1 |
7 | University of Illinois | USA | 334 | 0.7 | 13,498 | 40.4 |
8 | Iowa State University | USA | 284 | 0.6 | 13,252 | 46.7 |
9 | University Putra Malaysia | Malaysia | 260 | 0.5 | 8171 | 31.4 |
10 | Michigan State University | USA | 256 | 0.5 | 11,389 | 44.5 |
No. | Author | Institution | TPs | TC | CPP |
---|---|---|---|---|---|
1 | Masjuki, H. H. | University Malaya | 164 | 11,550 | 70.4 |
2 | Kalam, M. A. | University Malaya | 100 | 5435 | 54.4 |
3 | Lee, Keat Teong | University Sains Malaysia | 95 | 5647 | 59.4 |
4 | Angelidaki, Irini | Technical University of Denmark | 94 | 5842 | 62.1 |
5 | Chang, Jo-Shu | National Cheng Kung University | 83 | 5436 | 65.5 |
6 | Kumar, Gopalakrishnan | Yonsei University | 80 | 1285 | 16.1 |
7 | Ruan, Roger | University of Minnesota | 79 | 3232 | 40.9 |
8 | Ong, Hwai Chyuan | University Malaya | 78 | 2779 | 35.6 |
9 | Murphy, Jerry D. | University College Cork | 69 | 2690 | 39.0 |
10 | Rashid, Umer | University Putra Malaysia | 69 | 2214 | 32.1 |
No. | Journal Name | TPs | PP (%) | IF 2020 | h-Index |
---|---|---|---|---|---|
1 | Bioresource Technology | 2549 | 5.4 | 9.642 | 251 |
2 | Fuel | 2027 | 4.3 | 6.609 | 181 |
3 | Biomass & Bioenergy | 1481 | 3.1 | 5.061 | 156 |
4 | Renewable Energy | 1289 | 2.7 | 8.001 | 157 |
5 | Renewable & Sustainable Energy Reviews | 1194 | 2.5 | 14.982 | 222 |
6 | Energy & Fuels | 1127 | 2.4 | 3.605 | 169 |
7 | International Journal of Hydrogen Energy | 1021 | 2.2 | 5.816 | 187 |
8 | Energy | 955 | 2.0 | 7.147 | 158 |
9 | Energy Conversion and Management | 865 | 1.8 | 9.709 | 163 |
10 | Applied Energy | 843 | 1.8 | 9.746 | 163 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, R.; Pu, J.; Wu, D.; Wu, Q.; Huhe, T.; Lei, T.; Chen, Y. Research Priorities and Trends on Bioenergy: Insights from Bibliometric Analysis. Int. J. Environ. Res. Public Health 2022, 19, 15881. https://doi.org/10.3390/ijerph192315881
Yuan R, Pu J, Wu D, Wu Q, Huhe T, Lei T, Chen Y. Research Priorities and Trends on Bioenergy: Insights from Bibliometric Analysis. International Journal of Environmental Research and Public Health. 2022; 19(23):15881. https://doi.org/10.3390/ijerph192315881
Chicago/Turabian StyleYuan, Ruling, Jun Pu, Dan Wu, Qingbai Wu, Taoli Huhe, Tingzhou Lei, and Yong Chen. 2022. "Research Priorities and Trends on Bioenergy: Insights from Bibliometric Analysis" International Journal of Environmental Research and Public Health 19, no. 23: 15881. https://doi.org/10.3390/ijerph192315881
APA StyleYuan, R., Pu, J., Wu, D., Wu, Q., Huhe, T., Lei, T., & Chen, Y. (2022). Research Priorities and Trends on Bioenergy: Insights from Bibliometric Analysis. International Journal of Environmental Research and Public Health, 19(23), 15881. https://doi.org/10.3390/ijerph192315881