Characterizing Cancer and Work Disparities Using Electronic Health Records
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Miller, K.D.; Nogueira, L.; Devasia, T.; Mariotto, A.B.; Yabroff, K.R.; Jemal, A.; Kramer, J.; Siegel, R.L. Cancer treatment and survivorship statistics, 2022. CA Cancer J. Clin. 2022, 72, 409–436. [Google Scholar] [CrossRef] [PubMed]
- American Cancer Society. Survivorship: During and After Treatment. Available online: https://www.cancer.org/treatment/survivorship-during-and-after-treatment.html (accessed on 10 November 2022).
- American Cancer Society. Cancer Treatment & Survivorship Facts & Figures 2019–2021. Available online: https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/cancer-treatment-and-survivorship-facts-and-figures/cancer-treatment-and-survivorship-facts-and-figures-2019-2021.pdf (accessed on 1 August 2022).
- Stone, D.S.; Ganz, P.A.; Pavlish, C.; Robbins, W.A. Young adult cancer survivors and work: A systematic review. J. Cancer Surviv. Res. Pract. 2017, 11, 765–781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blinder, V.S.; Gany, F.M. Impact of cancer on employment. J. Clin. Oncol. 2020, 38, 302–309. [Google Scholar] [CrossRef] [PubMed]
- De Boer, A.G.E.M.; Greidanus, M.A.; Dewa, C.S.; Duijts, S.F.A.; Tamminga, S.J. Introduction to special section on: Current topics in cancer survivorship and work. J. Cancer Surviv. 2020, 14, 101–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehnert, A. Employment and work-related issues in cancer survivors. Crit. Rev. Oncol. Hematol. 2011, 77, 109–130. [Google Scholar] [CrossRef]
- National Institutes of Health. Minority Health and Health Disparities: Definitions and Parameters. Available online: https://www.nimhd.nih.gov/about/strategic-plan/nih-strategic-plan-definitions-and-parameters.html (accessed on 18 January 2022).
- De Souza, J.A.; Yap, B.J.; Hlubocky, F.J.; Wroblewski, K.; Ratain, M.J.; Cella, D.; Daugherty, C.K. The development of a financial toxicity patient-reported outcome in cancer: The COST measure. Cancer 2014, 120, 3245–3253. [Google Scholar] [CrossRef] [PubMed]
- American Association of for Cancer Research. Disparities in Cancer Survivorship. Available online: https://cancerprogressreport.aacr.org/disparities/cdpr22-contents/cdpr22-disparities-in-cancer-survivorship/ (accessed on 1 August 2022).
- Mujahid, M.S.; Janz, N.K.; Hawley, S.T.; Griggs, J.J.; Hamilton, A.S.; Graff, J.; Katz, S.J. Racial/ethnic differences in job loss for women with breast cancer. J. Cancer Surviv. 2011, 5, 102–111. [Google Scholar] [CrossRef] [Green Version]
- Blinder, V.; Eberle, C.; Patil, S.; Gany, F.M.; Bradley, C.J. Women with breast cancer who work for accommodating employers more likely to retain jobs after treatment. Health Aff. 2017, 36, 274–281. [Google Scholar] [CrossRef] [Green Version]
- Ekenga, C.C.; Pérez, M.; Margenthaler, J.A.; Jeffe, D.B. Early-stage breast cancer and employment participation after 2 years of follow-up: A comparison with age-matched controls. Cancer 2018, 124, 2026–2035. [Google Scholar] [CrossRef]
- Samuel, C.A.; Spencer, J.C.; Rosenstein, D.L.; Reeder-Hayes, K.E.; Manning, M.L.; Sellers, J.B.; Wheeler, S.B. Racial differences in employment and cost-management behaviors in patients with metastatic breast cancer. Breast Cancer Res. Treat. 2020, 179, 207–215. [Google Scholar] [CrossRef]
- Hastert, T.A.; Kyko, J.M.; Reed, A.R.; Harper, F.W.K.; Beebe-Dimmer, J.L.; Baird, T.E.; Schwartz, A.G. Financial hardship and quality of life among African American and white cancer survivors: The role of limiting care due to cost. Cancer Epidemiol. Biomark. Prev. 2019, 28, 1202–1211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, A.M.; Ashing, K.T.; Modeste, N.N.; Herring, R.P.; Sealy, D.A. Contextual factors influencing health-related quality of life in African American and Latina breast cancer survivors. J. Cancer Surviv. 2015, 9, 441–449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blinder, V.S.; Murphy, M.M.; Vahdat, L.T.; Gold, H.T.; de Melo-Martin, I.; Hayes, M.K.; Scheff, R.J.; Chuang, E.; Moore, A.; Mazumdar, M. Employment after a breast cancer diagnosis: A qualitative study of ethnically diverse urban women. J. Community Health 2012, 37, 763–772. [Google Scholar] [CrossRef] [PubMed]
- Weaver, K.E.; Palmer, N.; Lu, L.; Case, L.D.; Geiger, A.M. Rural-urban differences in health behaviors and implications for health status among US cancer survivors. Cancer Causes Control 2013, 24, 1481–1490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blake, K.D.; Moss, J.L.; Gaysynsky, A.; Srinivasan, S.; Croyle, R.T. Making the case for investment in rural cancer control: An analysis of rural cancer incidence, mortality, and funding trends. Cancer Epidemiol. Biomark. Prev. 2017, 26, 992–997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Earle, C.C.; Chretien, Y.; Morris, C.; Ayanian, J.Z.; Keating, N.L.; Polgreen, L.A.; Wallace, R.; Ganz, P.A.; Weeks, J.C. Employment among survivors of lung cancer and colorectal cancer. J. Clin. Oncol. 2010, 28, 1700–1705. [Google Scholar] [CrossRef] [Green Version]
- U.S. Department of Agriculture. 2010 Rural-Urban Commuting Area (RUCA) Codes. Available online: https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/documentation/ (accessed on 1 August 2022).
- ICD10Data. Neoplasms C00-D49. Available online: https://www.icd10data.com/ICD10CM/Codes/C00-D49 (accessed on 1 August 2022).
- De Boer, A.G.E.M.; Taskila, T.; Ojajärvi, A.; van Dijk, F.J.H.; Verbeek, J.H.A.M. Cancer survivors and unemployment: A meta-analysis and meta-regression. JAMA 2009, 301, 753–762. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.L.; Chen, Y.Y.; Wu, W.T.; Ho, C.L.; Wang, C.C. Life expectancy estimations and determinants of return to work among cancer survivors over a 7-year period. Sci. Rep. 2021, 11, 12858. [Google Scholar] [CrossRef]
- Syse, A.; Lyngstad, T.H. In sickness and in health: The role of marital partners in cancer survival. SSM Popul. Health 2016, 3, 99–110. [Google Scholar] [CrossRef]
- Seo, H.S.; Lee, N.K. Predictors of PSA screening among men over 40 years of age who had ever heard about PSA. Korean J. Urol. 2010, 51, 391–397. [Google Scholar] [CrossRef]
- Lai, K.C.; Stotler, B.A. Marital status and colon cancer stage at diagnosis. Color. Cancer 2010, 3, 5–11. [Google Scholar] [CrossRef]
- Aizer, A.A.; Chen, M.H.; McCarthy, E.P.; Mendu, M.L.; Koo, S.; Wilhite, T.J.; Graham, P.L.; Choueiri, T.K.; Hoffman, K.E.; Martin, N.E.; et al. Marital status and survival in patients with cancer. J. Clin. Oncol. 2013, 31, 3869–3876. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.C.; Cheng, L.C.; Lin, Y.W.; Wang, S.C.; Ke, T.M.; Huang, C.I.; Su, Y.C.; Tai, M.H. The impact of marital status on survival in patients with surgically treated colon cancer. Medicine 2019, 98, e14856. [Google Scholar] [CrossRef] [PubMed]
- Salonen, P.; Rantanen, A.; Kellokumpu-Lehtinen, P.L.; Huhtala, H.; Kaunonen, M. The quality of life and social support in significant others of patients with breast cancer—A longitudinal study. Eur. J. Cancer Care 2014, 23, 274–283. [Google Scholar] [CrossRef]
- Zissimopoulos, J.M.; Karney, B.R.; Rauer, A.J. Marriage and economic well-being at older ages. Rev. Econ. Househ. 2015, 13, 1–35. [Google Scholar] [CrossRef]
- Caumette, E.; Vaz-Luis, I.; Pinto, S.; Havas, J.; Bovagnet, T.; Ruiz de Azua, G.; Di Meglio, A.; Martin, A.L.; Everhard, S.; Cottu, P.; et al. The challenge of return to work after breast cancer: The role of family situation, CANTO Cohort. Curr. Oncol. 2021, 28, 3866–3875. [Google Scholar] [CrossRef]
- Suwankhong, D.; Liamputtong, P. Social support and women living with breast cancer in the South of Thailand. J. Nurs. Sch. 2016, 48, 39–47. [Google Scholar] [CrossRef]
- Fantoni, S.Q.; Peugniez, C.; Duhamel, A.; Skrzypczak, J.; Frimat, P.; Leroyer, A. Factors related to return to work by women with breast cancer in Northern France. J. Occup. Rehabil. 2010, 20, 49–58. [Google Scholar] [CrossRef]
- De Boer, A.G.; Verbeek, J.H.; van Dijk, F.J. Adult survivors of childhood cancer and unemployment: A metaanalysis. Cancer 2006, 107, 1–11. [Google Scholar] [CrossRef]
- Elsbernd, A.; Pedersen, K.J.; Boisen, K.A.; Midtgaard, J.; Larsen, H.B. “On Your Own”: Adolescent and young adult cancer survivors’ experience of managing return to secondary or higher education in Denmark. J. Adolesc. Young Adult Oncol. 2018, 7, 618–625. [Google Scholar] [CrossRef]
- Parsons, H.M.; Harlan, L.C.; Lynch, C.F.; Hamilton, A.S.; Wu, X.C.; Kato, I.; Schwartz, S.M.; Smith, A.W.; Keel, G.; Keegan, T.H. Impact of cancer on work and education among adolescent and young adult cancer survivors. J. Clin. Oncol. 2012, 30, 2393–2400. [Google Scholar] [CrossRef] [PubMed]
- Biddell, C.B.; Wheeler, S.B.; Angove, R.S.M.; Gallagher, K.D.; Anderson, E.; Kent, E.E.; Spees, L.P. Racial and ethnic differences in the financial consequences of cancer-related employment disruption. Front. Oncol. 2021, 11, 690454. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, S.M.; Vaz-Luis, I.; Gong, J.; Rajagopal, P.S.; Ruddy, K.J.; Tamimi, R.M.; Schapira, L.; Come, S.; Borges, V.; de Moor, J.S.; et al. Employment trends in young women following a breast cancer diagnosis. Breast Cancer Res. Treat. 2019, 177, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Park, E.C. Job loss and re-employment of cancer patients in Korean employees: A nationwide retrospective cohort study. J. Clin. Oncol. 2016, 26, 1302–1309. [Google Scholar] [CrossRef]
Employed (n = 4430) | Not Employed (n = 2866) | Employment % | p-Value * | |
---|---|---|---|---|
Current age, years | <0.001 | |||
18–24 | 11 (<1%) | 21 (1%) | 34% | |
25–34 | 365 (8%) | 267 (9%) | 58% | |
35–44 | 937 (21%) | 457 (16%) | 67% | |
45–54 | 1242 (28%) | 704 (25%) | 64% | |
55–65 | 1875 (42%) | 1417 (49%) | 57% | |
Age at diagnosis, years | <0.001 | |||
18–24 | 88 (2%) | 123 (4%) | 42% | |
25–34 | 663 (15%) | 365 (13%) | 64% | |
35–44 | 1135 (26%) | 575 (20%) | 66% | |
45–54 | 1423 (32%) | 909 (32%) | 61% | |
55–65 | 1121 (25%) | 894 (31%) | 56% | |
Geography | <0.001 | |||
Urban | 3467 (78%) | 1969 (69%) | 64% | |
Rural | 963 (22%) | 897 (31%) | 52% | |
Sex | 0.73 | |||
Female | 3320 (75%) | 2158 (75%) | 61% | |
Male | 1110 (25%) | 708 (25%) | 61% | |
Race | <0.001 | |||
White | 3068 (69%) | 1786 (62%) | 63% | |
Black | 1124 (25%) | 924 (32%) | 55% | |
Other | 238 (5%) | 156 (5%) | 60% | |
Ethnicity | <0.01 | |||
Hispanic | 95 (2%) | 95 (3%) | 50% | |
Non-Hispanic | 4335 (98%) | 2771 (97%) | 61% | |
Education ** | <0.001 | |||
Some high school (HS) | 37 (9%) | 47 (24%) | 44% | |
HS graduate/GED | 19 (5%) | 20 (10%) | 49% | |
Some college | 44 (11%) | 32 (16%) | 58% | |
College graduate | 166 (41%) | 75 (39%) | 69% | |
Grad school or above | 139 (34%) | 20 (10%) | 87% | |
Marital status | <0.001 | |||
Married/significant other | 2670 (61%) | 1169 (41%) | 69% | |
Divorced/separated | 578 (13%) | 597 (21%) | 49% | |
Single/widowed | 1163 (26%) | 1077 (38%) | 52% | |
Cancer site (ICD-10-CM code) | <0.001 | |||
Lip, oral cavity, and pharynx (C00–C14) | 30 (<1%) | 24 (<1%) | 55% | |
Respiratory and intrathoracic organs (C30–C39) | 9 (<1%) | 28 (<1%) | 24% | |
Bone and articular cartilage (C40–C41) | 7 (<1%) | 6 (<1%) | 54% | |
Melanoma and other MN of skin (C43–C44) | 94 (2%) | 45 (1%) | 68% | |
Mesothelial and soft tissue (C45–C49) | 41 (<1%) | 30 (1%) | 58% | |
Breast (C50) | 320 (7%) | 208 (7%) | 61% | |
Female genital organs (C51–C58) | 134 (3%) | 142 (5%) | 48% | |
Male genital organs (C60–C63) | 55 (1%) | 39 (1%) | 58% | |
Urinary tract (C64–C68) | 46 (1%) | 39 (1%) | 54% | |
Eye, brain, other parts of CNS (C69–C72) | 35 (<1%) | 38 (1%) | 48% | |
Thyroid and other endocrine glands (C73-C75) | 98 (2%) | 61 (2%) | 62% | |
Ill-defined, secondary, unspecified (C76–C80) | 158 (3.6%) | 199 (7%) | 44% | |
Neuroendocrine tumors—malignant and secondary (C7A–B) | 2 (<1%) | 1 (<1%) | 67% | |
Lymphoid, hematopoietic, related tissue (C81) | 248 (6%) | 245 (8%) | 50% | |
In situ neoplasms (D00–D09) | 224 (5%) | 166 (6%) | 57% | |
Benign neoplasms and benign neuroendocrine tumors (D10–D36, D3A) | 2142 (48%) | 1151 (40%) | 65% | |
Neoplasms of uncertain or unspecified behavior, polycythemia vera, and myelodysplastic syndromes (D37–D49) | 787 (17.8%) | 444 (15%) | 64% |
Variables | Unadjusted (n = 7296) | Adjusted (n = 7254) | ||||
---|---|---|---|---|---|---|
OR | 95% CI | p | OR | 95% CI | p | |
Race (reference group: White) | ||||||
Black | 0.71 | 0.64–0.79 | <0.01 | 0.78 | 0.69–0.88 | <0.01 |
Other | 0.89 | 0.72–1.10 | 0.27 | 0.89 | 0.69–1.14 | 0.35 |
Ethnicity (reference group: non-Hispanic) | 0.64 | 0.48–0.85 | <0.01 | 0.53 | 0.38–0.74 | <0.01 |
Geography (reference group: urban) | 0.61 | 0.55–0.68 | <0.01 | 0.56 | 0.50–0.62 | <0.01 |
Sex (reference group: male) | 0.98 | 0.88–1.09 | 0.73 | 1.04 | 0.92–1.16 | 0.54 |
Marital status (reference group: single/widowed) | ||||||
Married/significant other | 2.11 | 1.90–2.36 | <0.01 | 2.07 | 1.84–2.33 | <0.01 |
Divorced, separated | 0.90 | 0.78–1.03 | 0.13 | 0.89 | 0.77–1.03 | 0.13 |
Age at diagnosis (reference group: 35–44) | ||||||
18–24 | 0.36 | 0.27–0.49 | <0.01 | 0.43 | 0.32–0.58 | <0.01 |
25–34 | 0.92 | 0.78–1.08 | 0.32 | 0.93 | 0.79–1.10 | 0.39 |
45–54 | 0.79 | 0.70–0.90 | <0.01 | 0.77 | 0.67–0.88 | <0.01 |
55–65 | 0.64 | 0.56–0.73 | <0.01 | 0.61 | 0.53–0.70 | <0.01 |
Education (reference group: high school graduate) | ||||||
Undergraduate degree | 2.33 | 1.17–4.62 | 0.02 | |||
Graduate school or above | 7.32 | 3.34–16.01 | <0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Allen, J.L.; Du, R.; Powell, T.; Hobbs, K.L.; Amick, B.C., III. Characterizing Cancer and Work Disparities Using Electronic Health Records. Int. J. Environ. Res. Public Health 2022, 19, 15887. https://doi.org/10.3390/ijerph192315887
Allen JL, Du R, Powell T, Hobbs KL, Amick BC III. Characterizing Cancer and Work Disparities Using Electronic Health Records. International Journal of Environmental Research and Public Health. 2022; 19(23):15887. https://doi.org/10.3390/ijerph192315887
Chicago/Turabian StyleAllen, Jaimi L., Ruofei Du, Thomas Powell, Khariana L. Hobbs, and Benjamin C. Amick, III. 2022. "Characterizing Cancer and Work Disparities Using Electronic Health Records" International Journal of Environmental Research and Public Health 19, no. 23: 15887. https://doi.org/10.3390/ijerph192315887
APA StyleAllen, J. L., Du, R., Powell, T., Hobbs, K. L., & Amick, B. C., III. (2022). Characterizing Cancer and Work Disparities Using Electronic Health Records. International Journal of Environmental Research and Public Health, 19(23), 15887. https://doi.org/10.3390/ijerph192315887