Abdominal Wall Block Decreases Intraoperative Opioid Con-Sumption by Surgical Pleth Index-Guided Remifentanil Administration in Single-Port Laparoscopic Herniorrhaphy: A Prospective Randomized Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Randomization
2.2. Spi-Guided Remifentanil Infusion
2.3. Abdominal Wall Block Method in The R Group
2.4. Surgical Procedure and Ward Management
2.5. Statistical Analysis and Endpoints
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, J.; Liu, J.C. Ultrasound-guided erector spinae plane block for postoperative analgesia: A meta-analysis of randomized controlled trials. BMC Anesthesiol. 2020, 20, 83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ueshima, H.; Otake, H.; Lin, J.A. Ultrasound-Guided Quadratus Lumborum Block: An Updated Review of Anatomy and Techniques. BioMed Res. Int. 2017, 2017, 2752876. [Google Scholar] [CrossRef] [PubMed]
- Urits, I.; Ostling, P.S.; Novitch, M.B.; Burns, J.C.; Charipova, K.; Gress, K.L.; Kaye, R.J.; Eng, M.R.; Cornett, E.M.; Kaye, A.D. Truncal regional nerve blocks in clinical anesthesia practice. Best Pract. Res. Clin. Anaesthesiol. 2019, 33, 559–571. [Google Scholar] [CrossRef] [PubMed]
- Abrahams, M.; Derby, R.; Horn, J.L. Update on Ultrasound for Truncal Blocks: A Review of the Evidence. Reg. Anesth. Pain Med. 2016, 41, 275–288. [Google Scholar] [CrossRef] [PubMed]
- Cornish, P.B. Erector Spinae Plane Block: The “Happily Accidental” Paravertebral Block. Reg. Anesth. Pain Med. 2018, 43, 644–645. [Google Scholar] [CrossRef]
- Cornish, P. Erector spinae plane block and ‘A Cadaveric Conundrum’. Reg. Anesth. Pain Med. 2019, 262. [Google Scholar] [CrossRef]
- La Colla, L.; Ben-David, B. Quadratus Lumborum Block: Conundrums and Questions. Reg. Anesth. Pain Med. 2017, 42, 127–128. [Google Scholar] [CrossRef]
- Elsharkawy, H.; Pawa, A.; Mariano, E.R. Interfascial Plane Blocks: Back to Basics. Reg. Anesth. Pain Med. 2018, 43, 341–346. [Google Scholar] [CrossRef]
- Ivanusic, J.; Konishi, Y.; Barrington, M.J. A Cadaveric Study Investigating the Mechanism of Action of Erector Spinae Blockade. Reg. Anesth. Pain Med. 2018, 43, 567–571. [Google Scholar] [CrossRef]
- Byrne, K.; Smith, C. Human volunteer study examining the sensory changes of the thorax after an erector spinae plane block. Reg. Anesth. Pain Med. 2020. [Google Scholar] [CrossRef]
- Yao, Y.; Li, H.; He, Q.; Chen, T.; Wang, Y.; Zheng, X. Efficacy of ultrasound-guided erector spinae plane block on postoperative quality of recovery and analgesia after modified radical mastectomy: Randomized controlled trial. Reg. Anesth. Pain Med. 2019, 45, 5–9. [Google Scholar] [CrossRef] [PubMed]
- Chin, K.J.; Adhikary, S.D.; Forero, M. Understanding ESP and Fascial Plane Blocks: A Challenge to Omniscience. Reg. Anesth. Pain Med. 2018, 43, 807–808. [Google Scholar] [CrossRef]
- Bang, S. Erector spinae plane block: An innovation or a delusion? Korean J. Anesthesiol. 2019, 72, 1–3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arora, S.; Chhabra, A.; Subramaniam, R.; Arora, M.K.; Misra, M.C.; Bansal, V.K. Transversus abdominis plane block for laparoscopic inguinal hernia repair: A randomized trial. J. Clin. Anesth. 2016, 33, 357–364. [Google Scholar] [CrossRef]
- Elbahrawy, K.; El-Deeb, A. Rectus sheath block for postoperative analgesia in patients with mesenteric vascular occlusion undergoing laparotomy: A randomized single-blinded study. Anesth. Essays Res. 2016, 10, 516–520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Funcke, S.; Sauerlaender, S.; Pinnschmidt, H.O.; Saugel, B.; Bremer, K.; Reuter, D.A.; Nitzschke, R. Validation of Innovative Techniques for Monitoring Nociception during General Anesthesia: A Clinical Study Using Tetanic and Intracutaneous Electrical Stimulation. Anesthesiology 2017, 127, 272–283. [Google Scholar] [CrossRef]
- De Jonckheere, J.; Bonhomme, V.; Jeanne, M.; Boselli, E.; Gruenewald, M.; Logier, R.; Richebe, P. Physiological Signal Processing for Individualized Anti-nociception Management during General Anesthesia: A Review. Yearb. Med. Inform. 2015, 10, 95–101. [Google Scholar] [CrossRef] [Green Version]
- Huiku, M.; Uutela, K.; van Gils, M.; Korhonen, I.; Kymalainen, M.; Merilainen, P.; Paloheimo, M.; Rantanen, M.; Takala, P.; Viertio-Oja, H.; et al. Assessment of surgical stress during general anaesthesia. Br. J. Anaesth. 2007, 98, 447–455. [Google Scholar] [CrossRef] [Green Version]
- Jiao, Y.; He, B.; Tong, X.; Xia, R.; Zhang, C.; Shi, X. Intraoperative monitoring of nociception for opioid administration: A meta-analysis of randomized controlled trials. Minerva Anestesiol. 2019, 85, 522–530. [Google Scholar] [CrossRef]
- Ryu, K.; Song, K.; Kim, J.; Kim, E.; Kim, S.H. Comparison of the Analgesic Properties of Sevoflurane and Desflurane Using Surgical Pleth Index at Equi-Minimum Alveolar Concentration. Int. J. Med. Sci. 2017, 14, 994–1001. [Google Scholar] [CrossRef]
- Ledowski, T.; Burke, J.; Hruby, J. Surgical pleth index: Prediction of postoperative pain and influence of arousal. Br. J. Anaesth. 2016, 117, 371–374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bergmann, I.; Gohner, A.; Crozier, T.A.; Hesjedal, B.; Wiese, C.H.; Popov, A.F.; Bauer, M.; Hinz, J.M. Surgical pleth index-guided remifentanil administration reduces remifentanil and propofol consumption and shortens recovery times in outpatient anaesthesia. Br. J. Anaesth. 2013, 110, 622–628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daccache, G.; Caspersen, E.; Pegoix, M.; Monthe-Sagan, K.; Berger, L.; Fletcher, D.; Hanouz, J.L. A targeted remifentanil administration protocol based on the analgesia nociception index during vascular surgery. Anaesth. Crit. Care Pain Med. 2017, 36, 229–232. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, T.D.; Moriggl, B.; Barckman, J.; Jensen, J.M.; Kolsen-Petersen, J.A.; Soballe, K.; Borglum, J.; Bendtsen, T.F. Cutaneous anaesthesia of hip surgery incisions with iliohypogastric and subcostal nerve blockade: A randomised trial. Acta Anaesthesiol. Scand. 2019, 63, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Ilies, C.; Ludwigs, J.; Gruenewald, M.; Thee, C.; Hanf, J.; Hanss, R.; Steinfath, M.; Bein, B. The effect of posture and anaesthetic technique on the surgical pleth index. Anaesthesia 2012, 67, 508–513. [Google Scholar] [CrossRef]
- Manou-Stathopoulou, V.; Korbonits, M.; Ackland, G.L. Redefining the perioperative stress response: A narrative review. Br. J. Anaesth. 2019, 123, 570–583. [Google Scholar] [CrossRef]
- Desborough, J.P. The stress response to trauma and surgery. Br. J. Anaesth. 2000, 85, 109–117. [Google Scholar] [CrossRef] [Green Version]
- Ledowski, T.; Sommerfield, D.; Slevin, L.; Conrad, J.; von Ungern-Sternberg, B.S. Surgical pleth index: Prediction of postoperative pain in children? Br. J. Anaesth. 2017, 119, 979–983. [Google Scholar] [CrossRef]
- Hocker, J.; Broch, O.; Grasner, J.T.; Gruenewald, M.; Ilies, C.; Steinfath, M.; Bein, B. Surgical stress index in response to pacemaker stimulation or atropine. Br. J. Anaesth. 2010, 105, 150–154. [Google Scholar] [CrossRef] [Green Version]
- Colombo, R.; Raimondi, F.; Corona, A.; Rivetti, I.; Pagani, F.; Porta, V.D.; Guzzetti, S. Comparison of the Surgical Pleth Index with autonomic nervous system modulation on cardiac activity during general anaesthesia: A randomised cross-over study. Eur. J. Anaesthesiol. 2014, 31, 76–84. [Google Scholar] [CrossRef]
- Gruenewald, M.; Willms, S.; Broch, O.; Kott, M.; Steinfath, M.; Bein, B. Sufentanil administration guided by surgical pleth index vs standard practice during sevoflurane anaesthesia: A randomized controlled pilot study. Br. J. Anaesth. 2014, 112, 898–905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hans, P.; Verscheure, S.; Uutela, K.; Hans, G.; Bonhomme, V. Effect of a fluid challenge on the Surgical Pleth Index during stable propofol-remifentanil anaesthesia. Acta Anaesthesiol. Scand. 2012, 56, 787–796. [Google Scholar] [CrossRef] [PubMed]
- Ledowski, T.; Stein, J.; Albus, S.; MacDonald, B. The influence of age and sex on the relationship between heart rate variability, haemodynamic variables and subjective measures of acute post-operative pain. Eur. J. Anaesthesiol. 2011, 28, 433–437. [Google Scholar] [CrossRef] [PubMed]
- Ledowski, T.; Schneider, M.; Gruenewald, M.; Goyal, R.K.; Teo, S.R.; Hruby, J. Surgical pleth index: Prospective validation of the score to predict moderate-to-severe postoperative pain. Br. J. Anaesth. 2019, 123, e328–e332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Struys, M.M.; Vanpeteghem, C.; Huiku, M.; Uutela, K.; Blyaert, N.B.; Mortier, E.P. Changes in a surgical stress index in response to standardized pain stimuli during propofol-remifentanil infusion. Br. J. Anaesth. 2007, 99, 359–367. [Google Scholar] [CrossRef] [Green Version]
- Takebayashi, K.; Matsumura, M.; Kawai, Y.; Hoashi, T.; Katsura, N.; Fukuda, S.; Shimizu, K.; Inada, T.; Sato, M. Efficacy of transversus abdominis plane block and rectus sheath block in laparoscopic inguinal hernia surgery. Int. Surg. 2015, 100, 666–671. [Google Scholar] [CrossRef] [Green Version]
- Kwon, W.; Bang, S.; Soh, H.; Jeong, W.J.; Lee, S.C.; Choi, B.J. Abdominal peripheral nerve block as the only anesthetic technique for totally extraperitoneal endoscopic inguinal hernia repair: Two case reports. Medicine 2018, 97, e10964. [Google Scholar] [CrossRef]
- Smith, C.A.; Ruth-Sahd, L. Reducing the Incidence of Postoperative Nausea and Vomiting Begins With Risk Screening: An Evaluation of the Evidence. J. PeriAnesth. Nurs. 2016, 31, 158–171. [Google Scholar] [CrossRef]
Variable | R Group (24) | C Group (28) | p-Value |
---|---|---|---|
Age (years) | 57 ± 11 | 51 ± 14 | 0.095 |
Sex (male, %) | 24 (100%) | 27 (96%) | |
Height | 168 ± 5.6 | 166 ± 8.1 | 0.38 |
Weight | 67 ± 15.2 | 64 ± 11.8 | 0.376 |
BMI (kg/m2) | 23 ± 4.3 | 23 ± 3.2 | 0.538 |
ASA status score | |||
1 | 14 (58 %) | 23 (82%) | 0.73 |
2 | 10 (42 %) | 5 (18%) | |
Initial SPI | 51 ± 21.2 | 49 ± 21.5 | 0.853 |
Initial MBP | 101 ± 12.4 | 106 ± 13.0 | 0.137 |
HR (bpm) | 68 ± 11.1 | 69 ± 16.0 | 0.744 |
Total operation time (min) | 55 ± 28.6 | 51 ± 21.4 | 0.551 |
Total anaesthetic time (min) | 88 ± 28.6 | 77 ± 22.6 | 0.126 |
Operators | |||
L | 10 | 13 | 0.366 |
C | 4 | 7 | |
J | 11 | 8 |
R Group | C Group | p-Value | |
---|---|---|---|
Intraoperative mean SPI | 28 ± 7.6 | 29 ± 9.6 | 0.763 |
Intraoperative remifentanil consumption (ng/kg body weight/min) | 30 ± 21.2 | 56 ± 35.5 | 0.002 * |
Remifentanil control frequency | 3.0 ± 1.7 | 4.6 ± 2.2 | 0.007 * |
Intraoperative average mean blood pressure (mmHg) | 85 ± 14.7 | 90 ± 9.3 | 0.32 |
Intraoperative average HR (bpm) | 64 ± 9.3 | 58 ± 8.0 | 0.053 |
Extubation time (min) | 8.6 ± 3.4 | 9.1 ± 4.3 | 0.43 |
R Group | C Group | p-Value | |
---|---|---|---|
Recovery room discharge time (min) | 29.0 (4.02) | 31.2 (4.54) | 0.071 |
VAS score | |||
Resting | |||
Recovery room | 1.0 (0.7) | 3.29 (1.15) | 0.000 * |
4 hours post-surgery | 0.96 (0.69) | 3.29 (1.24) | 0.000 * |
8 hours post-surgery | 1.09 (0.793) | 3.33 (1.27) | 0.000 * |
Coughing | |||
Recovery room | 1.52 (0.827) | 4.61 (1.4) | 0.000 * |
4 hours post-surgery | 1.46 (0.83) | 4.32 (1.57) | 0.000 * |
8 hours post-surgery | 1.5 (1.06) | 4.41 (1.80) | 0.000 * |
Additional analgesic, n (%) | |||
Recovery room | 0 (0%) | 10 (35%) | 0.01 * |
4 hours post-surgery | 3 (13%) | 10 (35%) | 0.049 * |
8 hours post-surgery | 4 (17%) | 3 (11%) | 0.540 |
Nausea vomiting scale | |||
Recovery room | 0.13 (0.33) | 0.18 (0.39) | 0.598 |
At 8 hours post-surgery | 0.07 (0.26) | 0.08 (0.26) | 0.874 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, E.D.; Lee, Y.; Choi, S.; Lee, H.; Ohn, C.; Kwon, W. Abdominal Wall Block Decreases Intraoperative Opioid Con-Sumption by Surgical Pleth Index-Guided Remifentanil Administration in Single-Port Laparoscopic Herniorrhaphy: A Prospective Randomized Controlled Trial. Int. J. Environ. Res. Public Health 2022, 19, 16012. https://doi.org/10.3390/ijerph192316012
Kim ED, Lee Y, Choi S, Lee H, Ohn C, Kwon W. Abdominal Wall Block Decreases Intraoperative Opioid Con-Sumption by Surgical Pleth Index-Guided Remifentanil Administration in Single-Port Laparoscopic Herniorrhaphy: A Prospective Randomized Controlled Trial. International Journal of Environmental Research and Public Health. 2022; 19(23):16012. https://doi.org/10.3390/ijerph192316012
Chicago/Turabian StyleKim, Eung Don, Youngin Lee, Segyu Choi, Hyein Lee, Chaeryeon Ohn, and Woojin Kwon. 2022. "Abdominal Wall Block Decreases Intraoperative Opioid Con-Sumption by Surgical Pleth Index-Guided Remifentanil Administration in Single-Port Laparoscopic Herniorrhaphy: A Prospective Randomized Controlled Trial" International Journal of Environmental Research and Public Health 19, no. 23: 16012. https://doi.org/10.3390/ijerph192316012
APA StyleKim, E. D., Lee, Y., Choi, S., Lee, H., Ohn, C., & Kwon, W. (2022). Abdominal Wall Block Decreases Intraoperative Opioid Con-Sumption by Surgical Pleth Index-Guided Remifentanil Administration in Single-Port Laparoscopic Herniorrhaphy: A Prospective Randomized Controlled Trial. International Journal of Environmental Research and Public Health, 19(23), 16012. https://doi.org/10.3390/ijerph192316012