Thermographic of the Microcirculation in Healthy Children Aged 3–10 Months as an Objective and Noninvasive Method of Assessment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Group
2.2. Research Methods
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- van Haastert, I.C.; de Vries, L.S.; Helders, P.J.M.; Jongmans, M.J. Early gross motor development of preterm infants according to the Alberta Infant Motor Scale. J. Pediatr. 2006, 149, 617–622. [Google Scholar] [CrossRef]
- Todd, A.J.; Carroll, M.T.; Robinson, A.; Mitchell, E.K.L. Adverse Events Due to Chiropractic and Other Manual Therapies for Infants and Children: A Review of the Literature. J. Manip. Physiol. Ther. 2015, 38, 699–712. [Google Scholar] [CrossRef] [PubMed]
- Colson, S.D.; Meek, J.H.; Hawdon, J.M. Optimal positions for the release of primitive neonatal reflexes stimulating breastfeeding. Early Hum. Dev. 2008, 84, 441–449. [Google Scholar] [CrossRef] [PubMed]
- ICD-10. Brak Oczekiwanego Prawidłowego Rozwoju Fizjologicznego. Available online: https://bml.pl/narzedzia/icd10/brak-oczekiwanego-prawidlowego-rozwoju-fizjologicznego (accessed on 23 November 2021).
- Sung, Y.-H.; Ha, S.-Y. The Vojta approach changes thicknesses of abdominal muscles and gait in children with spastic cerebral palsy: A randomized controlled trial, pilot study. Technol. Health Care 2020, 28, 293–301. [Google Scholar] [CrossRef] [PubMed]
- Sahrmann, S.A. Does Postural Assessment Contribute to Patient Care? J. Orthop. Sports. Phys. Ther. 2002, 32, 376–379. [Google Scholar] [CrossRef] [PubMed]
- Ha, S.-Y.; Sung, Y.-H. Effects of Vojta method on trunk stability in healthy individuals. J. Exerc. Rehabil. 2016, 12, 542–547. [Google Scholar] [CrossRef] [PubMed]
- James, R.S. A review of the thermal sensitivity of the mechanics of vertebrate skeletal muscle. J. Comp. Physiol. B 2013, 183, 723–733. [Google Scholar] [CrossRef]
- Dębiec-Bąk, A.; Skrzek, A.; Podbielska, H.; Golubnitschaja, O.; Stefańska, M. Superficial temperature distribution patterns before and after physical activity in school children are indicative for personalized exercise coaching and disease prevention. EPMA J. 2021, 12, 435–447. [Google Scholar] [CrossRef]
- Coletta, N.A.; Mallette, M.M.; Gabriel, D.A.; Tyler, C.J.; Cheung, S.S. Core and skin temperature influences on the surface electromyographic responses to an isometric force and position task. PLoS ONE 2018, 13, e0195219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanssler, L.; Breukmann, H. Hauttemperaturmessungen bei Frühgeborenen. Klin. Padiatr. 1992, 204, 355–358. [Google Scholar] [CrossRef]
- Lim, C.L.; Byrne, C.; Lee, J.K. Human thermoregulation and measurement of body temperature in exercise and clinical settings. Ann. Acad. Med. Singap. 2008, 37, 347–353. [Google Scholar] [PubMed]
- Christidis, I.; Zotter, H.; Rosegger, H.; Engele, H.; Kurz, R.; Kerbl, R. Infrared thermography in newborns: The first hour after birth. Gynakol. Geburtshilfliche Rundsch. 2003, 43, 31–35. [Google Scholar] [CrossRef] [PubMed]
- Escamilla-Galindo, V.L.; Estal-Martínez, A.; Adamczyk, J.G.; Brito, C.J.; Arnaiz-Lastras, J.; Sillero-Quintana, M. Skin temperature response to unilateral training measured with infrared thermography. J. Exerc. Rehabil. 2017, 13, 526–534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teyhen, D.S.; Shaffer, S.W.; Lorenson, C.L.; Halfpap, J.P.; Donofry, D.F.; Walker, M.J.; Dugan, J.L.; Childs, J.D. The Functional Movement Screen: A reliability study. J. Orthop. Sports Phys. Ther. 2012, 42, 530–540. [Google Scholar] [CrossRef] [Green Version]
- Clark, R.P.; Stothers, J.K. Neonatal skin temperature distribution using infra-red colour thermography. J. Physiol. 1980, 302, 323–333. [Google Scholar] [CrossRef] [PubMed]
- Epple, C.; Maurer-Burkhard, B.; Lichti, M.C.; Steiner, T. Vojta therapy improves postural control in very early stroke rehabilitation: A randomised controlled pilot trial. Neurol. Res. Pract. 2020, 2, 23. [Google Scholar] [CrossRef] [PubMed]
- Vojta, V.; Peters, A. Erste Phase des Reflexumdrehens. In Das Vojta-Prinzip: Muskelspiele in Reflexfortbewegung und Motorischer Ontogenese; Vojta, V., Peters, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2001; pp. 109–134. ISBN 978-3-662-06492-4. [Google Scholar]
- Marshall, P.W.; Murphy, B.A. Core stability exercises on and off a Swiss ball. Arch. Phys. Med. Rehabil. 2005, 86, 242–249. [Google Scholar] [CrossRef]
- Panjabi, M.M. Clinical spinal instability and low back pain. J. Electromyogr. Kinesiol. 2003, 13, 371–379. [Google Scholar] [CrossRef]
- Hodges, P.W. Is there a role for transversus abdominis in lumbo-pelvic stability? Man. Ther. 1999, 4, 74–86. [Google Scholar] [CrossRef] [Green Version]
- Richardson, C.A.; Hides, J.A.; Wilson, S.; Stanton, W.; Snijders, C.J. Lumbo-pelvic joint protection against antigravity forces: Motor control and segmental stiffness assessed with magnetic resonance imaging. J. Gravit. Physiol. 2004, 11, P119–P122. [Google Scholar]
- Akuthota, V.; Nadler, S.F. Core strengthening11No commercial party having a direct financial interest in the results of the research supporting this article has or will confer a benefit upon the author(s) or upon any organization with which the authors is/are associated. Arch. Phys. Med. Rehabil. 2004, 85, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Banaszek, G. Vojta’s method as the early neurodevelopmental diagnosis and therapy concept. Prz. Lek. 2010, 67, 67–76. [Google Scholar]
- Bauer, H.; Appaji, G.; Mundt, D. VOJTA neurophysiologic therapy. Indian J. Pediatr. 1992, 59, 37–51. [Google Scholar] [CrossRef] [PubMed]
- Székely, M.; Garai, J. Thermoregulation and age. Handb. Clin. Neurol. 2018, 156, 377–395. [Google Scholar] [CrossRef] [PubMed]
- Dębiec-Bąk, A.; Wójtowicz, D.; Pawik, Ł.; Ptak, A.; Skrzek, A. Analysis of body surface temperatures in people with Down syndrome after general rehabilitation exercise. J. Therm. Anal. Calorim. 2019, 135, 2399–2410. [Google Scholar] [CrossRef] [Green Version]
- Charkoudian, N. Mechanisms and modifiers of reflex induced cutaneous vasodilation and vasoconstriction in humans. J. Appl. Physiol. 2010, 109, 1221–1228. [Google Scholar] [CrossRef]
Front of the Body | Research 1 | Research 2 | Difference | SD Difference | SE Difference | p t Student’s Test | d Cohen’s Test | ||
---|---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | ||||||
A1 [°] | 31.57 | 0.84 | 31.56 | 1.52 | 0.02 | 1.29 | 0.30 | 0.9570 | 0.02 |
A2 [°] | 31.68 | 0.69 | 31.46 | 1.45 | 0.22 | 1.19 | 0.27 | 0.4395 | 0.27 |
A3 [°] | 33.16 | 1.12 | 33.13 | 1.31 | 0.03 | 1.53 | 0.35 | 0.9277 | 0.03 |
A4 [°] | 30.70 | 1.04 | 30.64 | 1.01 | 0.06 | 1.41 | 0.32 | 0.8565 | 0.06 |
A5 [°] | 30.71 | 1.02 | 30.69 | 1.03 | 0.02 | 1.30 | 0.30 | 0.9574 | 0.02 |
Back of the Body | Research 1 | Research 2 | Difference | SD Difference | SE Difference | p t Student’s Test | d Cohen’s Test | ||
---|---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | ||||||
A6 [°] | 31.02 | 0.86 | 31.76 | 1.16 | −0.73 | 1.19 | 0.27 | 0.0181 * | 0.89 |
A7 [°] | 31.02 | 0.87 | 31.73 | 1.19 | −0.71 | 1.05 | 0.24 | 0.0103 * | 0.98 |
A8 [°] | 32.86 | 0.75 | 33.54 | 1.17 | −0.69 | 1.34 | 0.31 | 0.0432 * | 0.74 |
A9 [°] | 30.33 | 1.29 | 30.89 | 0.91 | −0.57 | 1.30 | 0.30 | 0.0722 | 0.61 |
A10 [°] | 30.45 | 1.22 | 31.09 | 0.83 | −0.65 | 1.32 | 0.30 | 0.0465 * | 0.70 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ptak, A.; Dębiec-Bąk, A.; Stefańska, M. Thermographic of the Microcirculation in Healthy Children Aged 3–10 Months as an Objective and Noninvasive Method of Assessment. Int. J. Environ. Res. Public Health 2022, 19, 16072. https://doi.org/10.3390/ijerph192316072
Ptak A, Dębiec-Bąk A, Stefańska M. Thermographic of the Microcirculation in Healthy Children Aged 3–10 Months as an Objective and Noninvasive Method of Assessment. International Journal of Environmental Research and Public Health. 2022; 19(23):16072. https://doi.org/10.3390/ijerph192316072
Chicago/Turabian StylePtak, Agnieszka, Agnieszka Dębiec-Bąk, and Małgorzata Stefańska. 2022. "Thermographic of the Microcirculation in Healthy Children Aged 3–10 Months as an Objective and Noninvasive Method of Assessment" International Journal of Environmental Research and Public Health 19, no. 23: 16072. https://doi.org/10.3390/ijerph192316072
APA StylePtak, A., Dębiec-Bąk, A., & Stefańska, M. (2022). Thermographic of the Microcirculation in Healthy Children Aged 3–10 Months as an Objective and Noninvasive Method of Assessment. International Journal of Environmental Research and Public Health, 19(23), 16072. https://doi.org/10.3390/ijerph192316072