Neuropsychological Assessment of Community-Dwelling Older Adults in Almaty, Kazakhstan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Neuropsychological Test Battery (NTB)
2.2. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Adambekov, S.; Kaiyrlykyzy, A.; Igissinov, N.; Linkov, F. Health challenges in Kazakhstan and Central Asia. J. Epidemiol. Community Health 2016, 70, 104–108. [Google Scholar] [CrossRef] [PubMed]
- Feigin, V.L.; Nguyen, G.; Cercy, K.; Johnson, C.O.; Alam, T.; Parmar, P.G.; Abajobir, A.A.; Abate, K.H.; Abd-Allah, F.; Abejie, A.N.; et al. Global, Regional, and Country-Specific Lifetime Risks of Stroke, 1990 and 2016. N. Engl. J. Med. 2018, 379, 2429–2437. [Google Scholar] [CrossRef] [PubMed]
- Winblad, B.; Palmer, K.; Kivipelto, M.; Jelic, V.; Fratiglioni, L.; Wahlund, L.O.; Nordberg, A.; Bäckman, L.; Albert, M.; Almkvist, O.; et al. Mild cognitive impairment—Beyond controversies, towards a consensus: Report of the International Working Group on Mild Cognitive Impairment. J. Intern. Med. 2004, 256, 240–246. [Google Scholar] [CrossRef]
- Mukasheva, G.; Abenova, M.; Shaltynov, A.; Tsigengage, O.; Mussabekova, Z.; Bulegenov, T.; Shalgumbaeva, G.; Semenova, Y. Incidence and Mortality of Cardiovascular Disease in the Republic of Kazakhstan: 2004–2017. Iran. J. Public Health 2022, 51, 821–830. [Google Scholar] [CrossRef]
- Kerimray, A.; Azbanbayev, E.; Kenessov, B.; Plotitsyn, P.; Alimbayeva, D.; Karaca, F.; Azbanbayev, E.; Kenessov, B.; Plotitsyn, P.; Alimbayeva, D.; et al. Spatiotemporal Variations and Contributing Factors of Air Pollutants in Almaty, Kazakhstan. Aerosol. Air Qual. Res. 2020, 20, 1340–1352. [Google Scholar] [CrossRef] [Green Version]
- Kerimray, A.; Baimatova, N.; Ibragimova, O.P.; Bukenov, B.; Kenessov, B.; Plotitsyn, P.; Karaca, F. Assessing air quality changes in large cities during COVID-19 lockdowns: The impacts of traffic-free urban conditions in Almaty, Kazakhstan. Sci. Total Env. 2020, 730, 139179. [Google Scholar] [CrossRef]
- Livingston, G.; Huntley, J.; Sommerlad, A.; Ames, D.; Ballard, C.; Banerjee, S.; Brayne, C.; Burns, A.; Cohen-Mansfield, J.; Cooper, C.; et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet 2020, 396, 413–446. [Google Scholar] [CrossRef]
- Prince, M.; Bryce, R.; Albanese, E.; Wimo, A.; Ribeiro, W.; Ferri, C.P. The global prevalence of dementia: A systematic review and metaanalysis. Alzheimer’s Dement. 2013, 9, 63–75.e62. [Google Scholar] [CrossRef]
- Tsoy, R.T.; Turuspekova, S.T.; Klipitskaya, N.K.; Mereke, A.; Cumming, R.G. Prevalence of Mild Cognitive Impairment Among Older People in Kazakhstan and Potential Risk Factors: A Cross-sectional Study. Alzheimer Dis. Assoc. Disord. 2019, 33, 136–141. [Google Scholar] [CrossRef]
- Breton, A.; Casey, D.; Arnaoutoglou, N.A. Cognitive tests for the detection of mild cognitive impairment (MCI), the prodromal stage of dementia: Meta-analysis of diagnostic accuracy studies. Int. J. Geriatr. Psychiatry 2019, 34, 233–242. [Google Scholar] [CrossRef]
- Park, L.Q.; Gross, A.L.; McLaren, D.G.; Pa, J.; Johnson, J.K.; Mitchell, M.; Manly, J.J. Confirmatory factor analysis of the ADNI Neuropsychological Battery. Brain Imaging Behav. 2012, 6, 528–539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayden, K.M.; Makeeva, O.A.; Newby, L.K.; Plassman, B.L.; Markova, V.V.; Dunham, A.; Romero, H.R.; Melikyan, Z.A.; Germain, C.M.; Welsh-Bohmer, K.A.; et al. A comparison of neuropsychological performance between US and Russia: Preparing for a global clinical trial. Alzheimer’s Dement. J. Alzheimer’s Assoc. 2014, 10, 760–768.e761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehrabian, S.; Raycheva, M.; Petrova, N.; Janyan, A.; Petrova, M.; Traykov, L. Neuropsychological and neuroimaging markers in prediction of cognitive impairment after ischemic stroke: A prospective follow-up study. Neuropsychiatr. Dis. Treat. 2015, 11, 2711–2719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alekseevich, G.Y.; Rodikov, M.V.; Marchenko, A.V.; Myalyuk, P.A.; Alekseevich, G.V. An analysis of postoperative cognitive dysfunction in different methods of coronary artery bypass. Zhurnal Nevrol. I Psikhiatrii Im. S.S. Korsakova 2017, 117, 16–20. [Google Scholar] [CrossRef]
- Fierman, W. Language and Education in Post-Soviet Kazakhstan: Kazakh-Medium Instruction in Urban Schools. Russ. Rev. 2006, 65, 98–116. [Google Scholar] [CrossRef]
- Atkins, A.S.; Keefe, R.S.E.; Vaughan, A.W.; Turcotte, N.M.; Makeeva, O.A.; Monsch, A.U.; Frisoni, G.B.; Parapini, M.; Melikyan, Z.A.; Brewster, S.; et al. Cultural adaptation of translated neurocognitive assessments in russia, switzerland and italy: Pilot testing for a program to delay the onset of mild cognitive impairment due to alzheimer’s disease. Alzheimer’s Dement. 2014, 10, P725–P726. [Google Scholar] [CrossRef]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef]
- Ferris, S.H.; Aisen, P.S.; Cummings, J.; Galasko, D.; Salmon, D.P.; Schneider, L.; Sano, M.; Whitehouse, P.J.; Edland, S.; Thal, L.J. ADCS Prevention Instrument Project: Overview and initial results. Alzheimer Dis. Assoc. Disord. 2006, 20, S109–S123. [Google Scholar] [CrossRef]
- Nasreddine, Z.S.; Phillips, N.A.; Bedirian, V.; Charbonneau, S.; Whitehead, V.; Collin, I.; Cummings, J.L.; Chertkow, H. The Montreal Cognitive Assessment, MoCA: A brief screening tool for mild cognitive impairment. J. Am. Geriatr. Soc. 2005, 53, 695–699. [Google Scholar] [CrossRef]
- Nasreddine, Z. MoCA Cognitive Assessment. Available online: https://www.mocatest.org/ (accessed on 25 October 2022).
- Welsh, K.A.; Butters, N.; Mohs, R.C.; Beekly, D.; Edland, S.; Fillenbaum, G.; Heyman, A. The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD). Part V. A normative study of the neuropsychological battery. Neurology 1994, 44, 609–614. [Google Scholar] [CrossRef]
- Carone, D.A.; Strauss, E.; Sherman, E.M.S.; Spreen, O. A Compendium of Neuropsychological Tests: Administration, Norms, and Commentary. Appl. Neuropsychol. 2007, 14, 62–63. [Google Scholar] [CrossRef]
- Reitan, R.M. Validity of the Trail Making Test as an Indicator of Organic Brain Damage. Percept. Mot. Ski. 1958, 8, 271–276. [Google Scholar] [CrossRef]
- Ivanova, I.; Salmon, D.P.; Gollan, T.H. The multilingual naming test in Alzheimer’s disease: Clues to the origin of naming impairments. J. Int. Neuropsychol. Soc. JINS 2013, 19, 272–283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lezak, M.D.; Howieson, D.B.; Loring, D.W.; Hannay, H.J.; Fischer, J.S. Neuropsychological Assessment, 4th ed.; Oxford University Press: New York, NY, USA, 2004; p. xiv, 1016. [Google Scholar]
- Fernández, A.L.; Abe, J. Bias in cross-cultural neuropsychological testing: Problems and possible solutions. Cult. Brain 2018, 6, 1–35. [Google Scholar] [CrossRef]
- Cetty, L.; Peh, C.X.; Abdin, E.; Vaingankar, J.A.; Shahwan, S.; Picco, L.; Prince, M.; Chong, S.A.; Subramaniam, M. Normative data for the 10/66 dementia research group neuropsychological test battery from Singapore’s older adult population. Asian J. Psychiatr. 2020, 51, 102019. [Google Scholar] [CrossRef] [PubMed]
- Sundermann, E.E.; Biegon, A.; Rubin, L.H.; Lipton, R.B.; Landau, S.; Maki, P.M. Does the Female Advantage in Verbal Memory Contribute to Underestimating Alzheimer’s Disease Pathology in Women versus Men? J. Alzheimer’s Dis. JAD 2017, 56, 947–957. [Google Scholar] [CrossRef] [PubMed]
- Alenius, M.; Ngandu, T.; Koskinen, S.; Hallikainen, I.; Hänninen, T.; Karrasch, M.; Kivipelto, M.; Raivio, M.M.; Laakkonen, M.L.; Krüger, J.; et al. Education-Based Cutoffs for Cognitive Screening of Alzheimer’s Disease. Dement. Geriatr. Cogn. Disord. 2022, 51, 42–55. [Google Scholar] [CrossRef] [PubMed]
- Mungas, D.; Marshall, S.C.; Weldon, M.; Haan, M.; Reed, B.R. Age and education correction of Mini-Mental State Examination for English and Spanish-speaking elderly. Neurology 1996, 46, 700–706. [Google Scholar] [CrossRef]
- Ganguli, M.; Snitz, B.E.; Lee, C.W.; Vanderbilt, J.; Saxton, J.A.; Chang, C.C. Age and education effects and norms on a cognitive test battery from a population-based cohort: The Monongahela-Youghiogheny Healthy Aging Team. Aging Ment. Health 2010, 14, 100–107. [Google Scholar] [CrossRef] [Green Version]
- Alenius, M.; Koskinen, S.; Hallikainen, I.; Ngandu, T.; Lipsanen, J.; Sainio, P.; Tuulio-Henriksson, A.; Hänninen, T. Cognitive Performance among Cognitively Healthy Adults Aged 30–100 Years. Dement. Geriatr. Cogn. Dis. Extra 2019, 9, 11–23. [Google Scholar] [CrossRef]
- Vicente, S.G.; Benito-Sánchez, I.; Barbosa, F.; Gaspar, N.; Dores, A.R.; Rivera, D.; Arango-Lasprilla, J.C. Normative data for Verbal Fluency and Object Naming Tests in a sample of European Portuguese adult population. Appl. Neuropsychol. Adult 2022, 29, 1268–1279. [Google Scholar] [CrossRef] [PubMed]
- Vogel, A.; Stokholm, J.; Jørgensen, K. Normative data for eight verbal fluency measures in older Danish adults. Neuropsychol. Dev. Cogn. B Aging Neuropsychol. Cogn. 2020, 27, 114–124. [Google Scholar] [CrossRef] [PubMed]
- Lara, E.; Miret, M.; Sanchez-Niubo, A.; Haro, J.M.; Koskinen, S.; Leonardi, M.; Tobiasz-Adamczyk, B.; Chatterji, S.; Ayuso-Mateos, J.L. Episodic Memory and Verbal Fluency Tasks: Normative Data from Nine Nationally Representative Samples. J. Int. Neuropsychol. Soc. JINS 2021, 27, 89–98. [Google Scholar] [CrossRef]
- Kim, H.; Au, R.; Thomas, R.J.; Yun, C.H.; Lee, S.K.; Han, C.; Shin, C. Cognitive performance norms from the Korean genome and epidemiology study (KoGES). Int. Psychogeriatr. 2017, 29, 1909–1924. [Google Scholar] [CrossRef] [PubMed]
Characteristics | 60–64 Years | ≥65 Years | Total | p-Value | |
---|---|---|---|---|---|
Gender | Female | 110 (69.6) | 75 (63.6) | 185 (67.0) | 0.289 |
Male | 48 (30.4) | 43 (36.4) | 91 (33.0) | ||
Education | >12 years | 86 (54.4) | 73 (61.9) | 159 (57.6) | 0.216 |
≤12 years | 72 (45.6) | 45 (38.1) | 117 (42.4) | ||
Ethnicity | Kazakh and Central Asian | 78 (49.4) | 36 (30.5) | 114 (41.3) | 0.002 |
Russian and European | 80 (50.6) | 82 (69.5) | 162 (58.7) |
Neuropsychological Test Battery | Mean (SD) | Q25 | Median | Q75 |
---|---|---|---|---|
MOCA/30 | 23.8 (3.3) | 22 | 24 | 26 |
CERAD learning trials, sum/30 | 17.0 (4.5) | 14 | 17 | 20 |
CERAD delayed recall/10 | 4.37 (2.3) | 3 | 5 | 6 |
CERAD word recognition: correct hits/10 | 8.5 (1.9) | 8 | 9 | 10 |
CERAD word recognition: correct rejections/10 | 8.5 (0.8) | 9 | 10 | 10 |
TMT A, time (s) * | 59.0 (26.7) | 69 | 51 | 40 |
TMT A errors | 0.1 (0.4) | 0 | 0 | 0 |
TMT B, time (s) * | 150.3 (67.4) | 194 | 132 | 97 |
TMT B errors | 1.4 (1.8) | 0 | 1 | 2 |
MINT/32 | 26.9 (4.0) | 25 | 28 | 30 |
Semantic fluency: animals (no. words) | 15.0 (4.8) | 11 | 15 | 18.5 |
Semantic fluency: vegetables (no. words) | 10.5 (3.5) | 8 | 10 | 12 |
Phonemic verbal fluency (no. words, sum of 3 trials) | 27.4 (9.8) | 20 | 26 | 34 |
ADCS/max score/x * | 3.1 (2.6) | 1 | 3 | 4.5 |
Variables | Gender | Test of Difference | ||||||
---|---|---|---|---|---|---|---|---|
Females | Males | U-Test * | p-Value | |||||
Med | Q25 | Q75 | Med | Q25 | Q75 | |||
MOCA/30 | 25 | 22 | 26 | 23 | 21 | 26 | 6384.5 | 0.001 |
CERAD learning trials, sum/30 | 18 | 14 | 21 | 15 | 13 | 19 | 6683.5 | 0.005 |
CERAD delayed recall/10 | 5 | 3 | 6 | 3 | 2 | 5 | 6199.5 | <0.001 |
CERAD word recognition: correct hits/10 | 9 | 8 | 10 | 9 | 7 | 10 | 7229.0 | 0.048 |
CERAD word recognition: correct rejections/10 | 10 | 9 | 10 | 10 | 9 | 10 | 7378.0 | 0.050 |
TMT A, time (s) | 49 | 64 | 40 | 55 | 74 | 45 | 6810.0 | 0.010 |
TMT A errors | 0 | 0 | 0 | 0 | 0 | 0 | 8136.0 | 0.403 |
TMT B, time (s) | 123 | 182 | 94 | 141 | 217 | 99 | 7148.0 | 0.042 |
TMT B errors | 1 | 0 | 2 | 1 | 0 | 2 | 8028.5 | 0.515 |
MINT/32 | 28 | 25 | 29 | 29 | 26 | 30 | 7399.0 | 0.098 |
Semantic fluency: animals (no. words) | 16 | 12 | 19 | 14 | 10 | 17 | 6890.5 | 0.014 |
Semantic fluency: vegetables (no. words) | 11 | 9 | 13 | 9 | 7 | 11 | 5216.0 | <0.001 |
Phonemic verbal fluency (no. words, sum of 3 trials) | 28 | 21 | 36 | 24 | 18 | 32 | 6941.5 | 0.018 |
ADCS/max score/x | 3 | 2 | 4 | 2 | 1 | 4 | 6740.0 | 0.007 |
Variables | Age Groups | Test of Difference | ||||||
---|---|---|---|---|---|---|---|---|
60–64 Years | ≥65 Years | U-Test * | p-Value | |||||
Med | Q25 | Q75 | Med | Q25 | Q75 | |||
MOCA/30 | 25 | 22 | 27 | 23 | 21 | 26 | 6774 | 0.002 |
CERAD learning trials, sum/30 | 18 | 15 | 21 | 15 | 12 | 18 | 5709.5 | <0.001 |
CERAD delayed recall/10 | 5 | 3 | 6 | 4 | 2 | 5 | 6138.5 | <0.001 |
CERAD word recognition: correct hits/10 | 9 | 8 | 10 | 9 | 7 | 10 | 7252.5 | <0.001 |
CERAD word recognition: correct rejections/10 | 10 | 9 | 10 | 10 | 9 | 10 | 9102.0 | 0.693 |
TMT A, time (s) | 49 | 61 | 40 | 57 | 84 | 42 | 6973.5 | 0.006 |
TMT A errors | 0 | 0 | 0 | 0 | 0 | 0 | 8560 | 0.636 |
TMT B, time (s) | 120 | 170 | 91 | 162 | 222 | 107 | 6460.5 | <0.001 |
TMT B errors | 1 | 0 | 2 | 1 | 0 | 2 | 7310 | 0.02 |
MINT/32 | 28 | 26 | 30 | 27 | 24 | 29 | 7318 | 0.025 |
Semantic fluency: animals (no. words) | 15 | 12 | 19 | 14 | 11 | 18 | 7874.5 | 0.181 |
Semantic fluency: vegetables (no. words) | 10 | 8 | 13 | 10 | 8 | 12 | 7422.5 | 0.04 |
Phonemic verbal fluency (no. words, sum of 3 trials) | 28 | 21 | 36 | 24 | 17 | 33 | 6998 | 0.007 |
ADCS/max score/x | 3 | 1 | 4 | 3 | 2 | 5 | 7230 | 0.018 |
Variables | Ethnicity Groups | Test of Difference | ||||||
---|---|---|---|---|---|---|---|---|
Kazakh and Central Asian | Russian and European | U-Test * | p-Value | |||||
Med | Q25 | Q75 | Med | Q25 | Q75 | |||
MOCA/30 | 22 | 20 | 25 | 25 | 23 | 27 | 5174.5 | <0.001 |
CERAD learning trials, sum/30 | 15 | 12 | 20 | 18 | 15 | 21 | 7142.5 | <0.001 |
CERAD delayed recall/10 | 5 | 2 | 6 | 4 | 3 | 6 | 9008.5 | 0.728 |
CERAD word recognition: correct hits/10 | 9 | 7 | 10 | 9 | 8 | 10 | 8167.5 | 0.090 |
CERAD word recognition: correct rejections/10 | 10 | 9 | 10 | 10 | 9 | 10 | 8551.5 | 0.219 |
TMT A, time (s) | 56 | 85 | 45 | 48 | 64 | 40 | 6977.0 | 0.001 |
TMT A errors | 0 | 0 | 0 | 0 | 0 | 0 | 7770.5 | <0.001 |
TMT B, time (s) | 153 | 226 | 105 | 122 | 170 | 89 | 6917.0 | <0.001 |
TMT B errors | 1 | 0 | 2 | 1 | 0 | 2 | 7632.0 | 0.011 |
MINT/32 | 26 | 23 | 28 | 29 | 27 | 30 | 5398.5 | <0.001 |
Semantic fluency: animals (no. words) | 13 | 10 | 16 | 16 | 13 | 20 | 5971.0 | <0.001 |
Semantic fluency: vegetables (no. words) | 9 | 7 | 12 | 11 | 9 | 13 | 6338.0 | <0.001 |
Phonemic verbal fluency (no. words, sum of 3 trials) | 24 | 19 | 32 | 29 | 22 | 36 | 7128.5 | 0.001 |
ADCS/max score/x | 3 | 1 | 5 | 3 | 1 | 4 | 8908.0 | 0.613 |
Variables | Education Groups | Test of Difference | ||||||
---|---|---|---|---|---|---|---|---|
≤12 Years | >12 Years | U-Test * | p-Value | |||||
Med | Q25 | Q75 | Med | Q25 | Q75 | |||
MOCA/30 | 24 | 21 | 26 | 24 | 22 | 26 | 7702.0 | 0.014 |
CERAD learning trials, sum/30 | 16 | 13 | 19 | 18 | 14 | 21 | 7758.5 | 0.018 |
CERAD delayed recall/10 | 4 | 2 | 6 | 5 | 3 | 6 | 8218.0 | 0.095 |
CERAD word recognition: correct hits/10 | 9 | 7 | 10 | 9 | 8 | 10 | 8575.5 | 0.250 |
CERAD word recognition: correct rejections/10 | 10 | 9 | 10 | 10 | 9 | 10 | 8318.5 | 0.078 |
TMT A, time (s) * | 55 | 43 | 74 | 50 | 40 | 62 | 7869.5 | 0.029 |
TMT A errors | 0 | 0 | 0 | 0 | 0 | 0 | 8956.5 | 0.329 |
TMT B, time (s) * | 140 | 101 | 218 | 125 | 94 | 176 | 7694.0 | 0.014 |
TMT B errors | 1 | 0 | 2 | 1 | 0 | 2 | 9280.0 | 0.973 |
MINT/32 | 28 | 25 | 29 | 28 | 25 | 30 | 8605.5 | 0.286 |
Semantic fluency: animals (no. words) | 14 | 10 | 17 | 15 | 12 | 19 | 7842.5 | 0.026 |
Semantic fluency: vegetables (no. words) | 10 | 8 | 13 | 10 | 8 | 12 | 9271.0 | 0.963 |
Phonemic verbal fluency (no. words, sum of 3 trials) | 24 | 18 | 32 | 29 | 22 | 38 | 6905.5 | <0.001 |
ADCS/max score/x | 3 | 1 | 5 | 2 | 1 | 4 | 8589.5 | 0.272 |
Neuropsychological Test Battery | Age | Education | Gender | Ethnicity |
---|---|---|---|---|
MOCA/30 | −0.22 | 0.26 | −0.57 | 2.73 |
(−0.299, −0.146) ** | (0.133, 0.390) ** | (−1.305, 0.173) | (2.007, 3.448) ** | |
CERAD learning trials, sum/30 | −0.33 | 0.26 | −1.05 | 2.09 |
(−0.447, −0.223) ** | (0.076, 0.452) ** | (−2.129, 0.032) | (1.036, 3.144) ** | |
CERAD delayed recall/10 | −0.15 | 0.10 | −0.93 | 0.21 |
(−0.208, −0.095) ** | (0.010, 0.200) * | (−1.478, −0.386) ** | (−0.326, 0.739) | |
CERAD word recognition: correct hits/10 | −0.13 | 0.11 | −0.12 | 0.58 |
(−0.173, −0.079) ** | (0.031, 0.189) ** | (−0.578, 0.330) | (0.134, 1.021) * | |
CERAD word recognition: correct rejections/10 | −0.02 | 0.05 | −0.07 | 0.12 |
(−0.044, −0.001) * | (0.011, 0.082) * | (−0.270, 0.136) | (−0.080, 0.316) | |
TMT A, time (s) | 1.19 | −1.81 | 3.01 | −13.44 |
(0.507, 1.865) ** | (−2.951, −0.665) ** | (−3.555, 9.578) | (−19.847, −7.036) ** | |
TMT A errors † | 0.00 | −0.01 | −0.02 | −0.19 |
(−0.006, 0.015) | (−0.031, 0.004) | (−0.124, 0.076) | (−0.291, −0.097) ** | |
TMT B, time (s) | 4.17 | −5.45 | 8.38 | −35.96 |
(2.507, 5.837) ** | (−8.256, −2.648) ** | (−7.730, 24.489) | (−51.674, −20.249) ** | |
TMT B errors † | 0.10 | −0.07 | −0.14 | −0.58 |
(0.057, 0.152) ** | (−0.150, 0.010) | (−0.597, 0.324) | (−1.030, −0.132) * | |
MINT/32 | −0.20 | 0.11 | 1.91 | 3.52 |
(−0.295, −0.105) ** | (−0.051, 0.269) | (0.995, 2.832) ** | (2.624, 4.416) ** | |
Semantic fluency: animals (no. words) | −0.15 | 0.22 | −0.70 | 2.90 |
(−0.270, −0.026) * | (0.018, 0.430) * | (−1.881, 0.484) | (1.745, 4.051) ** | |
Semantic fluency: vegetables (no. words) | −0.16 | −0.01 | −1.74 | 1.74 |
(−0.249, −0.076) ** | (−0.160, 0.131) | (−2.575, −0.904) ** | (0.928, 2.558) ** | |
Phonemic verbal fluency (no. words. sum of 3 trials) | −0.54 | 0.94 | −1.90 | 4.14 |
(−0.789, −0.301) ** | (0.533, 1.354) ** | (−4.262, 0.457) | (1.838, 6.441) ** | |
ADCS/max score/x † | 0.09 | −0.08 | −0.67 | −0.43 |
(0.024, 0.159) ** | (−0.189, 0.039) | (−1.327, −0.017) * | (−1.073, 0.205) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kulimbet, M.; Glushkova, N.; Snitz, B.; Tsoy, R.; Adambekov, S.; Talbott, E.; Mereke, A.; Wu, M.; Zhumagaliuly, A.; Karaca, F.; et al. Neuropsychological Assessment of Community-Dwelling Older Adults in Almaty, Kazakhstan. Int. J. Environ. Res. Public Health 2022, 19, 16189. https://doi.org/10.3390/ijerph192316189
Kulimbet M, Glushkova N, Snitz B, Tsoy R, Adambekov S, Talbott E, Mereke A, Wu M, Zhumagaliuly A, Karaca F, et al. Neuropsychological Assessment of Community-Dwelling Older Adults in Almaty, Kazakhstan. International Journal of Environmental Research and Public Health. 2022; 19(23):16189. https://doi.org/10.3390/ijerph192316189
Chicago/Turabian StyleKulimbet, Mukhtar, Natalya Glushkova, Beth Snitz, Radmila Tsoy, Shalkar Adambekov, Evelyn Talbott, Alibek Mereke, Minjie Wu, Abzal Zhumagaliuly, Ferhat Karaca, and et al. 2022. "Neuropsychological Assessment of Community-Dwelling Older Adults in Almaty, Kazakhstan" International Journal of Environmental Research and Public Health 19, no. 23: 16189. https://doi.org/10.3390/ijerph192316189
APA StyleKulimbet, M., Glushkova, N., Snitz, B., Tsoy, R., Adambekov, S., Talbott, E., Mereke, A., Wu, M., Zhumagaliuly, A., Karaca, F., Chang, Y., Turuspekova, S., Sekikawa, A., & Davletov, K. (2022). Neuropsychological Assessment of Community-Dwelling Older Adults in Almaty, Kazakhstan. International Journal of Environmental Research and Public Health, 19(23), 16189. https://doi.org/10.3390/ijerph192316189