Smartphone Use Is Associated with Low Prevalence of Locomotive Syndrome among Elderly Individuals with Musculoskeletal Disorders
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Ethics
2.2. Enrollment of Participants
2.3. Assessment of Locomotive Syndrome
2.4. Statistical Analysis
2.4.1. Sample Size
2.4.2. Differences in Variables between the Two Groups
3. Results
3.1. Characteristics of Participants
3.2. Prevalence and Severity of Locomotive Syndrome between the Two Groups
3.3. Factors Associated with the Severity of Locomotive Syndrome
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mohadisdudis, H.M.; Ali, N.M. A study of smartphone usage and barriers among the elderly. In Proceedings of the 3rd International Conference on User Science and Engineering (i-USEr), Shah Alam, Malaysia, 2–5 September 2014; pp. 109–114. [Google Scholar]
- Anderson, M.; Perrin, A. Tech Adoption Climbs among Older Adults; Pew Research Center: Washington, DC, USA, 2017; p. 17. [Google Scholar]
- Althoff, T.; Sosič, R.; Hicks, J.L.; King, A.C.; Delp, S.L.; Leskovec, J. Large-scale physical activity data reveal worldwide activity inequality. Nature 2017, 547, 336–339. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Szeto, G.; Dai, J. Prevalence and risk factors associated with musculoskeletal complaints among users of mobile handheld devices: A systematic review. Appl. Ergon. 2017, 59, 132–142. [Google Scholar] [CrossRef] [PubMed]
- Toh, S.; Coenen, P.; Howie, E.; Straker, L. The associations of mobile touch screen device use with musculoskeletal symptoms and exposures: A systematic review. PLoS ONE 2017, 12, e0181220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zuo, Y.; Ma, Y.; Zhang, M.; Wu, X.; Ren, Z. The impact of sharing physical activity experience on social network sites on residents’ social connectedness: A cross-sectional survey during COVID-19 social quarantine. Glob. Health 2021, 17, 10. [Google Scholar] [CrossRef]
- Nakamura, K.A. ‘Super-aged’ society and the “locomotive syndrome”. J. Orthop. Sci. 2008, 13, 1. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, K.; Ogata, T. Locomotive syndrome: Definition and management. Clin. Rev. Bone Miner. Metab. 2016, 14, 56–67. [Google Scholar] [CrossRef] [Green Version]
- Ikemoto, T.; Arai, Y.C. Locomotive syndrome: Clinical perspectives. Clin. Interv. Aging 2018, 13, 819–827. [Google Scholar] [CrossRef] [Green Version]
- Toru, O.; Shingo, M.; Hideaki, I.; Takashi, O.; Ryoichi, I.; Noriko, Y.; TsutomuI, K.N. Development of a screening program to assess motor function in the adult population: A cross-sectional observational study. J. Orthop. Sci. 2015, 20, 888–895. [Google Scholar]
- Seichi, A.; Hoshino, Y.; Doi, T.; Akai, M.; Tobimatsu, Y.; Iwaya, T. Development of a screening tool for risk of locomotive syndrome in the elderly: The 25-question Geriatric Locomotive Function Scale. J. Orthop. Sci. 2012, 17, 163–172. [Google Scholar] [CrossRef]
- Taniguchi, M.; Ikezoe, T.; Tsuboyama, T.; Tabara, Y.; Matsuda, F.; Ichihashi, N. on behalf of the Nagahama Study Group. Prevalence and physical characteristics of locomotive syndrome stages as classified by the new criteria 2020 in older Japanese people: Results from the Nagahama study. BMC Geriatr. 2021, 21, 489. [Google Scholar] [CrossRef]
- Wang, C.; Ikemoto, T.; Hirasawa, A.; Arai, Y.C.; Kikuchi, S.; Deie, M. Assessment of locomotive syndrome among older individuals: A confirmatory factor analysis of the 25-question Geriatric Locomotive Function Scale. PeerJ 2020, 8, e9026. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Buchner, A.; Lang, A.G. Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behav. Res. Methods 2009, 41, 1149–1160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Terwee, C.B.; Bot, S.D.M.; de Boer, M.R.; van der Windt, D.A.W.M.; Knol, D.L.; Dekker, J.; Bouter, L.M.; de Vet Henrica, C.W. Quality criteria were proposed for measurement properties of health status questionnaires. J. Clin. Epidemiol. 2007, 60, 34–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panova, T.; Carbonell, X. Is smartphone addiction really an addiction? J. Behav. Addict. 2018, 7, 252–259. [Google Scholar] [CrossRef] [PubMed]
- Bian, M.; Leung, L. Linking loneliness, shyness, smartphone addiction symptoms, and patterns of smartphone use to social capital. Soc. Sci. Comput. Rev. 2015, 33, 61–79. [Google Scholar] [CrossRef] [Green Version]
- Yuan, M.; Chen, J.; Han, Y.; Wei, X.; Ye, Z.; Zhang, L.; Hong, Y.A.; Fang, Y. Associations between modifiable lifestyle factors and multidimensional cognitive health among community-dwelling old adults: Stratified by educational level. Int. Psychogeriatr. 2018, 30, 1465–1476. [Google Scholar] [CrossRef] [Green Version]
- Atlas, A.; Muru-Lanning, M.; Moyes, S.; Kerse, N.; Jatrana, S. Cell phone and technology use by octogenarians. J. Prim. Health Care 2020, 12, 35–40. [Google Scholar] [CrossRef] [Green Version]
- Clouston, S.A.P.; Brewster, P.; Kuh, D.; Richards, M.; Cooper, R.; Hardy, R.; Rubin, M.S.; Hofer, S.M. The dynamic relationship between physical function and cognition in longitudinal aging cohorts. Epidemiol. Rev. 2013, 35, 33–50. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, M.; Tazaki, F.; Nomura, K.; Takano, T.; Hashimoto, M.; Hashizume, H.; Kamei, I. Cognitive impairment associated with locomotive syndrome in community-dwelling elderly women in Japan. Clin. Interv. Aging 2017, 12, 1451–1457. [Google Scholar] [CrossRef] [Green Version]
- Chhabra, H.S.; Sharma, S.; Verma, S. Smartphone app in self-management of chronic low back pain: A randomized controlled trial. Eur. Spine J. 2018, 27, 2862–2874. [Google Scholar] [CrossRef]
- Bandura, A. Social Foundations of Thought and Action: A Social Cognitive Theory. 1986. Available online: https://ci.nii.ac.jp/ncid/BA00746561 (accessed on 19 March 2022).
- Gleeson-Kreig, J.M. Self-monitoring of physical activity: Effects on self-efficacy and behavior in people with type 2 diabetes. Diabetes Educ. 2006, 32, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Oshio, T.; Kimura, H.; Nishizaki, T.; Omori, T. Association between the use of social networking sites, perceived social support, and life satisfaction: Evidence from a population-based survey in Japan. PLoS ONE 2020, 15, e0244199. [Google Scholar] [CrossRef] [PubMed]
Total | Smartphone User (n = 133) | Non-Smartphone User (n = 133) | p-Value | |
---|---|---|---|---|
Age (years) | 74.7 ± 6.4 | 72.9 ± 6.3 | 76.4 ± 6.0 | <0.001 |
male/female | 95/171 | 48/85 | 47/86 | 0.898 |
Reason for orthopedic consultation | ||||
Hip/knee OA | 39 | 20 | 19 | 0.484 |
RA or PMR | 82 | 46 | 36 | |
Spinal Disease | 124 | 56 | 68 | |
Other | 21 | 11 | 10 |
Smartphone User (n = 133) | Non-Smartphone User (n = 133) | p-Value | |
---|---|---|---|
LoS stage ≥ 1 | 105 (78.9%) | 125 (94.0%) | <0.001 |
LoS stage ≥ 2 | 60 (45.1%) | 102 (76.7%) | <0.001 |
LoS stage 3 | 42 (31.6%) | 80 (60.2%) | <0.001 |
Parameter | B | Standard Error | 95% CI for B | p-Value | |
---|---|---|---|---|---|
Total score | |||||
Gender (male) | 0.015 | 0.095 | −0.173 | 0.203 | 0.878 |
age | −0.001 | 0.007 | −0.016 | 0.013 | 0.867 |
Non-Smartphone User | 0.228 | 0.046 | 0.137 | 0.320 | <0.001 |
Subdomain score | |||||
Body pain | |||||
Gender (male) | 0.010 | 0.080 | −0.147 | 0.166 | 0.904 |
age | −0.002 | 0.006 | −0.010 | 0.015 | 0.721 |
Non-Smartphone User | 0.302 | 0.080 | 0.459 | 0.144 | <0.001 |
Movement difficulty | |||||
Gender (male) | 0.206 | 0.106 | −0.003 | 0.416 | 0.053 |
age | −0.004 | 0.008 | −0.021 | 0.014 | 0.684 |
Non-Smartphone User | 0.398 | 0.107 | 0.609 | 0.187 | <0.001 |
Psycho-social complication | |||||
Gender (male) | 0.036 | 0.099 | −0.231 | 0.721 | 0.721 |
age | −0.002 | 0.008 | 0.014 | 0.822 | 0.822 |
Non-Smartphone User | 0.458 | 0.100 | −0.261 | 0.000 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miyashita, N.; Ishida, T.; Ikemoto, T.; Hirasawa, A.; Arai, Y.-C.; Deie, M. Smartphone Use Is Associated with Low Prevalence of Locomotive Syndrome among Elderly Individuals with Musculoskeletal Disorders. Int. J. Environ. Res. Public Health 2022, 19, 16213. https://doi.org/10.3390/ijerph192316213
Miyashita N, Ishida T, Ikemoto T, Hirasawa A, Arai Y-C, Deie M. Smartphone Use Is Associated with Low Prevalence of Locomotive Syndrome among Elderly Individuals with Musculoskeletal Disorders. International Journal of Environmental Research and Public Health. 2022; 19(23):16213. https://doi.org/10.3390/ijerph192316213
Chicago/Turabian StyleMiyashita, Naoto, Tomohiro Ishida, Tatsunori Ikemoto, Atsuhiko Hirasawa, Young-Chang Arai, and Masataka Deie. 2022. "Smartphone Use Is Associated with Low Prevalence of Locomotive Syndrome among Elderly Individuals with Musculoskeletal Disorders" International Journal of Environmental Research and Public Health 19, no. 23: 16213. https://doi.org/10.3390/ijerph192316213
APA StyleMiyashita, N., Ishida, T., Ikemoto, T., Hirasawa, A., Arai, Y. -C., & Deie, M. (2022). Smartphone Use Is Associated with Low Prevalence of Locomotive Syndrome among Elderly Individuals with Musculoskeletal Disorders. International Journal of Environmental Research and Public Health, 19(23), 16213. https://doi.org/10.3390/ijerph192316213