Asbestos Exposure and Severity of COVID-19
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Assessment of Asbestos Exposure
- Occupational exposure was considered certain when a respondent gave an affirmative answer to question 1 regarding the use of asbestos in general, and when he or she ticked at least one activity or material from the lists. Exposure was also considered certain when a respondent gave a negative answer to question 1 but ticked a material or activity from the lists with a high risk of exposure.
- Occupational exposure was regarded as probable when a respondent answered question 1 in the affirmative but did not acknowledge any of the activities or materials listed. It was also considered probable in the case of an affirmative answer to a material or activity with a moderate risk of exposure.
- Occupational exposure was considered non-existent when a negative answer to question 1 was recorded along with negative answers to the items in the lists of materials and activities. It was considered unknown when the patient was unable to answer either question 1 or the lists of activities and materials.
2.3. Demographic and Clinical Data
2.4. Statistical Analysis
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Available online: https://COVID19.who.int/ (accessed on 1 May 2022).
- Scialo, F.; Daniele, A.; Amato, F.; Pastore, L.; Matera, M.G.; Cazzola, M.; Castaldo, G.; Bianco, A. ACE2: The Major Cell Entry Receptor for SARS-CoV-2. Lung 2020, 198, 867–877. [Google Scholar] [CrossRef]
- Arentz, M.; Yim, E.; Klaff, L.; Lokhandwala, S.; Riedo, F.X.; Chong, M.; Lee, M. Characteristics and Outcomes of 21 Critically Ill Patients with COVID-19 in Washington State. JAMA 2020, 323, 1612–1614. [Google Scholar] [CrossRef] [Green Version]
- Ackermann, M.; Verleden, S.E.; Kuehnel, M.; Haverich, A.; Welte, T.; Laenger, F.; Vanstapel, A.; Werlein, C.; Stark, H.; Tzankov, A.; et al. Pulmonary Vascular Endotelialitis, Thrombosis, and Angiogenesis in COVID-19. N. Engl. J. Med. 2020, 383, 120–128. [Google Scholar] [CrossRef]
- Laveneziana, P.; Sesé, L.; Gille, T. Pathophysiology of pulmonary function anomalies in COVID-19 survivors. Breathe 2021, 17, 210065. [Google Scholar] [CrossRef]
- Osuchowski, M.F.; Winkler, M.S.; Skirecki, T.; Cajander, S.; Shankar-Hari, M.; Lachmann, G.; Monneret, G.; Venet, F.; Bauer, M.; Brunkhorst, F.M.; et al. The COVID-19 puzzle: Deciphering pathophysiology and phenotypes of a new disease entity. Lancet Respir. Med. 2021, 9, 622–642. [Google Scholar] [CrossRef]
- Masetti, C.; Generali, E.; Colapietro, F.; Voza, A.; Cecconi, M.; Messina, A.; Omodei, P.; Angelini, C.; Ciccarelli, M.; Badalamenti, S.; et al. High mortality in COVID-19 patients with mild respiratory disease. Eur. J. Clin. Investig. 2020, 50, e13314. [Google Scholar] [CrossRef]
- Du, R.H.; Liang, L.R.; Yang, C.Q.; Wang, W.; Cao, T.Z.; Li, M.; Guo, G.Y.; Du, J.; Zheng, C.L.; Zhu, Q.; et al. Predictors of mortality for patients with COVID-19 pneumonia caused by SARS-CoV-2: A prospective cohort study. Eur. Respir. J. 2020, 56, 2002961. [Google Scholar] [CrossRef]
- Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020, 395, 1054–1062. [Google Scholar] [CrossRef] [PubMed]
- Mehta, P.; McAuley, D.F.; Brown, M.; Sanchez, E.; Tattersall, R.S.; Manson, J.J.; on behalf of theHLH Across Speciality Collaboration, UK. COVID-19: Consider cytokine storm syndromes and immunosuppression. Lancet 2020, 395, 1033–1034. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Zhang, Z.F.; Froines, J.; Zhao, J.; Wang, H.; Yu, S.Z.; Detels, R. Air pollution and case fatality of SARS in the People’s Republic of China: An ecologic study. Environ. Health 2003, 2, 15. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Nethery, R.C.; Sabath, M.B.; Braun, D.; Dominici, F. Air pollution and COVID-19 mortality in the United States: Strengths and limitations of an ecological regression analysis. Sci. Adv. 2020, 6, eabd4049. [Google Scholar] [CrossRef]
- Nafilyan, V.; Pawelek, P.; Ayoubkhani, D.; Rhodes, S.; Pembrey, L.; Matz, M.; Coleman, M.; Allemani, C.; Windsor-Shellard, B.; van Tongeren, M.; et al. Occupation and COVID-19 mortality in England: A national linked data study of 14.3 million adults. Occup. Environ. Med. 2022, 79, 433–441. [Google Scholar] [CrossRef] [PubMed]
- Diego Roza, C.; Cruz Carmona, M.J.; Fernández Álvarez, R.; Ferrer Sancho, J.; Marín Martínez, B.; Martínez González, C.; Portal, J.A.R.; Valero, F.R.; Garrido, V.V. Recommendations for the Diagnosis and Management of Asbestos-Related Pleural and Pulmonary Disease. Recomendaciones sobre el diagnóstico y manejo de la enfermedad pleural y pulmonar por asbesto. Arch. Bronconeumol. 2017, 53, 437–442. [Google Scholar] [CrossRef] [PubMed]
- Gulati, M.; Redlich, C.A. Asbestosis and environmental causes of usual interstitial pneumonia. Curr. Opin. Pulm. Med. 2015, 21, 193–200. [Google Scholar] [CrossRef] [Green Version]
- Robledo, R.; Mossman, B. Cellular and molecular mechanisms of asbestos-induced fibrosis. J. Cell Physiol. 1999, 180, 158–166. [Google Scholar] [CrossRef]
- Bignon, J.; Brochard, P. Pulmonary fibrosis and inorganic particles. Rev. Mal. Respir. 1983, 11, 371–382. [Google Scholar]
- Peto, J.; Decarli, A.; La Vecchia, C.; Levi, F.; Negri, E. The European mesothelioma epidemic. Br. J. Cancer 1999, 79, 666–672. [Google Scholar] [CrossRef] [Green Version]
- Bolourani, S.; Brenner, M.; Wang, P. The interplay of DAMPs, TLR4, and proinflammatory cytokines in pulmonary fibrosis. J. Mol. Med. 2021, 99, 1373–1384. [Google Scholar] [CrossRef]
- Sayan, M.; Mossman, B.T. The NLRP3 inflammasome in pathogenic particle and fibre-associated lung inflammation and diseases. Part. Fibre Toxicol. 2016, 13, 51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ledda, C.; Rapisarda, V. Occupational and Environmental Carcinogenesis. Cancers 2020, 12, 2547. [Google Scholar] [CrossRef]
- Ferrer, J.; Granados, G.; Hernández, S.; Cruz, M.J.; Sampol, J.; Álvarez Simón, D.; Ramada, J.-M. Validation of an Asbestos Exposure Questionnaire (QEAS-7) for Clinical Practice. Int. J. Environ. Res. Public Health 2020, 17, 9167. [Google Scholar] [CrossRef] [PubMed]
- Kogevinas, M.; Castaño-Vinyals, G.; Karachaliou, M.; Espinosa, A.; de Cid, R.; Garcia-Aymerich, J.; Carreras, A.; Cortés, B.; Pleguezuelos, V.; Jiménez, A.; et al. Ambient Air Pollution in Relation to SARS-CoV-2 Infection, Antibody Response, and COVID-19 Disease: A Cohort Study in Catalonia, Spain (COVICAT Study). Environ. Health Perspect. 2021, 129, 117003. [Google Scholar] [CrossRef]
- Sidell, M.A.; Chen, Z.; Huang, B.Z.; Chow, T.; Eckel, S.P.; Martinez, M.P.; Lurmann, F.; Thomas, D.C.; Gilliland, F.D.; Xiang, A.H. Ambient air pollution and COVID-19 incidence during four 2020–2021 case surges. Environ. Res. 2022, 208, 112758. [Google Scholar] [CrossRef] [PubMed]
- Lipsitt, J.; Chan-Golston, A.M.; Liu, J.; Su, J.; Zhu, Y.; Jerrett, M. Spatial analysis of COVID-19 and traffic-related air pollution in Los Angeles. Environ. Int. 2021, 153, 106531. [Google Scholar] [CrossRef]
- Bourdrel, T.; Annesi-Maesano, I.; Alahmad, B.; Maesano, C.N.; Bind, M.A. The impact of outdoor air pollution on COVID-19: A review of evidence from in vitro, animal, and human studies. Eur. Respir. Rev. 2021, 30, 200242. [Google Scholar] [CrossRef] [PubMed]
- López-Feldman, A.; Heres, D.; Marquez-Padilla, F. Air pollution exposure and COVID-19: A look at mortality in Mexico City using individual-level data. Sci. Total Environ. 2021, 756, 143929. [Google Scholar] [CrossRef]
- Bowe, B.; Xie, Y.; Gibson, A.K.; Cai, M.; van Donkelaar, A.; Martin, R.V.; Burnett, R.; Al-Aly, Z. Ambient fine particulate matter air pollution and the risk of hospitalization among COVID-19 positive individuals: Cohort study. Environ. Int. 2021, 154, 106564. [Google Scholar] [CrossRef]
- Mutambudzi, M.; Niedwiedz, C.; Macdonald, E.B.; Leyland, A.; Mair, F.; Anderson, J.; Celis-Morales, C.; Cleland, J.; Forbes, J.; Gill, J.; et al. Occupation and risk of severe COVID-19: Prospective cohort study of 120 075 UK Biobank participants. Occup. Environ. Med. 2020, 78, 307–314. [Google Scholar] [CrossRef]
- Mohr, S.; Keith, G.; Rihn, B. Asbestos and malignant pleural mesothelioma: Molecular, cellular and physiopathological aspects. Bull. Cancer 2005, 92, 959–976. [Google Scholar]
- Sekido, Y. Molecular pathogenesis of malignant mesothelioma. Carcinogenesis 2013, 34, 1413–1419. [Google Scholar] [CrossRef]
- Haegens, A.; Barrett, T.F.; Gell, J.; Shukla, A.; Macpherson, M.; Vacek, P.; Poynter, M.; Butnor, K.J.; Janssen-Heininger, Y.M.; Steele, C.; et al. Airway epithelial NF-kappaB activation modulates asbestos-induced inflammation and mucin production in vivo. J. Immunol. 2007, 178, 1800–1808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hariharan, A.; Hakeem, A.R.; Radhakrishnan, S.; Reddy, M.S.; Rela, M. The Role and Therapeutic Potential of NF-kappa-B Pathway in Severe COVID-19 Patients. Inflammopharmacology 2021, 29, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Matsuzaki, H.; Maeda, M.; Lee, S.; Nishimura, Y.; Kumagai-Takei, N.; Hayashi, H.; Yamamoto, S.; Hatayama, T.; Kojima, Y.; Tabata, R.; et al. Asbestos-induced cellular and molecular alteration of immunocompetent cells and their relationship with chronic inflammation and carcinogenesis. J. Biomed. Biotechnol. 2012, 2012, 492608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumagai-Takei, N.; Yamamoto, S.; Lee, S.; Maeda, M.; Masuzzaki, H.; Sada, N.; Yu, M.; Yoshitome, K.; Nishimura, Y.; Otsuki, T. Inflammatory Alteration of Human T Cells Exposed Continuously to Asbestos. Int. J. Mol. Sci. 2018, 19, 504. [Google Scholar] [CrossRef] [Green Version]
- Agudo, A.; Escolar, A.; González, C.A.; Bleda, M.J.; Ramírez, J.; Hernández, S.; López, F.; Calleja, A.; Panadès, R.; Turuguet, D.; et al. Occupation and risk of malignant pleural mesothelioma: A case-control study in Spain. Am. J. Ind. Med. 2000, 37, 159–168. [Google Scholar] [CrossRef]
- Soriano, J.B.; Infante, A. Epidemiology: Global spread, risk factors for disease incidence, severity and mortality. In COVID-19; ERS Monograph; Fabre, A., Hurst, J.R., Ramjug, S., Eds.; European Respiratory Society: Sheffield, UK, 2021; pp. 14–27. [Google Scholar]
- Muñoz-Rodríguez, J.R.; Gómez-Romero, F.J.; Pérez-Ortiz, J.M.; López-Juárez, P.; Santiago, J.L.; Serrano-Oviedo, L.; Redondo-Calvo, F.J.; The COVID-19 SESCAM Network. Characteristics and Risk Factors Associated with Mortality in a Multicenter Spanish Cohort of Patients with COVID-19 Pneumonia. Arch. Bronconeumol. 2021, 57, 34–41. [Google Scholar] [CrossRef]
1a. Patients’ Occupations | n | % |
Food industry | 56 | 19.11 |
Household and cleaning | 55 | 18.77 |
Construction industry | 39 | 13.31 |
Office work | 27 | 9.22 |
Social sciences and law | 18 | 6.14 |
Drivers | 16 | 5.46 |
Health staff | 16 | 5.46 |
Arts and crafts | 14 | 4.78 |
Security and civil protection | 14 | 4.78 |
Mechanics and painters | 10 | 3.41 |
Textile industry | 9 | 3.07 |
Education | 7 | 2.39 |
Chemicals industry | 6 | 2.05 |
Other | 6 | 2.05 |
TOTAL | 293 | 100.00 |
1b. Occupations of patients exposed to asbestos a | n | % |
Construction industry | 33 | 49.3 |
Arts and crafts | 9 | 13.45 |
Chemicals industry | 4 | 5.97 |
Textile industry | 6 | 8.95 |
Mechanics and painters | 7 | 10.45 |
Drivers and vehicle repair | 2 | 2.98 |
Other | 6 | 8.9 |
TOTAL | 67 | 100.00 |
Not Exposed n = 226 | Exposed n = 67 | p | |
---|---|---|---|
Age | 57 (12.9) | 63.1 (11.4) | <0.001 |
Sex (male) | 100 (44.2%) | 58 (86.6%) | <0.001 |
BMI (kg/m2) | 28.4 (5.1) | 28.9 (4.4) | 0.5463 |
Smoker | 53 (23.4%) | 30 (44.8%) | 0.002 |
Respiratory support | |||
O2, MV, CPAP | 139 (61.5%) | 52 (77.6%) | 0.015 |
Prior medical conditions | |||
Diabetes mellitus | 28 (12.4%) | 15 (22.4%) | 0.042 |
Dyslipidemia | 58 (25.7%) | 25 (37.3%) | 0.063 |
Cardiological | 97 (42.9%) | 38 (56.7%) | 0.047 |
Neurological | 17 (7.5%) | 3 (4.4%) | 0.385 |
Psychiatric | 28 (12.4%) | 3 (4.4%) | 0.072 |
Respiratory | 35 (15.5%) | 19 (28.4%) | 0.017 |
Lab tests on admission | |||
Leukocytes (x10E9/L) | 7662 (5141) | 8300 (4993) | 0.3781 |
Platelets (x10E9/L) | 300,888 (145,052) | 276,323 (133,008) | 0.2237 |
D-dimer (ng/mL) | 1760 (4187) | 2241 (5894) | 0.4739 |
LDH (UI/L) | 389 (173) | 387 (148) | 0.9252 |
PCR (mg/dL) | 12.4 (14.2) | 11.9 (9.4) | 0.7782 |
IL6 (pg/mL) | 470 (1570) | 459 (1483) | 0.9607 |
Characteristics of admission | |||
Complications | 69 (30.5%) | 28 (41.8%) | 0.085 |
Length of stay (days) | 14.5 (15.9) | 15.3 (16) | 0.7286 |
NOT EXPOSED (n = 226) | EXPOSED (n = 67) | p | |
---|---|---|---|
mMRC dyspnea scale | |||
0 | 130 (57.5) | 40 (60.6) | 0.050 |
1 | 67 (29.7) | 13 (19.7) | |
2 | 22 (9.7) | 13 (19.7) | |
3 | 7 (3.1) | 0 | |
Lung function tests | |||
FVC L | 3.5 (1) | 3.7 (1) | 0.1455 |
FVC % | 97 (18.9) | 94.9 (20.3) | 0.4391 |
FEV1 L | 2.9 (0.9) | 2.9 (0.8) | 0.6722 |
FEV1 % | 99.1 (20.1) | 96 (21.5) | 0.2694 |
FEV1/FVC % | 80.9 (7.3) | 78.3 (8.1) | 0.0133 |
DLCO % | 76.9 (20.1) | 75.4 (18.2) | 0.5850 |
KCO % | 83.7 (15.2) | 84.6 (16) | 0.6810 |
WT6 (m) | 412 (95) | 428 (84) | 0.2511 |
Chest CT | |||
Lung sequelae | 120 (53.3) | 41 (61.2) | 0.256 |
Outcome: Severe COVID-19 | ||
---|---|---|
OR | p | |
Asbestos exposure * | 3.467 (1.952–6.157) | <0.001 |
Asbestos exposure † | 1.288 (0.645–2.57) | 0.473 |
Age † | 1.018 (1.011–1.026) | <0.001 |
Sex † | 0.416 (0.251–0.690) | 0.001 |
Asbestos exposure ‡ | 1.159 (0.573–2.348) | 0.681 |
Age ‡ | 1.012 (1.004–1.020) | 0.005 |
Sex ‡ | 0.400 (0.238–0.671) | 0.001 |
Comorbidity ‡ | 1.653 (1.190–2.296) | 0.003 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Granados, G.; Sáez-López, M.; Aljama, C.; Sampol, J.; Cruz, M.-J.; Ferrer, J.; Se-COVID-19 Team. Asbestos Exposure and Severity of COVID-19. Int. J. Environ. Res. Public Health 2022, 19, 16305. https://doi.org/10.3390/ijerph192316305
Granados G, Sáez-López M, Aljama C, Sampol J, Cruz M-J, Ferrer J, Se-COVID-19 Team. Asbestos Exposure and Severity of COVID-19. International Journal of Environmental Research and Public Health. 2022; 19(23):16305. https://doi.org/10.3390/ijerph192316305
Chicago/Turabian StyleGranados, Galo, María Sáez-López, Cristina Aljama, Júlia Sampol, María-Jesús Cruz, Jaume Ferrer, and Se-COVID-19 Team. 2022. "Asbestos Exposure and Severity of COVID-19" International Journal of Environmental Research and Public Health 19, no. 23: 16305. https://doi.org/10.3390/ijerph192316305
APA StyleGranados, G., Sáez-López, M., Aljama, C., Sampol, J., Cruz, M. -J., Ferrer, J., & Se-COVID-19 Team. (2022). Asbestos Exposure and Severity of COVID-19. International Journal of Environmental Research and Public Health, 19(23), 16305. https://doi.org/10.3390/ijerph192316305