Impacts of Long-Term Micronutrient Fertilizer Application on Soil Properties and Micronutrient Availability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Design
2.3. Sample Collection
2.4. Chemical Analysis
2.5. Quality Control
2.6. Statistical Analysis
- (1)
- Coefficients of correlation Rxiy, Rxixj (i, j = 1, 2, …, n; i < j) are obtained from the correlation coefficient and test output results in the regression analysis.
- (2)
- Direct path coefficient (Piy) is the standardized coefficients beta in the regression analysis.
- (3)
- The indirect path coefficient (Riy) of Xi to Y through Xj is:Riy = Rxixj × Pjy
- (4)
- Any coefficient of correlation can be considered as an algebraic sum of direct effects and indirect effects of relevant characters under investigation. That is:
3. Results and Discussion
3.1. Soil Properties
3.1.1. Soil pH
3.1.2. Soil Organic Matter
3.1.3. Soil CaCO3
3.1.4. Soil-Available P
3.1.5. Soil Humic Acid
3.1.6. Soil Fulvic Acid
3.1.7. Soil Total Amount of Reducing Substances
3.1.8. Soil Moisture
3.2. Effects of Long-Term Application of Micronutrient Fertilizers on Micronutrient Availability
3.2.1. Available Cu
3.2.2. Available Mn
3.2.3. Available Zn
3.3. Interactions of Long-Term Application of Micronutrient Fertilizers on the Micronutrient Availability
3.3.1. Interactions of Different Micronutrient Fertilizers on the Available Cu
3.3.2. Interactions of Different Micronutrient Fertilizers on the Available Mn
3.3.3. Interactions of Different Micronutrient Fertilizers on the Available Zn
3.3.4. Interactions of Different Micronutrient Fertilizers on the Available Fe
3.3.5. Interactions among Cu, Mn, Zn and Fe
3.4. Relationships between Soil Properties and Micronutrient Availability
3.4.1. Path Analysis between Soil Properties and DTPA-Zn
3.4.2. Path Analysis between Soil Properties and DTPA-Mn
3.4.3. Path Analysis between Soil Properties and DTPA-Cu
3.4.4. Path Analysis between Soil Properties and DTPA-Fe
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aubert, H.; Pinta, M. Trace Elements in Soils; Elsevier Scientific Publishing Co.: Amsterdam, The Netherlands; New York, NY, USA, 1977. [Google Scholar]
- Maksimović, J.; Pivić, R.; Stanojković-Sebić, A.; Jovković, M.; Jaramaz, D.; Dinić, Z. Influence of Soil Type on the Reliability of the Prediction Model for Bioavailability of Mn, Zn, Pb, Ni and Cu in the Soils of the Republic of Serbia. Agronomy 2021, 11, 141. [Google Scholar] [CrossRef]
- Santarcangelo, C.; Baldi, A.; Ciampaglia, R.; Dacrema, M. Long-aged parmigiano reggiano PDO: Trace element determination targeted to health. Foods 2022, 11, 172. [Google Scholar] [CrossRef] [PubMed]
- Misic, I.D.R.; Tosic, S.B.; Pavlovic, A.N.; Marinkovic, E.T.P.; Mrmosanin, P.M.J.; Mitic, S.S.; Stojanovic, G.S. Trace element content in commercial complementary food formulated for infants and toddlers: Health risk assessment. Food Chem. 2022, 378, 132113. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.R.; Hao, M.D.; Shao, M.A.; Gale, W.J. Changes in soil properties and the availability of soil micronutrients after 18 years of cropping and fertilization. Soil Tillage Res. 2006, 91, 120–130. [Google Scholar] [CrossRef]
- Kabata-Pendias, A. Soil-plant transfer of trace elements-an environmental issue. Geoderma 2004, 122, 143–149. [Google Scholar] [CrossRef]
- Wang, S.Z.; Wei, X.R.; Hao, M.D. Dynamics and Availability of Different Pools of Manganese in Semiarid Soils as Affected by Cropping System and Fertilization. Pedosphere 2016, 26, 351–361. [Google Scholar] [CrossRef]
- Ghanem, I.; El-Gabaly, M.M.; Hassan, M.N.; Tadros, V. Effect of organic materials addition on transformation of added manganese dioxide to alkali calcareous soils. Plant Soil. 1971, 34, 653–661. [Google Scholar] [CrossRef]
- Moral, R.; Gilkes, R.J.; Jordán, M.M. Distribution of heavy metals in calcareous and non-calcareous soils in spain. Water Air Soil Poll. 2005, 162, 127–142. [Google Scholar] [CrossRef]
- Santiago, A.D.; Quintero, J.M.; Delgado, A. Long-term effects of tillage on the availability of iron, copper, manganese, and zinc in a Spanish Vertisol. Soil Tillage Res. 2008, 98, 200–207. [Google Scholar] [CrossRef]
- Behera, S.K.; Shukla, A.K. Total and extractable manganese and iron in some cultivated acid soils of India: Status, distribution and relationship with some soil properties. Pedosphere 2014, 24, 196–208. [Google Scholar] [CrossRef]
- Liu, Z.; Zou, B.J.; Zhu, Q.Q.; Cai, Z.C. Agricultural Chemistry of Microelements; Agriculture Press: Beijing, China, 1991. [Google Scholar]
- Yu, C.Z.; Peng, L.; Liu, Y.H.; Dai, M.J.; Peng, X.L. Content and distribution of trace elements and fertilizer efficiency in soils of Loessal region. Acta. Pedol. Sin. 1991, 28, 317–326. [Google Scholar]
- Azadi, A.; Baghernejad, M.; Gholami, A.; Shakeriet, S. Forms and distribution pattern of soil Fe (Iron) and Mn (Manganese) oxides due to long-term rice cultivation in fars Province Southern Iran. Commun. Soil Sci. Plant Anal. 2021, 52, 1894–1922. [Google Scholar] [CrossRef]
- Ren, B.; Wu, Y.; Li, H.; Xu, J. Effects of soil components, solution chemical properties, and temperature on Cu(II) adsorption by alluvial acid soil: A case study in Southwest China. Arab J. Geosci. 2022, 15, 70. [Google Scholar] [CrossRef]
- Haefele, S.M.; Thomas, C.L.; Saito, K. Long-term fertility experiments for irrigated rice in the Wesr African Sahel: Effct on macro- and micronutrient concentrations in plant and soil. Field Crop. Res. 2022, 275, 108357. [Google Scholar] [CrossRef]
- Li, B.Y.; Huang, S.M.; Wei, M.B.; Zhang, H.L.; Shen, A.L.; Xu, J.M. Dynamics of soil and grain micronutrients as affected by long-term fertilization in an aquic inceptisol. Pedosphere 2010, 20, 725–735. [Google Scholar] [CrossRef]
- Wang, X.B.; Wu, X.; Li, Z.A.; Teng, Y.; Christie, P.; Luo, Y.M. Effects of long-term fertilizer applications on peanut yield and quality and plant and soil heavy metal accumulation. Pedosphere 2020, 30, 131–138. [Google Scholar] [CrossRef]
- Dang, T.H.; Gao, C.Q.; Peng, L.; Li, Y.S. Long-term rotation and fertilizer experiments in Changwu rainfed highland. Res. Soil Water Conserv. 2003, 10, 61–65. [Google Scholar]
- Page, A.L.; Miller, R.H.; Kenney, D.R. Methods of Soil Analysis. Part 2. Agronomy Monographs; American Society of Agronomy: Madison, WI, USA, 1982; Volume 9. [Google Scholar]
- Walkley, A.; Black, I.A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Lindsay, W.L.; Norvell, W.A. Development of a DTPA soil test for zinc, iron, manganese and copper. Soil Sci. Soc. Am. J. 1978, 42, 421–428. [Google Scholar] [CrossRef]
- Conyers, M.K.; Heenan, D.P.; Poile, G.J.; Cullis, B.R.; Helyar, K.R. Influence of dryland agricultural management practices on the acidification of a soil profile. Soil Tillage Res. 1996, 37, 127–141. [Google Scholar] [CrossRef]
- Mackowiak, C.L.; Grossl, P.R.; Bugbee, B.G. Beneficial effects of humic acid on micronutrient availability to wheat. Soil Sci. Soc. Am. J. 2001, 65, 1744–1750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, D.O.; Boswell, F.C.; Ohki, K.; Parker, M.B.; Shuman, L.M. Soil distribution and soybean plant accumulation of manganese in manganese deficient and manganese fertilized field plots. Soil Sci. Soc. Am. J. 1981, 45, 549–552. [Google Scholar] [CrossRef]
- Gilbey, D.J.; Greathead, K.D.; Gartrell, J.W. Copper requirement for the southeastern wheatbelt. J. Agric. Western Aust. 1970, 11, 70–72. [Google Scholar]
- Bowen, J.E. Absorption of copper, zinc and manganese by sugarcane leaf tissue. Plant Physiol. 1969, 44, 255–261. [Google Scholar] [CrossRef]
- Chandhry, F.M.; Loneragan, J.E. Zinc absorption by wheat seedlings.Ⅱ: Inhibition by hydrogen ions and microelement cations. Soil Sci. Soc. Am. J. 1972, 36, 327–331. [Google Scholar] [CrossRef]
- Chen, M.; Yin, C.R. Effects of zinc and manganese on copper nutrition in winter wheat. Chin. J. Soil Sci. 1995, 26, 222–224. [Google Scholar]
- Millikan, C.R. Relative effects of zinc and copper deficiencies on Lucerne and subterranean clover. Aust. J. Biol. Sci. 1953, 6, 164–177. [Google Scholar] [CrossRef]
- Epstein, E.; Stout, P.R. The micronutrient cations iron, manganese, zinc, and copper: Their uptake by plants from the absorbed state. Soil Sci. 1951, 72, 47–65. [Google Scholar] [CrossRef]
- Fontes, R.L.F.; Ferreira, G.B.; Venegas, V.; Neves, J.C.L.; de Faria, A.F.; Fontes, M.P.F. Bioavailability of soil Cu, Fe, Mn and Zn from soil fractions. Semina 2021, 42, 19–42. [Google Scholar] [CrossRef]
- Moore, D.P. Mechanism of micronutrient uptake by plants. In Micronutrients in Agriculture; Compiled by the Institute of Soil and Fertilizer; Chinese Academy of Agricultural Sciences: Beijing, China, 1984. [Google Scholar]
- Peng, C.; He, B.; Guo, S.W. P-ATPases in Plants. Plant Physiol. Comm. 2010, 46, 637–642. [Google Scholar]
- Somer, I.I.; Shive, J.W. The iron-manganese relation in plant metabolism. Plant Soil. 1942, 17, 582–602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Xu, Y.; Liang, X.; Wang, L.; Zhao, L. Soil application of manganese sulfate could reduce wheat Cd accumulation in Cd contaminated soil by the modulation of the key tissues and ionomic of wheat. Sci. Total Environ. 2021, 770, 145328. [Google Scholar] [CrossRef] [PubMed]
- Lajayer, H.A.; Motesharezadeh, B.; Savaghebi, G.; Hadian, J. Effect of Copper and Zinc on concentration and uptake of micronutrient (Cu, Zn, Fe and Mn) and macronutrient (phosphorus) in savory at greenhouse conditions. J. Sci. Technol. Greenh. Cult. 2014, 5, 95–112. [Google Scholar]
- Yamunarani, R.; Ramegowda, V.; Geetha, G.; Jalendrakumar, H.G.; Shankar, A.G. Effect of Zn application on its uptake, distribution and concentration of Fe and Cu in finger millet [Eleusine Coracana (L.) Gaertn.]. J. Plant Nutr. 2016, 39, 569–580. [Google Scholar] [CrossRef]
- Gupta, U.C.; Wu, K.N.; Liang, S.Y. Micronutrients in soils, crops, and livestock. Earth Sci. Front. 2008, 15, 110–125. [Google Scholar] [CrossRef]
- Shindo, H.; Huang, P.M. Role of Mn(IV) oxide in abiotic formation of humic substances in the environment. Nature 1982, 298, 363. [Google Scholar] [CrossRef]
- Mandal, L.N.; Mitra, R.R. Transformation of iron and manganese in rice soils under different moisture regimes and organic matter application. Plant Soil 1982, 69, 45–46. [Google Scholar] [CrossRef]
- Mehra, O.P.; Jackson, M.L. Iron oxide removel from soils and clays by a dithionatecitrate system buffered with sodium carbonate. In Proceedings of the National Conference on Clays and Clay Minerals; Pergamon Press: New York, NY, USA, 1960; pp. 317–327. [Google Scholar]
- Hodgson, J.F.; Lindsay, W.L.; Trier Weiler, J.F. Micronutrient cation complexing in soil solution II. Complexing of zinc and copper in displaced solutions from calcareous soils. Soil Sci. Soc. Am. Proc. 1966, 30, 337–387. [Google Scholar] [CrossRef]
- Lindsay, W.L. Chemical Equibria in Soils; John Wiley & Sons: New York, NY, USA, 1979. [Google Scholar]
- Verloo, M. Influence of soil organic matter on the behaviour of heavy meatals in soils and sediments. In Essential and Non Essential Trace Elements in the System Soil-Water-Plant; Cottenie, A., Verloo, M., Kiekens, L., Camerlynck, R., Velghe, G., Dhaese, A., Eds.; State University Ghent: Ghent, Belgium, 1979. [Google Scholar]
Treatment | Depth cm | pH | Organic Matter g kg−1 | CaCO3 g kg−1 | Available P mg kg−1 | Humic Acid g kg−1 | Fulvic Acid g kg−1 | Total Amount of Reducing Substances cmol kg−1 | Soil Moisture % |
---|---|---|---|---|---|---|---|---|---|
The control treatment | 0–15 | 8.15 b | 10.62 bcd | 108.8 c | 26.09 a | 3.47 a | 2.14 cde | 0.97 abcd | 13.78 h |
15–30 | 8.29 ab | 12.57 ab | 128.0 a | 13.38 c | 2.93 ab | 2.09 de | 1.15 ab | 13.86 gh | |
30–45 | 8.39 ab | 9.68 cdef | 80.0 d | 2.80 e | 2.47 c | 1.31 g | 0.88 abcd | 14.23 fg | |
45–60 | 8.40 ab | 8.72 def | 70.4 de | 3.10 e | 3.07 ab | 1.48 g | 0.79 bcd | 14.91 de | |
Zn fertilizer | 0–15 | 8.32 ab | 11.10 bc | 79.2 d | 11.68 c | 1.21 d | 1.75 f | 1.01 abcd | 14.56 ef |
15–30 | 8.40 ab | 11.55 abc | 74.4 de | 7.73 d | 1.34 d | 6.83 a | 1.04 abcd | 14.59 ef | |
30–45 | 8.51 a | 8.37 ef | 55.2 fg | 1.25 e | 0.60 d | 1.79 f | 0.76 cd | 14.17 fgh | |
45–60 | 8.49 a | 8.43 ef | 49.6 g | 0.30 e | 0.82 d | 2.13 cde | 0.77 cd | 14.81 de | |
Mn fertilizer | 0–15 | 8.35 ab | 12.46 ab | 112 bc | 13.14 c | 0.77 d | 1.91 ef | 1.13 abc | 16.38 a |
15–30 | 8.39 ab | 10.61 bcd | 121.6 ab | 3.40 e | 0.88 d | 2.16 cde | 0.97 abcd | 15.16 cd | |
30–45 | 8.41 ab | 8.46 ef | 64 ef | 0.70 e | 0.65 d | 2.11 de | 0.77 cd | 15.69 b | |
45–60 | 8.41 ab | 9.55 cdef | 44.4 g | 1.20 e | 0.77 d | 2.30 bcd | 0.87 abcd | 15.51 bc | |
Cu fertilizer | 0–15 | 8.23 ab | 13.23 a | 73.6 de | 21.59 b | 0.91 d | 2.50 b | 1.21 a | 14.26 fg |
15–30 | 8.35 ab | 10.59 bcd | 75.2 d | 14.52 c | 1.05 d | 2.42 bc | 0.96 abcd | 14.18 fgh | |
30–45 | 8.44 ab | 7.89 f | 52 g | 1.60 e | 3.07 ab | 0.63 h | 0.72 d | 14.27 fg | |
45–60 | 8.47 ab | 10.13 cde | 48.8 g | 1.00 e | 3.24 ab | 0.28 i | 0.92 abcd | 14.95 de |
Soil Properties | Direct Path Coefficient | Indirect Path Coefficient | r | |||||||
---|---|---|---|---|---|---|---|---|---|---|
pH | Or | Ca | Av | Hu | Fu | Re | Mo | |||
pH | −0.178 | - | −0.049 | 0.045 | 0.038 | −0.001 | 0.000 | 0.016 | −0.026 | −0.154 |
Or | 0.139 | 0.062 | - | −0.077 | −0.047 | −0.004 | 0.114 | 0.088 | −0.002 | 0.274 * |
Ca | −0.131 | 0.061 | 0.082 | - | −0.038 | 0.002 | 0.046 | 0.052 | 0.006 | 0.079 |
Av | −0.070 | 0.098 | 0.093 | −0.071 | - | 0.003 | 0.075 | 0.057 | 0.029 | 0.214 |
Hu | 0.024 | 0.004 | −0.023 | −0.008 | −0.009 | - | −0.115 | −0.009 | 0.032 | −0.104 |
Fu | 0.379 * | 0.000 | 0.042 | −0.016 | −0.014 | −0.007 | - | 0.030 | 0.001 | 0.414 ** |
Re | 0.107 | −0.026 | 0.114 | −0.063 | −0.037 | −0.002 | 0.105 | - | −0.009 | 0.188 |
Mo | −0.082 | −0.055 | 0.003 | 0.009 | 0.025 | −0.009 | −0.004 | 0.012 | - | −0.102 |
Soil Properties | Direct Path Coefficient | Indirect Path Coefficient | r | |||||||
---|---|---|---|---|---|---|---|---|---|---|
pH | Or | Ca | Av | Hu | Fu | Re | Mo | |||
pH | −0.571 * | - | 0.368 | −0.248 | 0.022 | 0.002 | 0.000 | 0.109 | 0.132 | −0.185 |
Or | −1.052 | 0.200 | - | 0.423 | −0.027 | 0.014 | 0.044 | 0.615 | 0.009 | 0.224 |
Ca | 0.720 ** | 0.197 | −0.617 | - | −0.022 | −0.005 | 0.018 | 0.363 | −0.030 | 0.622 ** |
Av | −0.040 ** | 0.313 | −0.703 | 0.388 | - | −0.010 | 0.029 | 0.401 | −0.149 | 0.229 |
Hu | −0.082 | 0.014 | 0.173 | 0.046 | −0.005 | - | −0.044 | −0.065 | −0.165 | −0.127 |
Fu | 0.146 | 0.000 | −0.317 | 0.086 | −0.008 | 0.025 | 0- | 0.208 | −0.005 | 0.135 |
Re | 0.751 * | −0.083 | −0.861 | 0.348 | −0.021 | 0.007 | 0.040 | - | 0.047 | 0.228 |
Mo | 0.425 ** | −0.178 | −0.021 | −0.051 | 0.014 | 0.032 | −0.002 | 0.083 | - | 0.302 * |
Soil Properties | Direct Path Coefficient | Indirect Path Coefficient | r | |||||||
---|---|---|---|---|---|---|---|---|---|---|
pH | Or | Ca | Av | Hu | Fu | Re | Mo | |||
pH | −0.098 | - | −0.072 | 0.174 | −0.209 | 0.008 | 0.000 | 0.034 | −0.046 | −0.210 |
Or | 0.207 | 0.034 | - | −0.296 | 0.255 | 0.051 | −0.056 | 0.190 | −0.003 | 0.381 ** |
Ca | −0.505 ** | 0.034 | 0.121 | - | 0.206 | −0.020 | −0.022 | 0.112 | 0.010 | −0.064 |
Av | 0.382 | 0.054 | 0.138 | −0.272 | - | −0.038 | −0.037 | 0.124 | 0.052 | 0.401 ** |
Hu | −0.310 * | 0.002 | −0.034 | −0.032 | 0.047 | - | 0.057 | −0.020 | 0.057 | −0.233 |
Fu | −0.187 | 0.000 | 0.062 | −0.061 | 0.076 | 0.094 | - | 0.064 | 0.002 | 0.050 |
Re | 0.232 | −0.014 | 0.169 | −0.244 | 0.204 | 0.027 | −0.052 | - | −0.016 | 0.305 * |
Mo | −0.147 | −0.031 | 0.004 | 0.036 | −0.134 | 0.120 | 0.002 | 0.026 | - | −0.124 |
Soil Properties | Direct Path Coefficient | Indirect Path Coefficient | r | |||||||
---|---|---|---|---|---|---|---|---|---|---|
pH | Or | Ca | Av | Hu | Fu | Re | Mo | |||
pH | −0.471 | - | 0.319 | −0.207 | 0.217 | 0.008 | 0.000 | 0.123 | 0.053 | 0.042 |
Or | −0.911 * | 0.165 | - | 0.352 | −0.264 | 0.055 | 0.027 | 0.693 | 0.003 | 0.122 |
Ca | 0.600 ** | 0.162 | −0.535 | - | −0.213 | −0.022 | 0.011 | 0.410 | −0.012 | 0.402 ** |
Av | −0.395 | 0.258 | −0.609 | 0.324 | - | −0.041 | 0.018 | 0.452 | −0.060 | −0.053 |
Hu | −0.336 * | 0.012 | 0.150 | 0.039 | −0.049 | - | −0.027 | −0.073 | −0.066 | −0.350 ** |
Fu | 0.089 | 0.000 | −0.275 | 0.072 | −0.078 | 0.102 | - | 0.234 | −0.002 | 0.143 |
Re | 0.847 | −0.069 | −0.746 | 0.290 | −0.211 | 0.029 | 0.025 | - | 0.019 | 0.185 |
Mo | 0.170 | −0.147 | −0.019 | −0.043 | 0.138 | 0.130 | −0.001 | 0.093 | - | 0.322 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Xu, L.; Hao, M. Impacts of Long-Term Micronutrient Fertilizer Application on Soil Properties and Micronutrient Availability. Int. J. Environ. Res. Public Health 2022, 19, 16358. https://doi.org/10.3390/ijerph192316358
Wang S, Xu L, Hao M. Impacts of Long-Term Micronutrient Fertilizer Application on Soil Properties and Micronutrient Availability. International Journal of Environmental Research and Public Health. 2022; 19(23):16358. https://doi.org/10.3390/ijerph192316358
Chicago/Turabian StyleWang, Shuzhuan, Lei Xu, and Mingde Hao. 2022. "Impacts of Long-Term Micronutrient Fertilizer Application on Soil Properties and Micronutrient Availability" International Journal of Environmental Research and Public Health 19, no. 23: 16358. https://doi.org/10.3390/ijerph192316358
APA StyleWang, S., Xu, L., & Hao, M. (2022). Impacts of Long-Term Micronutrient Fertilizer Application on Soil Properties and Micronutrient Availability. International Journal of Environmental Research and Public Health, 19(23), 16358. https://doi.org/10.3390/ijerph192316358