Partly and Fully Supervised Physical Exercise Effects on Cognitive Functions and Movement Proficiency of Adolescents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Intervention
2.3. Instruments
2.4. Statistical Analyses
3. Results
4. Discussion
Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guthold, R.; Stevens, G.A.; Riley, L.M.; Bull, F.C. Global trends in insufficient physic al activity among adolescents: A pooled analysis of population-based surveys with 1.6 million participants. Lancet Child Adolesc. Health 2020, 4, 23–35. [Google Scholar] [CrossRef] [PubMed]
- Moeini, B.; Rezapur-Shahkolai, F.; Bashirian, S.; Doosti-Irani, A.; Afshari, M.; Geravandi, A. Effect of interventions based on regular physical activity on weight management in adolescents: A systematic review and a meta-analysis. Syst. Rev. 2021, 10, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Hoare, E.; Milton, K.; Foster, C.; Allender, S. The associations between sedentary behaviour and mental health among adolescents: A systematic review. Int. J. Behav. Nutr. Phys. Act. 2016, 13, 1–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hulteen, R.M.; Lander, N.J.; Morgan, P.J.; Barnett, L.M.; Robertson, S.J.; Lubans, D.R. Validity and Reliability of Field-Based Measures for Assessing Movement Skill Competency in Lifelong Physical Activities: A Systematic Review. Sports Med. 2015, 45, 1443–1454. [Google Scholar] [CrossRef] [PubMed]
- Ghekiere, A.; van Cauwenberg, J.; Vandendriessche, A.; Inchley, J.; de Matos, M.G.; Borraccino, A.; Gobina, I.; Tynjälä, J.; Deforche, B.; de Clercq, B. Trends in sleeping difficulties among European adolescents: Are these associated with physical inactivity and excessive screen time? Int. J. Public Health 2018, 64, 487–498. [Google Scholar] [CrossRef] [Green Version]
- McGrane, B.; Belton, S.; Fairclough, S.J.; Powell, D.; Issartel, J. Outcomes of the Y-PATH Randomized Controlled Trial: Can a School-Based Intervention Improve Fundamental Movement Skill Proficiency in Adolescent Youth? J. Phys. Act. Health 2018, 15, 89–98. [Google Scholar] [CrossRef]
- European Commission. White Paper on Sport: COM, 391 Final; European Commission: Brussels, Belgium, 2007.
- Djobova, S. The Role of Sport in the Model of EU Youth Policy. In Proceeding book of International Scientific Congress “Applied Sport Sciences”; NSA Press: Fort Meade, MD, USA, 2017. [Google Scholar] [CrossRef]
- Marques, A.; Demetriou, Y.; Tesler, R.; Gouveia, É.R.; Peralta, M.; de Matos, M.G. Healthy Lifestyle in Children and Adolescents and Its Association with Subjective Health Complaints: Findings from 37 Countries and Regions from the HBSC Study. Int. J. Environ. Res. Public Health 2019, 16, 3292. [Google Scholar] [CrossRef] [Green Version]
- Ministry of Education and Science Republic of Latvia (LMES) Reviewing the Financing Model of Sports Schools. 2020. Available online: https://www.izm.gov.lv/lv/aktualitates/3914-parskata-sporta-skolu-finansesanas-modeli (accessed on 14 June 2022).
- Pudule, I.; Velika, B.; Grīnberga, D.; Gobiņa, I.; Villeruša, A.; Kļaviņa-Makrecka, S.; Bezborodovs, N. Latvijas Skolēnu Veselības Paradumu Pētījums 2017/2018; SPKC: Riga, Latvia, 2020. [Google Scholar]
- Couzin-Frankel, J.; Vogel, G.; Weiland, M. School openings across globe suggest ways to keep coronavirus at bay, despite outbreaks. Science 2020, 369, 241–245. [Google Scholar] [CrossRef]
- Bates, L.C.; Zieff, G.; Stanford, K.; Moore, J.B.; Kerr, Z.Y.; Hanson, E.D.; Barone Gibbs, B.; Kline, C.E.; Stoner, L. COVID-19 Impact on Behaviors across the 24-Hour Day in Children and Adolescents: Physical Activity, Sedentary Behavior, and Sleep. Children 2020, 7, 138. [Google Scholar] [CrossRef]
- Trott, M.; Driscoll, R.; Irlado, E.; Pardhan, S. Changes and correlates of screen time in adults and children during the COVID-19 pandemic: A systematic review and meta-analysis. EClinicalMedicine 2022, 48, 101452. [Google Scholar] [CrossRef]
- Chen, I.-H.; Chen, C.-Y.; Pakpour, A.H.; Griffiths, M.D.; Lin, C.-Y.; Li, X.-D.; Tsang, H.W.H. Problematic internet-related behaviors mediate the associations between levels of internet engagement and distress among schoolchildren during COVID-19 lockdown: A longitudinal structural equation modeling study. J. Behav. Addict. 2021, 10, 135–148. [Google Scholar] [CrossRef] [PubMed]
- Spada, M.M. An overview of problematic Internet use. Addict. Behav. 2014, 39, 3–6. [Google Scholar] [CrossRef] [PubMed]
- Beard, K.W.; Wolf, E.M. Modification in the Proposed Diagnostic Criteria for Internet Addiction. CyberPsychology Behav. 2001, 4, 377–383. [Google Scholar] [CrossRef] [PubMed]
- Jelenchick, L.A.; Hawk, S.T.; Moreno, M.A. Problematic internet use and social networking site use among Dutch adolescents. Int. J. Adolesc. Med. Health 2016, 28, 119–121. [Google Scholar] [CrossRef]
- Luz, C.; Rodrigues, L.P.; Almeida, G.; Cordovil, R. Development and validation of a model of motor competence in children and adolescents. J. Sci. Med. Sport 2015, 19, 568–572. [Google Scholar] [CrossRef]
- Sit, C.H.-P.; Yu, J.J.; Wong, S.H.-S.; Capio, C.M.; Masters, R. A school-based physical activity intervention for children with developmental coordination disorder: A randomized controlled trial. Res. Dev. Disabil. 2019, 89, 1–9. [Google Scholar] [CrossRef]
- Rodrigues, L.P.; Luz, C.; Cordovil, R.; Bezerra, P.; Silva, B.; Camões, M.; Lima, R. Normative values of the motor competence assessment (MCA) from 3 to 23 years of age. J. Sci. Med. Sport 2019, 22, 1038–1043. [Google Scholar] [CrossRef]
- Clark, J.E.; Metcalfe, J.S. The Mountain of Motor Development: A Metaphor. In Motor Development: Research and Reviews 2002; NASPE Publications: Reston, VA, USA, 2002; pp. 163–190. [Google Scholar]
- Frischenschlager, E.; Gosch, J. Active Learning—Easier learning through physical activity. Erzieh. Unterr. 2012, 162, 131–137. [Google Scholar]
- Fedewa, A.; Cornelius, C.; Ahn, S. The use of bicycle workstations to increase physical activity in secondary classrooms. Health Psychol. Rep. 2017, 6, 60–74. [Google Scholar] [CrossRef]
- Haapala, E.A.; Väistö, J.; Lintu, N.; Westgate, K.; Ekelund, U.; Poikkeus, A.-M.; Brage, S.; Lakka, T.A. Physical activity and sedentary time in relation to academic achievement in children. J. Sci. Med. Sport 2016, 20, 583–589. [Google Scholar] [CrossRef]
- Oddo, L.E.; Garner, A.; Novick, D.R.; Meinzer, M.C.; Chronis Tuscano, A. Remote delivery of psychosocial in-ter-vention for college students with ADHD during COVID-19: Clinical strategies, practice recommendations, and future considerations. Evid.-Based Pract. Child Adolesc. Ment. Health 2021, 6, 99–115. [Google Scholar] [CrossRef]
- Duckworth, A.L.; Grant, H.; Loew, B.; Oettingen, G.; Gollwitzer, P.M. Self-regulation strategies improve self-discipline in adolescents: Benefits of mental contrasting and implementation intentions. Educ. Psychol. 2011, 31, 17–26. [Google Scholar] [CrossRef] [Green Version]
- Santaliestra-Pasias, A.M.; Mouratidou, T.; Reisch, L.; Pigeot, I.; Ahrens, W.; Marild, S.; Molnar, D.; Siani, A.; Sieri, S.; Tornatiris, M.; et al. Clustering of lifestyle behaviours and relation to body composition in European children. The IDEFICS study. Eur. J. Clin. Nutr. 2015, 69, 811–816. [Google Scholar] [CrossRef] [Green Version]
- Evans, J.J. Basic concepts and principles of neuropsychological assessment. In Handbook of Clinical Neuropsychology; Halligan, P.W., Kischka, U., Marshall, J.C., Eds.; University Press: Oxford, UK, 2003; pp. 15–26. [Google Scholar]
- Haverkamp, B.F.; Wiersma, R.; Vertessen, K.; van Ewijk, H.; Oosterlaan, J.; Hartman, E. Effects of physical activity interventions on cognitive outcomes and academic performance in adolescents and young adults: A meta-analysis. J. Sports Sci. 2020, 38, 2637–2660. [Google Scholar] [CrossRef]
- Lakes, K.D.; Bryars, T.; Sirisinahal, S.; Salim, N.; Arastoo, S.; Emmerson, N.; Kang, D.; Shim, L.; Wong, D.; Kang, C.J. The Healthy for Life Taekwondo pilot study: A preliminary evaluation of effects on executive function and BMI, feasibility, and acceptability. Ment. Health Phys. Act. 2013, 6, 181–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, S.; Wu, Q.; Tang, C.; Chen, Z.; Liu, L. Exercise-Based Interventions for Internet Addiction: Neurobiological and Neuropsychological Evidence. Front. Psychol. 2020, 11, 1296. [Google Scholar] [CrossRef]
- Barahona-Fuentes, G.; Ojeda, A.H.; Chirosa-Rios, L. Effects of Training with Different Modes of Strenght Intervention on Psychosocial Disorders in Adolescents: A systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2021, 18, 9477. [Google Scholar] [CrossRef]
- Branco, B.H.M.; Carvalho, I.Z.; de Oliveira, H.G.; Fanhani, A.P.; dos Santos, M.C.M.; de Oliveira, L.P.; Boni, S.M.; Nardo, N. Effects of 2 Types of Resistance Training Models on Obese Adolescents’ Body Composition, Cardiometabolic Risk, and Physical Fitness. J. Strength Cond. Res. 2020, 34, 2672–2682. [Google Scholar] [CrossRef]
- Jelenchick, L.A.; Eickhoff, J.; Christakis, D.A.; Brown, R.L.; Zhang, C.; Benson, M.; Moreno, M.A. The Problematic and Risky Internet Use Screening Scale (PRIUSS) for adolescents and young adults: Scale development and refinement. Comput. Hum. Behav. 2014, 35, 171–178. [Google Scholar] [CrossRef] [Green Version]
- Bruininks, R.H.; Bruininks, B.D. Bruininks-Oseretsky Test of Motor Proficiency, 2nd ed.; NCS Pearson: Minneapolis, MN, USA, 2005. [Google Scholar]
- Schuhfried, G. Manual Reaction Test (Test Manual). Version 52—Revision 1 2005, Moedling, Austria. 2020. Available online: https://asystems.as/wp-content/uploads/2018/05/Katalog_Vienna-Test-Syst4em_en.pdf (accessed on 14 June 2022).
- Caemmerer, J.M.; Keith, T.Z.; Reynolds, M.R. Beyond individual intelligence tests: Application of Cattell-Horn-Carroll Theory. Intelligence 2020, 79, 101433. [Google Scholar] [CrossRef]
- Rasch, G. Studies in Mathematical Psychology: I. Probabilistic Models for Some Intelligence and Attainment Tests; Nielsen & Lydiche: Denmark, Copenhagen, 1960; Volume 44. [Google Scholar]
- Klavina, A.; Veliks, V.; Zusa, A.; Porozovs, J.; Aniscenko, A.; Bebrisa-Fedotova, L. Problematic Internet Use, Related Psychosocial Behaviors, Healthy Lifestyle, and Subjective Health Complaints in Adolescents. Health Behav. Policy Rev. 2021, 8, 451–464. [Google Scholar] [CrossRef]
- Hedges, L.; Olkin, I.I. Statistical Methods for Meta-Analysis; Academic Press: Orlando, FL, USA, 1985. [Google Scholar]
- Lakens, D. Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and ANOVAs. Front. Psychol. 2013, 4, 863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marcus, B.H.; Williams, D.M.; Dubbert, P.M.; Sallis, J.F.; King, A.C.; Yancey, A.K.; Franklin, B.A.; Buchner, D.; Daniels, S.R.; Claytor, R.P. Physical Activity Intervention Studies. Circulation 2006, 114, 2739–2752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Telles, S.; Singh, N.; Bhardwaj, A.; Kumar, A.; Balkrishna, A. Effect of yoga or physical exercise on physical, cognitive and emotional measures in children: A randomized controlled trial. Child Adolesc. Psychiatry Ment. Health 2013, 7, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lambrick, D.; Stoner, L.; Grigg, R.; Faulkner, J. Effects of continuous and intermittent exercise on executive function in children aged 8-10 years. Psychophysiology 2016, 53, 1335–1342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, V.K.; Subramanian, S.K.; Arunachalam, V.; Radhakrishnan, K.; Ramamurthy, S.; Ravindran, B.S. Auditory and visual reaction times in school going adolescents: Effect of structured and unstructured physical training—A randomized control trial. Int. J. Adolesc. Med. Health 2015, 29, CC04-9. [Google Scholar] [CrossRef] [PubMed]
- Tomporowski, P.D.; McCullick, B.; Pendleton, D.M.; Pesce, C. Exercise and children’s cognition: The role of exercise characteristics and a place for metacognition. J. Sport Health Sci. 2015, 4, 47–55. [Google Scholar] [CrossRef] [Green Version]
- Colcombe, S.J.; Erickson, K.I.; Scalf, P.E.; Kim, J.S.; Prakash, R.; McAuley, E.; Elavsky, S.; Marquez, D.X.; Hu, L.; Kramer, A.F. Aerobic Exercise Training Increases Brain Volume in Aging Humans. Journals Gerontol. Ser. A 2006, 61, 1166–1170. [Google Scholar] [CrossRef] [Green Version]
- Utesch, T.; Bardid, F. Motor Competence. In Dictionary of Sport Psychology: Sport, Exercise, Performing Arts, 1st ed.; Hackfort, D., Schinke, R., Strauss, B., Eds.; Elsevier: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Suchert, V.; Hanewinkel, R.; Isensee, B. Sedentary behavior and indicators of mental health in school-aged children and adolescents: A systematic review. Prev. Med. 2015, 76, 48–57. [Google Scholar] [CrossRef]
- Rahimi-Rigi, Z.; Moradi, M.; Omidi, A. The Relationship between Sports Participat ion and Internet Addiction among University Students of Shahrekord City. Salamat Ijtimai Community Health 2019, 6, 439–447. [Google Scholar] [CrossRef]
- Pienaar, A.E.; du Toit, D.; Truter, L. The effect of a multidisciplinary physical activity intervention on the body composition and physical fitness of obese children. J. Sports Med. Phys. Fit. 2013, 53, 415–427. [Google Scholar]
- Wassenaar, T.M.; Wheatley, C.M.; Beale, N.; Nichols, T.; Salvan, P.; Meaney, A.; Atherton, K.; Diaz-Ordaz, K.; Dawes, H.; Johansen-Berg, H. The effect of a one-year vigorous physical activity intervention on fitness, cognitive performance and mental health in young adolescents: The Fit to Study cluster randomised controlled trial. Int. J. Behav. Nutr. Phys. Act. 2021, 18, 47. [Google Scholar] [CrossRef] [PubMed]
- Ekelund, U.; Tomkinson, G.; Armstrong, N. What proportion of youth are physically active? Measurement issues, levels and recent time trends. Br. J. Sports Med. 2011, 45, 859–865. [Google Scholar] [CrossRef] [PubMed]
Groups | ||
---|---|---|
PSPEP | FSPEP | |
N (boys) | 14 (4) | 13 (6) |
Age a | 12.4 (0.3) | 11.1 (1.1) |
Physical activity/hours per week b | 3 (1, 4) | 5 (4, 6) |
Physical activity/days per week b | 0.75 (0, 1) | 2.5 (1, 4) |
Hours screen/weekdays b | 3 (2, 5) | 2 (1, 3) |
Hours screen/weekends b | 4 (0.5, 6) | 2 (1, 5) |
Subjective health complaints/week b | 2 (1, 5) | 3 (0, 7) |
PSPEP | FSPEP | |||||||
---|---|---|---|---|---|---|---|---|
Baseline Mean (SD) | After Intervention Mean (SD) | p | Hedges’ g | Baseline Mean (SD) | After Intervention Mean (SD) | p | Hedges’ g | |
AMT | ||||||||
Intelligence Index | −2.48 (0.66) | −2.22 (0.59) | 0.29 | 0.64 | −2.20 (0.75) | −1.50 (0.73) | 0.02 | 0.90 |
Correct items | 7.07 (2.01) | 7.86 (1.83) | 0.29 | 0.40 | 7.85 (2.19) | 9.83 (1.99) | 0.02 | 0.91 |
Stroop | ||||||||
Reading interference | 0.17 (0.14) | 0.11 (0.12) | 0.26 | 0.42 | 0.10 (0.08) | 0.07 (0.05) | 0.33 | 0.38 |
Median RT—reading | 1.13 (0.27) | 0.99 (0.16) | 0.09 | 0.64 | 1.06 (0.07) | 0.92 (0.11) | 0.00 | 1.33 |
Naming interference | 0.06 (0.08) | 0.07 (0.09) | 0.73 | 0.12 | 0.13 (0.12) | 0.10 (0.09) | 0.59 | 0.21 |
Median RT—naming | 0.96 (0.26) | 0.87 (0.10) | 0.28 | 0.39 | 0.99 (0.19) | 0.92 (0.18) | 0.34 | 0.37 |
COG | ||||||||
Sum correct reactions | 53.08 (4.34) | 55.64 (3.31) | 0.09 | 0.64 | 55.31 (2.28) | 56.83 (2.16) | 0.10 | 0.66 |
Mean RT—correct reaction | 2.01 (0.35) | 1.93 (0.26) | 0.50 | 0.25 | 2.21 (0.38) | 2.14 (0.47) | 0.68 | 0.16 |
FMT | ||||||||
Delayed free reproduction I | 6.71 (1.63) | 7.07 (2.67) | 0.67 | 0.15 | 7.92 (1.18) | 8.0 (2.29) | 0.91 | 0.04 |
Delayed free reproduction II | 6.50 (2.68) | 7.00 (2.57) | 0.61 | 0.18 | 7.62 (1.19) | 7.83 (2.29) | 0.76 | 0.11 |
Learning sum | 27.14 (9.93) | 32.43 (7.88) | 0.13 | 0.57 | 29.15 (5.47) | 37.08 (2.96) | 0.00 | 1.72 |
Recognition—hits | 8.14 (0.94) | 8.64 (0.63) | 0.11 | 0.60 | 8.62 (0.65) | 8.75 (0.45) | 0.55 | 0.23 |
DT | ||||||||
Correct items | 211.5 (22.66) | 234.86 (24.36) | 0.014 | 0.96 | 211.85 (27.36) | 228.58 (22.53) | 0.110 | 0.64 |
Number of stimuli | 234.64 (19.63) | 258.36 (22.88) | 0.001 | 1.08 | 233.08 (27.85) | 252.92 (24.81) | 0.074 | 0.72 |
Reactions items | 230.36 (19.13) | 257.00 (27.94) | 0.007 | 1.08 | 233.92 (37.70) | 269.17 (24.55) | 0.012 | 1.06 |
Median RT | 0.86 (0.052) | 0.79 (0.06) | 0.002 | 1.27 | 0.88 (0.10) | 0.80 (0.08) | 0.039 | 0.84 |
RT6 | ||||||||
Reaction speed RT6 | 306.07 (75.21) | 315.29 (41.54) | 0.69 | 0.14 | 291.08 (36.84) | 303.92 (40.97) | 0.41 | 0.31 |
PSPEP | FSPEP | |||||||
---|---|---|---|---|---|---|---|---|
BOT-2 (Points) | Baseline Mean (SD) | After Intervention Mean (SD) | p | Hedges’ g | Baseline Mean (SD) | After Intervention Mean (SD) | p | Hedges’ g |
BOT-2 | 120.6 (11.30) | 126.5 (9.32) | 0.14 | 0.54 | 133.1 (8.03) | 133.8 (5.32) | 0.82 | 0.09 |
BC * | 22.86 (1.09) | 23.79 (0.42) | 0.00 | 1.08 | 23.7 (0.67) | 23.60 (0.69) | 0.74 | 0.13 |
Bal * | 34.36 (3.41) | 35.93 (2.12) | 0.15 | 0.53 | 35.5 (1.26) | 34.80 (0.78) | 0.15 | 0.63 |
RS * | 38.29 (4.37) | 37.71 (4.04) | 0.72 | 0.13 | 41.9 (3.98) | 43.00 (3.71) | 0.53 | 0.27 |
Strng * | 27.14 (3.97) | 29.07 (4.35) | 0.23 | 0.44 | 32.00 (2.70) | 32.40 (1.71) | 0.69 | 0.16 |
PSPEP | FSPEP | |||||||
---|---|---|---|---|---|---|---|---|
Baseline Mean (SD) | After Intervention Mean (SD) | p | Hedges’ g | Baseline Mean (SD) | After Intervention Mean (SD) | p | Hedges’ g | |
PRIUSS(total) | 19.92 (8.54) | 19.88 (6.60) | 0.99 | 0.00 | 14.11 (7.68) | 15.80 (10.30) | 0.73 | 0.18 |
Social Impairment | 7.58 (3.39) | 7.00 (2.26) | 0.67 | 0.18 | 4.78 (1.78) | 5.80 (2.28) | 0.36 | 0.48 |
Emotional Impairment | 4.25 (4.51) | 5.50 (4.75) | 0.56 | 0.26 | 3.33 (3.04) | 3.20 (4.32) | 0.94 | 0.03 |
Risky Impulsive Internet Use | 8.08 (4.31) | 7.38 (2.97) | 0.69 | 0.17 | 6.00 (3.93) | 6.80 (5.40) | 0.75 | 0.16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klavina, A.; Veliks, V.; Gulevska, I.; Aniscenko, A.; Porozovs, J.; Zusa, A. Partly and Fully Supervised Physical Exercise Effects on Cognitive Functions and Movement Proficiency of Adolescents. Int. J. Environ. Res. Public Health 2022, 19, 16480. https://doi.org/10.3390/ijerph192416480
Klavina A, Veliks V, Gulevska I, Aniscenko A, Porozovs J, Zusa A. Partly and Fully Supervised Physical Exercise Effects on Cognitive Functions and Movement Proficiency of Adolescents. International Journal of Environmental Research and Public Health. 2022; 19(24):16480. https://doi.org/10.3390/ijerph192416480
Chicago/Turabian StyleKlavina, Aija, Viktors Veliks, Inta Gulevska, Aleksandrs Aniscenko, Juris Porozovs, and Anna Zusa. 2022. "Partly and Fully Supervised Physical Exercise Effects on Cognitive Functions and Movement Proficiency of Adolescents" International Journal of Environmental Research and Public Health 19, no. 24: 16480. https://doi.org/10.3390/ijerph192416480
APA StyleKlavina, A., Veliks, V., Gulevska, I., Aniscenko, A., Porozovs, J., & Zusa, A. (2022). Partly and Fully Supervised Physical Exercise Effects on Cognitive Functions and Movement Proficiency of Adolescents. International Journal of Environmental Research and Public Health, 19(24), 16480. https://doi.org/10.3390/ijerph192416480