A Scoping Review of the Use of Pioglitazone in the Treatment of Temporo-Mandibular Joint Arthritis
Abstract
:1. Introduction
1.1. Rationale
1.2. Objectives
2. Materials and Methods
2.1. Eligibility Criteria
2.2. Information Sources and Search
2.3. Selection of Sources of Evidence, Data Charting Process, and Critical Appraisal of Individual Sources of Evidence
2.4. Data Items
2.5. Statistical Analysis (Synthesis of Results)
3. Results
3.1. Selection of Sources of Evidence
3.2. Characteristics of Sources of Evidence, Critical Appraisal within Sources of Evidence and Results of Individual Sources of Evidence
3.2.1. Animal Studies
3.2.2. Clinical Trials
3.3. Synthesis of Results of Clinical Trials
4. Discussion
4.1. Summary of Evidence
4.2. Limitations
4.3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. For Materials and Methods
Search Engine | Search Strategy |
---|---|
ACM Digital | [[All: arthritis] OR [All: osteoarthritis] OR [All: polyarthritis] OR [All: rheumatism] OR [All: rheumatic] OR [All: rheumatoid] OR [All: gout]] AND [[All: thiazolidinedione] OR [All: thiazolidinediones] OR [All: tzd] OR [All: glitazone] OR [All: glitazones] OR [All: pioglitazone] OR [All: actos] OR [All: rosiglitazone] OR [All: avandia] OR [All: lobeglitazone] OR [All: duvie] OR [All: ciglitazone] OR [All: darglitazone] OR [All: englitazone] OR [All: netoglitazone] OR [All: rivoglitazone] OR [All: troglitazone] OR [All: rezulin] OR [All: balaglitazone] OR [All: drf-2593] OR [All: as-605240]] |
BASE | tit:(arthritis OR osteoarthritis OR polyarthritis OR rheumatism OR rheumatic OR rheumatoid OR gout) AND (thiazolidinedione OR thiazolidinediones OR TZD OR glitazone OR glitazones OR pioglitazone OR actos OR rosiglitazone OR avandia OR lobeglitazone OR duvie OR ciglitazone OR darglitazone OR englitazone OR netoglitazone OR rivoglitazone OR troglitazone OR rezulin OR balaglitazone OR drf-2593 OR as-605240) |
EbscoHost | TI (arthritis OR osteoarthritis OR polyarthritis OR rheumatism OR rheumatic OR rheumatoid OR gout) AND (thiazolidinedione OR thiazolidinediones OR TZD OR glitazone OR glitazones OR pioglitazone OR actos OR rosiglitazone OR avandia OR lobeglitazone OR duvie OR ciglitazone OR darglitazone OR englitazone OR netoglitazone OR rivoglitazone OR troglitazone OR rezulin OR balaglitazone OR drf-2593 OR as-605240) |
Embase | (arthritis OR osteoarthritis OR polyarthritis OR rheumatism OR rheumatic OR rheumatoid OR gout) AND (thiazolidinedione OR thiazolidinediones OR TZD OR glitazone OR glitazones OR pioglitazone OR actos OR rosiglitazone OR avandia OR lobeglitazone OR duvie OR ciglitazone OR darglitazone OR englitazone OR netoglitazone OR rivoglitazone OR troglitazone OR rezulin OR balaglitazone OR drf-2593 OR as-605240) (Title) or (arthritis OR osteoarthritis OR polyarthritis OR rheumatism OR rheumatic OR rheumatoid OR gout) AND (thiazolidinedione OR thiazolidinediones OR TZD OR glitazone OR glitazones OR pioglitazone OR actos OR rosiglitazone OR avandia OR lobeglitazone OR duvie OR ciglitazone OR darglitazone OR englitazone OR netoglitazone OR rivoglitazone OR troglitazone OR rezulin OR balaglitazone OR drf-2593 OR as-605240) (Abstract) |
Ovid | ((arthritis or osteoarthritis or polyarthritis or rheumatism or rheumatic or rheumatoid or gout) and (thiazolidinedione or thiazolidinediones or TZD or glitazone or glitazones or pioglitazone or actos or rosiglitazone or avandia or lobeglitazone or duvie or ciglitazone or darglitazone or englitazone or netoglitazone or rivoglitazone or troglitazone or rezulin or balaglitazone or drf-2593 or as-605240)).mp. [mp = title, abstract, original title, name of substance word, subject heading word, floating sub-heading word, keyword heading word, organism supplementary concept word, protocol supplementary concept word, rare disease supplementary concept word, unique identifier, synonyms] {Including Related Terms} |
ProQuest | ti((arthritis OR osteoarthritis OR polyarthritis OR rheumatism OR rheumatic OR rheumatoid OR gout) AND (thiazolidinedione OR thiazolidinediones OR TZD OR glitazone OR glitazones OR pioglitazone OR actos OR rosiglitazone OR avandia OR lobeglitazone OR duvie OR ciglitazone OR darglitazone OR englitazone OR netoglitazone OR rivoglitazone OR troglitazone OR rezulin OR balaglitazone OR drf-2593 OR as-605240)) |
PubMed | (arthritis OR osteoarthritis OR polyarthritis OR rheumatism OR rheumatic OR rheumatoid OR gout) AND (thiazolidinedione OR thiazolidinediones OR TZD OR glitazone OR glitazones OR pioglitazone OR actos OR rosiglitazone OR avandia OR lobeglitazone OR duvie OR ciglitazone OR darglitazone OR englitazone OR netoglitazone OR rivoglitazone OR troglitazone OR rezulin OR balaglitazone OR drf-2593 OR as-605240) |
Scopus | TITLE-ABS ((arthritis OR osteoarthritis OR polyarthritis OR rheumatism OR rheumatic OR rheumatoid OR gout) AND (thiazolidinedione OR thiazolidinediones OR tzd OR glitazone OR glitazones OR pioglitazone OR actos OR rosiglitazone OR avandia OR lobeglitazone OR duvie OR ciglitazone OR darglitazone OR englitazone OR netoglitazone OR rivoglitazone OR troglitazone OR rezulin OR balaglitazone OR drf-2593 OR as-605240)) |
Virtual Health Library | (arthritis OR osteoarthritis OR polyarthritis OR rheumatism OR rheumatic OR rheumatoid OR gout) AND (thiazolidinedione OR thiazolidinediones OR TZD OR glitazone OR glitazones OR pioglitazone OR actos OR rosiglitazone OR avandia OR lobeglitazone OR duvie OR ciglitazone OR darglitazone OR englitazone OR netoglitazone OR rivoglitazone OR troglitazone OR rezulin OR balaglitazone OR drf-2593 OR as-605240) |
Web of Science | (arthritis OR osteoarthritis OR polyarthritis OR rheumatism OR rheumatic OR rheumatoid OR gout) AND (thiazolidinedione OR thiazolidinediones OR TZD OR glitazone OR glitazones OR pioglitazone OR actos OR rosiglitazone OR avandia OR lobeglitazone OR duvie OR ciglitazone OR darglitazone OR englitazone OR netoglitazone OR rivoglitazone OR troglitazone OR rezulin OR balaglitazone OR drf-2593 OR as-605240) (Title) or (arthritis OR osteoarthritis OR polyarthritis OR rheumatism OR rheumatic OR rheumatoid OR gout) AND (thiazolidinedione OR thiazolidinediones OR TZD OR glitazone OR glitazones OR pioglitazone OR actos OR rosiglitazone OR avandia OR lobeglitazone OR duvie OR ciglitazone OR darglitazone OR englitazone OR netoglitazone OR rivoglitazone OR troglitazone OR rezulin OR balaglitazone OR drf-2593 OR as-605240) (Abstract) |
Wiley Online Library | “(arthritis OR osteoarthritis OR polyarthritis OR rheumatism OR rheumatic OR rheumatoid OR gout) AND (thiazolidinedione OR thiazolidinediones OR TZD OR glitazone OR glitazones OR pioglitazone OR actos OR rosiglitazone OR avandia OR lobeglitazone OR duvie OR ciglitazone OR darglitazone OR englitazone OR netoglitazone OR rivoglitazone OR troglitazone OR rezulin OR balaglitazone OR drf-2593 OR as-605240)” in Abstract |
Appendix B. For Results
Search Engine | Number of Records |
---|---|
ACM Digital | 122 |
BASE | 98 |
EbscoHost | 30 |
Embase | 82 |
Ovid | 164 |
ProQuest | 11 |
PubMed | 154 |
Scopus | 114 |
Virtual Health Library | 258 |
Web of Science | 117 |
Wiley Online Library | 32 |
Item | Exclusion Reason |
---|---|
Bongartz et al. Treatment of active Psoriatic Arthritis with the PPAR gamma-agonist pioglitazone: an open-label pilot study [105]. | Duplicate record |
Cuzzocrea et al. Rosiglitazone a ligands of the peroxisome proliferator-activated receptor-γ (PPAR-γ) reduce the evolution of murine type II collagen-induced arthritis [107]. | Animal non-TMJs study |
Xu et al. Implication for thiazolidinediones (TZDs) as novel potential anti-inflammatory drugs [108]. | Review article |
Stojanovska et al. The anti-atherogenic effects of thiazolidinediones [109]. | Review article |
Mahajan et al. Pioglitazone in experimentally-induced arthritis [110]. | Animal non-TMJs study |
Inokuchi et al. Effects of benzbromarone and allopurinol on adiponectin in vivo and in vitro [11]. | Wrong drug |
Fitzpatrick et al. The effects of rosiglitazone on bone by multiple image modalities in postmenopausal women with type 2 diabetes mellitus [111]. | Conference abstract |
Ormseth et al. Peroxisome proliferator-activated receptor gamma agonist treatment for rheumatoid arthritis: A proof-of-concept randomized controlled trial [112]. | Conference abstract |
Ormseth et al. Reversing vascular dysfunction in rheumatoid arthritis: improved augmentation index but not endothelial function with peroxisome proliferator-activated receptor γ agonist therapy [113]. | No inflammation indicators |
Kim et al. Changes in bone mineral density in patients with type 2 diabetes treated with lobeglitazone, a novel thiazolidinedione, over 52 weeks: A multicenter, randomized, double-blind, placebo controlled trial [114]. | Conference abstract |
Mohammed et al. Evaluation of the Clinical Use of Metformin or Pioglitazone in Combination with Meloxicam in Patients with Knee Osteoarthritis; using Knee Injury and Osteoarthritis Outcome Score [115]. | No inflammation indicators |
GlaxoSmithKline. A Randomised, Double-blind, Placebo-controlled, Parallel Group Study to Investigate the Anti-inflammatory and Metabolic Effects of Rosiglitazone XR, 8mg Once Daily, in Subjects With Rheumatoid Arthritis [116]. | Results not publicly available |
Chen et al. PPARγ is involved in the hyperglycemia-induced inflammatory responses and collagen degradation in human chondrocytes and diabetic mouse cartilages [117]. | Cell line study |
Zhu et al. PPARγ preservation via promoter demethylation alleviates osteoarthritis in mice [118]. | Animal non-TMJs study |
References
- Corigliano, D.M.; Syed, R.; Messineo, S.; Lupia, A.; Patel, R.; Reddy, C.V.R.; Dubey, P.K.; Colica, C.; Amato, R.; De Sarro, G.; et al. Indole and 2,4-Thiazolidinedione Conjugates as Potential Anticancer Modulators. PeerJ 2018, 6, e5386. [Google Scholar] [CrossRef]
- Day, C. Thiazolidinediones: A New Class of Antidiabetic Drugs. Diabet. Med. 1999, 16, 179–192. [Google Scholar] [CrossRef] [PubMed]
- Yekta, R.; Dehghan, G.; Rashtbari, S.; Sadeghi, L.; Baradaran, B.; Sheibani, N.; Moosavi-Movahedi, A.A. The Impact of Water Molecules on Binding Affinity of the Anti-Diabetic Thiazolidinediones for Catalase: Kinetic and Mechanistic Approaches. Arch. Biochem. Biophys. 2019, 664, 110–116. [Google Scholar] [CrossRef] [PubMed]
- Consoli, A.; Formoso, G. Do Thiazolidinediones Still Have a Role in Treatment of Type 2 Diabetes Mellitus? Diabetes Obes. Metab. 2013, 15, 967–977. [Google Scholar] [CrossRef]
- Bundhun, P.K.; Janoo, G.; Teeluck, A.R.; Huang, F. Adverse Drug Effects Observed with Vildagliptin versus Pioglitazone or Rosiglitazone in the Treatment of Patients with Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. BMC Pharmacol. Toxicol. 2017, 18, 66. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.; Wang, J.; Chen, M.; Xu, L.; Li, N.; Luo, Y.; Bu, L.; Zhang, M.; Li, H.; Su, B. Pioglitazone Use and Risk of Bladder Cancer: An In Vitro Study. Int. J. Med. Sci. 2018, 15, 228–237. [Google Scholar] [CrossRef] [Green Version]
- Gupta, S.; Gupta, K.; Ravi, R.; Mehta, V.; Banerjee, S.; Joshi, S.; Saboo, B. Pioglitazone and the Risk of Bladder Cancer: An Indian Retrospective Cohort Study. Indian J. Endocrinol. Metab. 2015, 19, 639. [Google Scholar] [CrossRef]
- Ferrara, A.; Lewis, J.D.; Quesenberry, C.P.; Peng, T.; Strom, B.L.; Van Den Eeden, S.K.; Ehrlich, S.F.; Habel, L.A. Cohort Study of Pioglitazone and Cancer Incidence in Patients With Diabetes. Diabetes Care 2011, 34, 923–929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, L.; MacDonald, T.M.; Mackenzie, I.S. Pioglitazone and Bladder Cancer: A Propensity Score Matched Cohort Study: Pioglitazone and Bladder Cancer. Br. J. Clin. Pharmacol. 2013, 75, 254–259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahsan, W. The Journey of Thiazolidinediones as Modulators of PPARs for the Management of Diabetes: A Current Perspective. Curr. Pharm. Des. 2019, 25, 2540–2554. [Google Scholar] [CrossRef] [PubMed]
- Inokuchi, T.; Tsutsumi, Z.; Takahashi, S.; Ka, T.; Yamamoto, A.; Moriwaki, Y.; Masuzaki, H.; Yamamoto, T. Effects of Benzbromarone and Allopurinol on Adiponectin In Vivo and In Vitro. Horm. Metab. Res. 2009, 41, 327–332. [Google Scholar] [CrossRef] [PubMed]
- Panigrahy, D.; Singer, S.; Shen, L.Q.; Butterfield, C.E.; Freedman, D.A.; Chen, E.J.; Moses, M.A.; Kilroy, S.; Duensing, S.; Fletcher, C.; et al. PPARγ Ligands Inhibit Primary Tumor Growth and Metastasis by Inhibiting Angiogenesis. J. Clin. Investig. 2002, 110, 923–932. [Google Scholar] [CrossRef] [PubMed]
- Biondo, L.A.; Teixeira, A.A.S.; de OS Ferreira, K.C.; Neto, J.C.R. Pharmacological Strategies for Insulin Sensitivity in Obesity and Cancer: Thiazolidinediones and Metformin. Curr. Pharm. Des. 2020, 26, 932–945. [Google Scholar] [CrossRef] [PubMed]
- Veelen, A.; Erazo-Tapia, E.; Oscarsson, J.; Schrauwen, P. Type 2 Diabetes Subgroups and Potential Medication Strategies in Relation to Effects on Insulin Resistance and Beta-Cell Function: A Step toward Personalised Diabetes Treatment? Mol. Metab. 2021, 46, 101158. [Google Scholar] [CrossRef]
- Mannucci, E. Drugs for Type 2 Diabetes: Role in the Regulation of Bone Metabolism. Clin. Cases Miner. Bone Metab. 2015, 12, 130–134. [Google Scholar] [CrossRef]
- Lebovitz, H.E. Thiazolidinediones: The Forgotten Diabetes Medications. Curr. Diab. Rep. 2019, 19, 151. [Google Scholar] [CrossRef] [Green Version]
- Hurren, K.M.; Dunham, M.W. Are Thiazolidinediones a Preferred Drug Treatment for Type 2 Diabetes? Expert Opin. Pharmacother. 2021, 22, 131–133. [Google Scholar] [CrossRef]
- Belfort, R.; Harrison, S.A.; Brown, K.; Darland, C.; Finch, J.; Hardies, J.; Balas, B.; Gastaldelli, A.; Tio, F.; Pulcini, J.; et al. A Placebo-Controlled Trial of Pioglitazone in Subjects with Nonalcoholic Steatohepatitis. N. Engl. J. Med. 2006, 355, 2297–2307. [Google Scholar] [CrossRef] [Green Version]
- Sumida, Y.; Yoneda, M.; Tokushige, K.; Kawanaka, M.; Fujii, H.; Yoneda, M.; Imajo, K.; Takahashi, H.; Eguchi, Y.; Ono, M.; et al. Antidiabetic Therapy in the Treatment of Nonalcoholic Steatohepatitis. Int. J. Mol. Sci. 2020, 21, 1907. [Google Scholar] [CrossRef] [Green Version]
- Krentz, A.J.; Friedmann, P.S. Type 2 Diabetes, Psoriasis and Thiazolidinediones. Int. J. Clin. Pract. 2006, 60, 362–363. [Google Scholar] [CrossRef]
- Shah, D.K.; Menon, K.M.J.; Cabrera, L.M.; Vahratian, A.; Kavoussi, S.K.; Lebovic, D.I. Thiazolidinediones Decrease Vascular Endothelial Growth Factor (VEGF) Production by Human Luteinized Granulosa Cells in Vitro. Fertil. Steril. 2010, 93, 2042–2047. [Google Scholar] [CrossRef]
- Boris, M.; Kaiser, C.C.; Goldblatt, A.; Elice, M.W.; Edelson, S.M.; Adams, J.B.; Feinstein, D.L. Effect of Pioglitazone Treatment on Behavioral Symptoms in Autistic Children. J. Neuroinflammation 2007, 4, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Guo, R.; Oduro, P.K.; Sun, T.; Chen, H.; Yi, Y.; Zeng, W.; Wang, Q.; Leng, L.; Yang, L.; et al. The Relationship Between Porphyromonas Gingivalis and Rheumatoid Arthritis: A Meta-Analysis. Front. Cell. Infect. Microbiol. 2022, 12, 956417. [Google Scholar] [CrossRef] [PubMed]
- Zeng, L.; Yang, T.; Yang, K.; Yu, G.; Li, J.; Xiang, W.; Chen, H. Efficacy and Safety of Curcumin and Curcuma Longa Extract in the Treatment of Arthritis: A Systematic Review and Meta-Analysis of Randomized Controlled Trial. Front. Immunol. 2022, 13, 891822. [Google Scholar] [CrossRef] [PubMed]
- Sakellariou, G.; Scirè, C.A.; Adinolfi, A.; Batticciotto, A.; Bortoluzzi, A.; Delle Sedie, A.; De Lucia, O.; Dejaco, C.; Epis, O.M.; Filippucci, E.; et al. Differential Diagnosis of Inflammatory Arthropathies by Musculoskeletal Ultrasonography: A Systematic Literature Review. Front. Med. 2020, 7, 141. [Google Scholar] [CrossRef]
- Roelsgaard, I.K.; Esbensen, B.A.; Østergaard, M.; Rollefstad, S.; Semb, A.G.; Christensen, R.; Thomsen, T. Smoking Cessation Intervention for Reducing Disease Activity in Chronic Autoimmune Inflammatory Joint Diseases. Cochrane Database Syst. Rev. 2019, 2019, CD012958. [Google Scholar] [CrossRef] [Green Version]
- Yin, F.; Yang, Q.; He, Y.; Peng, L.; Zhao, Z.; He, C.; Chen, J. Top 100 Cited Articles on Osteoarthritis from 1990 to 2020. Rheumatol. Immunol. Res. 2021, 2, 241–248. [Google Scholar] [CrossRef]
- Fidahic, M.; Jelicic Kadic, A.; Radic, M.; Puljak, L. Celecoxib for Rheumatoid Arthritis. Cochrane Database Syst. Rev. 2017, 6, CD012095. [Google Scholar] [CrossRef]
- Santo, R.C.E.; Fernandes, K.Z.; Lora, P.S.; Filippin, L.I.; Xavier, R.M. Prevalence of Rheumatoid Cachexia in Rheumatoid Arthritis: A Systematic Review and Meta-Analysis: Systematic Review of RA Cachexia Prevalence. J. Cachexia Sarcopenia Muscle 2018, 9, 816–825. [Google Scholar] [CrossRef] [Green Version]
- Takase-Minegishi, K.; Horita, N.; Kobayashi, K.; Yoshimi, R.; Kirino, Y.; Ohno, S.; Kaneko, T.; Nakajima, H.; Wakefield, R.J.; Emery, P. Diagnostic Test Accuracy of Ultrasound for Synovitis in Rheumatoid Arthritis: Systematic Review and Meta-Analysis. Rheumatology 2018, 57, 49–58. [Google Scholar] [CrossRef]
- Cascone, P.; Spallaccia, F.; Vellone, V. Temporomandibular Joint Surgery: Open Discopexy and “Functional Arthroplasty”. Atlas Oral Maxillofac. Surg. Clin. N. Am. 2022, 30, 193–198. [Google Scholar] [CrossRef]
- Wen, Z.; Chai, Y. Effectiveness of Resistance Exercises in the Treatment of Rheumatoid Arthritis: A Meta-Analysis. Medicine 2021, 100, e25019. [Google Scholar] [CrossRef]
- Nash, P.; Kerschbaumer, A.; Dörner, T.; Dougados, M.; Fleischmann, R.M.; Geissler, K.; McInnes, I.; Pope, J.E.; van der Heijde, D.; Stoffer-Marx, M.; et al. Points to Consider for the Treatment of Immune-Mediated Inflammatory Diseases with Janus Kinase Inhibitors: A Consensus Statement. Ann. Rheum. Dis. 2021, 80, 71–87. [Google Scholar] [CrossRef]
- Second Affiliated Hospital, School of Medicine, Zhejiang University. The Role of Tofacitinib in Steroid Withdrawal in Rheumatoid Arthritis. 2021. Available online: https://clinicaltrials.gov/ct2/show/NCT04927000 (accessed on 25 June 2022).
- Ormseth, M. 2-HOBA Phase 2 Clinical Trial in Rheumatoid Arthritis. 2022. Available online: https://clinicaltrials.gov/ct2/show/NCT05274243 (accessed on 25 June 2022).
- Nakamura, Y. Evaluation of the Condition After Xeljanz Treatment in Rheumatoid Arthritis Patients. 2021. Available online: https://clinicaltrials.gov/ct2/show/NCT02157012 (accessed on 25 June 2022).
- Wiese, M.D.; Manning-Bennett, A.T.; Abuhelwa, A.Y. Investigational IRAK-4 Inhibitors for the Treatment of Rheumatoid Arthritis. Expert Opin. Investig. Drugs 2020, 29, 475–482. [Google Scholar] [CrossRef]
- Chandran, V.; van der Heijde, D.; Fleischmann, R.M.; Lespessailles, E.; Helliwell, P.S.; Kameda, H.; Burgos-Vargas, R.; Erickson, J.S.; Rathmann, S.S.; Sprabery, A.T.; et al. Ixekizumab Treatment of Biologic-Naïve Patients with Active Psoriatic Arthritis: 3-Year Results from a Phase III Clinical Trial (SPIRIT-P1). Rheumatology 2020, 59, 2774–2784. [Google Scholar] [CrossRef] [Green Version]
- Mathieu, S.; Soubrier, M.; Peirs, C.; Monfoulet, L.-E.; Boirie, Y.; Tournadre, A. A Meta-Analysis of the Impact of Nutritional Supplementation on Osteoarthritis Symptoms. Nutrients 2022, 14, 1607. [Google Scholar] [CrossRef] [PubMed]
- Wendling, D.; Hecquet, S.; Fogel, O.; Letarouilly, J.-G.; Verhoeven, F.; Pham, T.; Prati, C.; Molto, A.; Goupille, P.; Dernis, E.; et al. 2022 French Society for Rheumatology (SFR) Recommendations on the Everyday Management of Patients with Spondyloarthritis, Including Psoriatic Arthritis. Jt. Bone Spine 2022, 89, 105344. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, G.R.; Antony, P.J.; de Paula Lana, M.J.M.; da Silva, B.F.X.; Oliveira, R.V.; Jothi, G.; Hariharan, G.; Mohana, T.; Gan, R.-Y.; Gurgel, R.Q.; et al. Natural Products Modulating Interleukins and Other Inflammatory Mediators in Tumor-Bearing Animals: A Systematic Review. Phytomed. Int. J. Phytother. Phytopharm. 2022, 100, 154038. [Google Scholar] [CrossRef]
- Marcos-Pérez, D.; Sánchez-Flores, M.; Proietti, S.; Bonassi, S.; Costa, S.; Teixeira, J.P.; Fernández-Tajes, J.; Pásaro, E.; Laffon, B.; Valdiglesias, V. Association of Inflammatory Mediators with Frailty Status in Older Adults: Results from a Systematic Review and Meta-Analysis. GeroScience 2020, 42, 1451–1473. [Google Scholar] [CrossRef] [PubMed]
- Noah, A.M.; Almghairbi, D.; Evley, R.; Moppett, I.K. Preoperative Inflammatory Mediators and Postoperative Delirium: Systematic Review and Meta-Analysis. Br. J. Anaesth. 2021, 127, 424–434. [Google Scholar] [CrossRef]
- Giménez-Bastida, J.A.; González-Sarrías, A.; Laparra-Llopis, J.M.; Schneider, C.; Espín, J.C. Targeting Mammalian 5-Lipoxygenase by Dietary Phenolics as an Anti-Inflammatory Mechanism: A Systematic Review. Int. J. Mol. Sci. 2021, 22, 7937. [Google Scholar] [CrossRef] [PubMed]
- Ennis, M.; Tiligada, K. Histamine Receptors and COVID-19. Inflamm. Res. 2021, 70, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Lau, J.; Rousseau, J.; Kwon, D.; Bénard, F.; Lin, K.-S. A Systematic Review of Molecular Imaging Agents Targeting Bradykinin B1 and B2 Receptors. Pharmaceuticals 2020, 13, 199. [Google Scholar] [CrossRef]
- Van der Gaag, W.H.; Roelofs, P.D.; Enthoven, W.T.; van Tulder, M.W.; Koes, B.W. Non-Steroidal Anti-Inflammatory Drugs for Acute Low Back Pain. Cochrane Database Syst. Rev. 2020, 4, CD013581. [Google Scholar] [CrossRef] [PubMed]
- Morales-Ivorra, I.; Romera-Baures, M.; Roman-Viñas, B.; Serra-Majem, L. Osteoarthritis and the Mediterranean Diet: A Systematic Review. Nutrients 2018, 10, 1030. [Google Scholar] [CrossRef] [Green Version]
- Kałużyński, K.; Trybek, G.; Smektała, T.; Masiuk, M.; Myśliwiec, L.; Sporniak-Tutak, K. Effect of Methylprednisolone, Hyaluronic Acid and Pioglitazone on Histological Remodeling of Temporomandibular Joint Cartilage in Rabbits Affected by Drug-Induced Osteoarthritis. Postepy Hig. Med. Dosw. 2016, 70, 74–79. [Google Scholar] [CrossRef]
- Shiojiri, T.; Wada, K.; Nakajima, A.; Katayama, K.; Shibuya, A.; Kudo, C.; Kadowaki, T.; Mayumi, T.; Yura, Y.; Kamisaki, Y. PPARγ Ligands Inhibit Nitrotyrosine Formation and Inflammatory Mediator Expressions in Adjuvant-Induced Rheumatoid Arthritis Mice. Eur. J. Pharmacol. 2002, 448, 231–238. [Google Scholar] [CrossRef]
- Liu, Y.; Qu, Y.; Liu, L.; Zhao, H.; Ma, H.; Si, M.; Cheng, L.; Nie, L. PPAR-γ Agonist Pioglitazone Protects against IL-17 Induced Intervertebral Disc Inflammation and Degeneration via Suppression of NF-ΚB Signaling Pathway. Int. Immunopharmacol. 2019, 72, 138–147. [Google Scholar] [CrossRef]
- Roy, T.; Banerjee, I.; Ghosh, S.; Dhali, R.S.; De Pati, A.; Tripathi, S.K. Effects of Co-Treatment with Pioglitazone and Methotrexate on Experimentally Induced Rheumatoid Arthritis in Wistar Albino Rats. Indian J. Pharmacol. 2017, 49, 168–175. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Y.; Chen, C.; Zhang, H.; Ma, C.; Xia, Y. Establishment of a Rabbit Model to Study the Influence of Advanced Glycation End Products Accumulation on Osteoarthritis and the Protective Effect of Pioglitazone. Osteoarthr. Cartil. 2016, 24, 307–314. [Google Scholar] [CrossRef]
- Zhang, H.-B.; Zhang, Y.; Chen, C.; Li, Y.-Q.; Ma, C.; Wang, Z.-J. Pioglitazone Inhibits Advanced Glycation End Product-Induced Matrix Metalloproteinases and Apoptosis by Suppressing the Activation of MAPK and NF-ΚB. Apoptosis 2016, 21, 1082–1093. [Google Scholar] [CrossRef] [PubMed]
- Byrne, F.M.; Cheetham, S.; Vickers, S.; Chapman, V. Characterisation of Pain Responses in the High Fat Diet/Streptozotocin Model of Diabetes and the Analgesic Effects of Antidiabetic Treatments. J. Diabetes Res. 2015, 2015, 752481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohamed, M.; Mahmoud, M.; Rezk, A. Effect of Pentoxifylline and Pioglitazone on Rheumatoid Arthritis Induced Experimentally in Rats. Menoufia Med. J. 2014, 27, 766–774. [Google Scholar]
- Wang, R.-C.; Jiang, D.-M. PPAR-γ Agonist Pioglitazone Affects Rat Gouty Arthritis by Regulating Cytokines. Genet. Mol. Res. GMR 2014, 13, 6577–6581. [Google Scholar] [CrossRef]
- Chen, C.; Ma, C.; Zhang, Y.; Zeng, Y.; Li, Y.; Wang, W. Pioglitazone Inhibits Advanced Glycation End Product-Induced TNF-α and MMP-13 Expression via the Antagonism of NF-ΚB Activation in Chondrocytes. Pharmacology 2014, 94, 265–272. [Google Scholar] [CrossRef]
- Koufany, M.; Chappard, D.; Netter, P.; Bastien, C.; Weryha, G.; Jouzeau, J.-Y.; Moulin, D. The Peroxisome Proliferator-Activated Receptor γ Agonist Pioglitazone Preserves Bone Microarchitecture in Experimental Arthritis by Reducing the Interleukin-17-Dependent Osteoclastogenic Pathway. Arthritis Rheum. 2013, 65, 3084–3095. [Google Scholar] [CrossRef]
- Suke, S.G.; Negi, H.; Mediratta, P.K.; Banerjee, B.D.; Sharma, K.K. Anti-Arthritic and Anti-Inflammatory Activity of Combined Pioglitazone and Prednisolone on Adjuvant-Induced Arthritis. Eur. J. Pharmacol. 2013, 718, 57–62. [Google Scholar] [CrossRef]
- Yang, C.-R.; Lai, C.-C. Thiazolidinediones Inhibit TNF-Alpha-Mediated Osteoclast Differentiation of RAW264.7 Macrophages and Mouse Bone Marrow Cells through Downregulation of NFATc1. Shock 2010, 33, 662–667. [Google Scholar] [CrossRef]
- Koufany, M.; Moulin, D.; Bianchi, A.; Muresan, M.; Sebillaud, S.; Netter, P.; Weryha, G.; Jouzeau, J.-Y. Anti-Inflammatory Effect of Antidiabetic Thiazolidinediones Prevents Bone Resorption Rather than Cartilage Changes in Experimental Polyarthritis. Arthritis Res. Ther. 2008, 10, R6. [Google Scholar] [CrossRef] [Green Version]
- Boileau, C.; Martel-Pelletier, J.; Fahmi, H.; Mineau, F.; Boily, M.; Pelletier, J.-P. The Peroxisome Proliferator-Activated Receptor Gamma Agonist Pioglitazone Reduces the Development of Cartilage Lesions in an Experimental Dog Model of Osteoarthritis: In Vivo Protective Effects Mediated through the Inhibition of Key Signaling and Catabolic Pathways. Arthritis Rheum. 2007, 56, 2288–2298. [Google Scholar] [CrossRef]
- Kobayashi, T.; Notoya, K.; Naito, T.; Unno, S.; Nakamura, A.; Martel-Pelletier, J.; Pelletier, J.-P. Pioglitazone, a Peroxisome Proliferator-Activated Receptor Gamma Agonist, Reduces the Progression of Experimental Osteoarthritis in Guinea Pigs. Arthritis Rheum. 2005, 52, 479–487. [Google Scholar] [CrossRef] [PubMed]
- Shahin, D.; Toraby, E.E.; Abdel-Malek, H.; Boshra, V.; Elsamanoudy, A.Z.; Shaheen, D. Effect of Peroxisome Proliferator-Activated Receptor Gamma Agonist (Pioglitazone) and Methotrexate on Disease Activity in Rheumatoid Arthritis (Experimental and Clinical Study). Clin. Med. Insights Arthritis Musculoskelet. Disord. 2011, 4, CMAMD.S5951. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chęciński, M.; Chęcińska, K. Effects of Pioglitazone Administration on TNF-Alpha Concentration in Experimental Arthritis Therapies: A Literature Review; Academy of Integrated Approach to Cranio Mandibular Neuroscience: Krynica Zdrój, Poland, 2019; Volume 1, pp. 21–22. [Google Scholar]
- Ormseth, M.J.; Oeser, A.M.; Cunningham, A.; Bian, A.; Shintani, A.; Solus, J.; Tanner, S.; Stein, C. Peroxisome Proliferator-Activated Receptor γ Agonist Effect on Rheumatoid Arthritis: A Randomized Controlled Trial. Arthritis Res. Ther. 2013, 15, R110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sikora, M.; Czerwińska-Niezabitowska, B.; Chęciński, M.A.; Sielski, M.; Chlubek, D. Short-Term Effects of Intra-Articular Hyaluronic Acid Administration in Patients with Temporomandibular Joint Disorders. J. Clin. Med. 2020, 9, 1749. [Google Scholar] [CrossRef]
- Nowak, Z.; Chęciński, M.; Nitecka-Buchta, A.; Bulanda, S.; Ilczuk-Rypuła, D.; Postek-Stefańska, L.; Baron, S. Intramuscular Injections and Dry Needling within Masticatory Muscles in Management of Myofascial Pain. Systematic Review of Clinical Trials. Int. J. Environ. Res. Public. Health 2021, 18, 9552. [Google Scholar] [CrossRef]
- Chęciński, M.; Sikora, M.; Chęcińska, K.; Nowak, Z.; Chlubek, D. The Administration of Hyaluronic Acid into the Temporomandibular Joints’ Cavities Increases the Mandible’s Mobility: A Systematic Review and Meta-Analysis. J. Clin. Med. 2022, 11, 1901. [Google Scholar] [CrossRef]
- Chęciński, M.; Chęcińska, K.; Nowak, Z.; Sikora, M.; Chlubek, D. Treatment of Mandibular Hypomobility by Injections into the Temporomandibular Joints: A Systematic Review of the Substances Used. J. Clin. Med. 2022, 11, 2305. [Google Scholar] [CrossRef]
- Sikora, M.; Sielski, M.; Chęciński, M.; Nowak, Z.; Czerwińska-Niezabitowska, B.; Chlubek, D. Repeated Intra-Articular Administration of Platelet-Rich Plasma (PRP) in Temporomandibular Disorders: A Clinical Case Series. J. Clin. Med. 2022, 11, 4281. [Google Scholar] [CrossRef]
- Sikora, M.; Chęciński, M.; Nowak, Z.; Chlubek, D. Variants and Modifications of the Retroauricular Approach Using in Temporomandibular Joint Surgery: A Systematic Review. J. Clin. Med. 2021, 10, 2049. [Google Scholar] [CrossRef]
- Pawlaczyk-Kamieńska, T.; Paczyk-Wróblewskawla, E.; Borysewicz-Lewicka, M. Early Diagnosis of Temporomandibular Joint Arthritis in Children with Juvenile Idiopathic Arthritis. A Systematic Review. Eur. J. Paediatr. Dent. 2020, 21, 219–226. [Google Scholar] [CrossRef]
- Órla, G.; Béchet, S.; Walshe, M. Modified Diet Use in Adults with Temporomandibular Disorders Related to Rheumatoid Arthritis: A Systematic Review. Mediterr. J. Rheumatol. 2020, 31, 183. [Google Scholar] [CrossRef] [PubMed]
- Abate, A.; Cavagnetto, D.; Rusconi, F.M.E.; Cressoni, P.; Esposito, L. Safety and Effects of the Rapid Maxillary Expander on Temporomandibular Joint in Subjects Affected by Juvenile Idiopathic Arthritis: A Retrospective Study. Children 2021, 8, 33. [Google Scholar] [CrossRef] [PubMed]
- Cavagnetto, D.; Abate, A.; Caprioglio, A.; Cressoni, P.; Maspero, C. Three-Dimensional Volumetric Evaluation of the Different Mandibular Segments Using CBCT in Patients Affected by Juvenile Idiopathic Arthritis: A Cross-Sectional Study. Prog. Orthod. 2021, 22, 32. [Google Scholar] [CrossRef]
- Ahmad, S.A.; Hasan, S.; Saeed, S.; Khan, A.; Khan, M. Low-Level Laser Therapy in Temporomandibular Joint Disorders: A Systematic Review. J. Med. Life 2021, 14, 148–164. [Google Scholar] [CrossRef] [PubMed]
- Derwich, M.; Mitus-Kenig, M.; Pawlowska, E. Mechanisms of Action and Efficacy of Hyaluronic Acid, Corticosteroids and Platelet-Rich Plasma in the Treatment of Temporomandibular Joint Osteoarthritis—A Systematic Review. Int. J. Mol. Sci. 2021, 22, 7405. [Google Scholar] [CrossRef]
- Argueta-Figueroa, L.; Flores-Mejía, L.A.; Ávila-Curiel, B.X.; Flores-Ferreyra, B.I.; Torres-Rosas, R. Nonpharmacological Interventions for Pain in Patients with Temporomandibular Joint Disorders: A Systematic Review. Eur. J. Dent. 2022, 16, 500–513. [Google Scholar] [CrossRef]
- O’Connor, R.C.; Fawthrop, F.; Salha, R.; Sidebottom, A.J. Management of the Temporomandibular Joint in Inflammatory Arthritis: Involvement of Surgical Procedures. Eur. J. Rheumatol. 2017, 4, 151–156. [Google Scholar] [CrossRef]
- Gopi, I.; Muthukrishnan, A.; Maragathavalli, G. Clinical Practice Guidelines for the Management of Temporomandibular Joint Disorders—A Review. J. Evol. Med. Dent. Sci. 2021, 10, 2809–2815. [Google Scholar] [CrossRef]
- Liapaki, A.; Thamm, J.R.; Ha, S.; Monteiro, J.L.G.C.; McCain, J.P.; Troulis, M.J.; Guastaldi, F.P.S. Is There a Difference in Treatment Effect of Different Intra-Articular Drugs for Temporomandibular Joint Osteoarthritis? A Systematic Review of Randomized Controlled Trials. Int. J. Oral Maxillofac. Surg. 2021, 50, 1233–1243. [Google Scholar] [CrossRef]
- Sadura-Sieklucka, T.; Gębicki, J.; Sokołowska, B.; Markowski, P.; Tarnacka, B. Temporomandibular Joint Problems in Patients with Rheumatoid Arthritis. Reumatologia/Rheumatology 2021, 59, 161–168. [Google Scholar] [CrossRef]
- Shah, P.; Mudaliar, S. Pioglitazone: Side Effect and Safety Profile. Expert Opin. Drug Saf. 2010, 9, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Fahmi, H.; Martel-Pelletier, J.; Pelletier, J.-P.; Kapoor, M. Peroxisome Proliferator-Activated Receptor Gamma in Osteoarthritis. Mod. Rheumatol. 2011, 21, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Giaginis, C.; Giagini, A.; Theocharis, S. Peroxisome Proliferator-Activated Receptor-γ (PPAR-γ) Ligands as Potential Therapeutic Agents to Treat Arthritis. Pharmacol. Res. 2009, 60, 160–169. [Google Scholar] [CrossRef]
- Huang, G.; Jiang, W.; Xie, W.; Lu, W.; Zhu, W.; Deng, Z. Role of Peroxisome Proliferator-Activated Receptors in Osteoarthritis (Review). Mol. Med. Rep. 2020, 23, 159. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, J.; Luo, S.; Zhan, Y.; Lu, Q. The Roles of PPARγ and Its Agonists in Autoimmune Diseases: A Comprehensive Review. J. Autoimmun. 2020, 113, 102510. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L.; et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samson, D.; Schoelles, K.M. Chapter 2: Medical Tests Guidance (2) Developing the Topic and Structuring Systematic Reviews of Medical Tests: Utility of PICOTS, Analytic Frameworks, Decision Trees, and Other Frameworks. J. Gen. Intern. Med. 2012, 27, 11–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- About ACM. Available online: https://www.acm.org/about-acm (accessed on 25 June 2022).
- BASE—Bielefeld Academic Search Engine. What Is BASE? Available online: https://www.base-search.net/about/en/ (accessed on 25 June 2022).
- EBSCOhost Research Platform. EBSCO. Available online: https://www.ebsco.com/products/ebscohost-research-platform (accessed on 30 June 2022).
- Embase—A Biomedical Research Database. Available online: https://www.elsevier.com/solutions/embase-biomedical-research (accessed on 9 August 2022).
- Wolters Kluwer Ovid Is the World’s Most Trusted Medical Research Platform. Available online: https://www.wolterskluwer.com/en/solutions/ovid (accessed on 9 August 2022).
- ProQuest. Databases, EBooks and Technology for Research. Available online: https://about.proquest.com/en/ (accessed on 9 August 2022).
- About. Available online: https://pubmed.ncbi.nlm.nih.gov/about/ (accessed on 25 June 2022).
- About. Elsevier Scopus Blog. Available online: https://blog.scopus.com/about (accessed on 30 June 2022).
- VHL Network Portal. VHL Network Portal. Available online: http://red.bvsalud.org/en/ (accessed on 9 August 2022).
- Matthews, T. LibGuides: Resources for Librarians: Web of Science Coverage Details. Available online: https://clarivate.libguides.com/librarianresources/coverage (accessed on 30 June 2022).
- Wiley Online Library. Available online: https://onlinelibrary.wiley.com/ (accessed on 9 August 2022).
- ScienceDirect.Com. Science, Health and Medical Journals, Full Text Articles and Books. Available online: https://www.sciencedirect.com/ (accessed on 9 August 2022).
- Bongartz, T. Treatment of Active Psoriatic Arthritis with the PPAR Ligand Pioglitazone: An Open-Label Pilot Study. Rheumatology 2005, 44, 126–129. [Google Scholar] [CrossRef] [Green Version]
- Marder, W.; Khalatbari, S.; Myles, J.D.; Hench, R.; Lustig, S.; Yalavarthi, S.; Parameswaran, A.; Brook, R.D.; Kaplan, M.J. The Peroxisome Proliferator Activated Receptor-γ Pioglitazone Improves Vascular Function and Decreases Disease Activity in Patients With Rheumatoid Arthritis. J. Am. Heart Assoc. 2013, 2, e000441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cuzzocrea, S.; Di Paola, R.; Genovese, T.; Caputi, A. Rosiglitazone a Ligands of the Peroxisome Proliferator-Activated Receptor-γ (PPAR-γ) Reduce the Evolution of Murine Type II Collagen-Induced Arthritis. Available online: https://iris.unime.it/handle/11570/1802258 (accessed on 7 August 2022).
- Xu, H.; Finas, D.; Koster, F.; Griesinger, G.; Friedrich, M.; Diedrich, K.; Hornung, D. Implication for Thiazolidinediones (TZDs) as Novel Potential Anti- Inflammatory Drugs. Curr. Med. Chem. Anti-Inflamm. Anti-Allergy Agents 2005, 4, 531–541. [Google Scholar] [CrossRef]
- Stojanovska, L.; Honisett, S.; Komesaroff, P. The Anti-Atherogenic Effects of Thiazolidinediones. Curr. Diabetes Rev. 2007, 3, 67–74. [Google Scholar] [CrossRef] [Green Version]
- Immune System and Inflammation. Indian J. Pharmacol. 2008, 40, S150–S160.
- Fitzpatrick, L.; Kravitz, B.; Northcutt, A.; Paul, G.; Cobitz, A.; Nino, A. The Effects of Rosiglitazone on Bone by Multiple Image Modalities in Postmenopausal Women with Type 2 Diabetes Mellitus; Springer: Berlin/Heidelberg, Germany, 2011; p. 112. [Google Scholar]
- Peroxisome Proliferator-Activated Receptor Gamma Agonist Treatment for Rheumatoid Arthritis: A Proof-of-Concept Randomized Controlled Trial. In Proceedings of the ACR Meeting Abstracts, Washington, DC, USA, 9–14 November 2012; p. 832.
- Ormseth, M.J.; Oeser, A.M.; Cunningham, A.; Bian, A.; Shintani, A.; Solus, J.; Tanner, S.B.; Stein, C.M. Reversing Vascular Dysfunction in Rheumatoid Arthritis: Improved Augmentation Index but Not Endothelial Function With Peroxisome Proliferator-Activated Receptor γ Agonist Therapy: Pioglitazone and Vascular Function in RA. Arthritis Rheumatol. 2014, 66, 2331–2338. [Google Scholar] [CrossRef] [Green Version]
- Chandran, M.; Hao, Y.; Tan, M.; Tay, D. World Congress on Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (WCO-IOF-ESCEO 2016): Poster Abstracts. Osteoporos. Int. 2016, 27, 79–548. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, M.M.; Al-Shamma, K.J.; Jassim, N.A. Evaluation of the Clinical Use of Metformin or Pioglitazone in Combination with Meloxicam in Patients with Knee Osteoarthritis; Using Knee Injury and Osteoarthritis Outcome Score. Iraqi J. Pharm. Sci. 2014, 23, 13–23. [Google Scholar] [CrossRef]
- GlaxoSmithKline. A Randomised, Double-Blind, Placebo-Controlled, Parallel Group Study to Investigate the Anti-Inflammatory and Metabolic Effects of Rosiglitazone XR, 8mg Once Daily, in Subjects with Rheumatoid Arthritis. 2016. Available online: https://clinicaltrials.gov/ct2/show/NCT00379600 (accessed on 25 June 2022).
- Chen, Y.-J.; Chan, D.-C.; Lan, K.-C.; Wang, C.-C.; Chen, C.-M.; Chao, S.-C.; Tsai, K.-S.; Yang, R.-S.; Liu, S.-H. PPARγ Is Involved in the Hyperglycemia-Induced Inflammatory Responses and Collagen Degradation in Human Chondrocytes and Diabetic Mouse Cartilages: PPARγ in Diabetic Cartilage Damage. J. Orthop. Res. 2015, 33, 373–381. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Chen, F.; Lu, K.; Wei, A.; Jiang, Q.; Cao, W. PPARγ Preservation via Promoter Demethylation Alleviates Osteoarthritis in Mice. Ann. Rheum. Dis. 2019, 78, 1420–1429. [Google Scholar] [CrossRef] [PubMed]
Inclusion | Exclusion | |
---|---|---|
Problem A | Diagnosis of induced temporomandibular joint arthritis in animal studies | Clinical trials, cell studies |
Problem B | Diagnosis of arthritis in clinical trials | Animal studies, cell studies |
Intervention | Oral pioglitazone administration | - |
Comparison | Any or none | - |
Outcomes | Efficacy of therapy in changing the value of inflammation markers | No comparison nor initial and final values of inflammation markers |
Timeframe | Any | - |
Settings | Any type of primary study with published results | Language other than English; case reports and case series |
First Author | Study Group | Diagnosis | Daily Dose, mg | Duration, Weeks | Inflammation Indicator | Control Group | Study Group | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
Initial Value (100%) | Final Value | Final Value as a% | Initial Value (100%) | Final Value | Final Value as a% | ||||||
Animal studies | |||||||||||
Shiojiri [50] | Adult mice | Induced TMJ arthritis | 30 per kg of body weight | 1.5 | Nitrotyrosine [arbitrary unit] | N/S | 1100 * | - | N/S | 900 * | 81.8% compared to the control |
Kałużyński [49] | 10 californian white rabbits | Induced TMJ arthritis | 2 per kg of body weight | 4 | Cartilage cell layers—transitional zone | N/S | 9 | - | N/S | 11 | 122.2% compared to the control |
Cartilage cell layers—deep zone | N/S | 10 | - | N/S | 17 | 170.0% compared to the control | |||||
Clinical trials | |||||||||||
Shahin [65] | 28 patients | Rheumatoid arthritis | 30 | 12 | TJC | 5.6 | 3.6 | 64.3% | 6.0 | 3.1 | 51.7% |
SJC | 4.1 | 3.1 | 75.6% | 4.7 | 2.7 | 57.4% | |||||
CRP [mg/L] | 18.7 | 13.6 | 72.7% | 20.4 | 8.1 | 39.7% | |||||
ESR [mm/h] | 32.1 | 21.7 | 67.6% | 49.9 | 31.4 | 62.9% | |||||
DAS28 | 4.6 | 4.2 | 91.3% | 5.2 | 3.8 | 73.1% | |||||
Bongartz [105] | 10 patients | Psoriatic arthritis | 60 | 12 | TJC | N/S | N/S | N/S | 12.0 | 4.0 | 33.3% |
SJC | N/S | N/S | N/S | 5.0 | 2.0 | 40.0% | |||||
CRP [mg/L] | N/S | N/S | N/S | 12.6 | 6.4 | 50.8% | |||||
ESR [mm/h] | N/S | N/S | N/S | 16.0 | 14.0 | 87.5% | |||||
VAS | N/S | N/S | N/S | 7.2 | 5.2 | 72.2% | |||||
Ormseth [67] | 26 patients | Rheumatoid arthritis | 45 | 8 | TJC | 11.5 | 10.4 | 90.4% | 9.6 | 8.5 | 88.5% |
SJC | 8.2 | 7 | 85.4% | 6.6 | 6.5 | 98.5% | |||||
CRP [mg/L] | 77.0 | 82.5 | 107.1% | 81.0 | 50.2 | 62.0% | |||||
ESR [mm/h] | 19.5 | 18.9 | 96.9% | 18.5 | 17.0 | 91.9% | |||||
VAS | 4.8 | 4.9 | 102.1% | 4.5 | 4.2 | 93.3% | |||||
IL-6 | 8.7 | 6.5 | 74.7% | 5.4 | 2.4 | 44.4% | |||||
TNF-alpha | 13.4 | 9.7 | 72.4% | 9.9 | 9.5 | 96.0% | |||||
DAS28-CRP | 4.6 | 4.5 | 97.8% | 4.4 | 4.0 | 90.9% | |||||
DAS28-ESR | 4.9 | 4.6 | 93.9% | 4.6 | 4.4 | 95.7% | |||||
Marder [106] | 108 patients | Rheumatoid arthritis | 45 | 13 * | CRP [mg/L] (study group 1) | 56.7 * | 73.2 * | 129.1% | 32.1 * | 29.9 * | 93.1% |
CRP [mg/L] (study group 2) | 45.5 * | 37.8 * | 83.1% | 49.9 * | 17.8 * | 35.7% | |||||
DAS28 (study group 1) | 3.6 * | 3.3 * | 91.7% | 3.2 * | 2.9 * | 90.6% | |||||
DAS28 (study group 2) | 3.4 * | 3.3 * | 97.1% | 3.3 * | 2.8 * | 84.8% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Turosz, N.; Chęcińska, K.; Chęciński, M.; Kamińska, M.; Nowak, Z.; Sikora, M.; Chlubek, D. A Scoping Review of the Use of Pioglitazone in the Treatment of Temporo-Mandibular Joint Arthritis. Int. J. Environ. Res. Public Health 2022, 19, 16518. https://doi.org/10.3390/ijerph192416518
Turosz N, Chęcińska K, Chęciński M, Kamińska M, Nowak Z, Sikora M, Chlubek D. A Scoping Review of the Use of Pioglitazone in the Treatment of Temporo-Mandibular Joint Arthritis. International Journal of Environmental Research and Public Health. 2022; 19(24):16518. https://doi.org/10.3390/ijerph192416518
Chicago/Turabian StyleTurosz, Natalia, Kamila Chęcińska, Maciej Chęciński, Monika Kamińska, Zuzanna Nowak, Maciej Sikora, and Dariusz Chlubek. 2022. "A Scoping Review of the Use of Pioglitazone in the Treatment of Temporo-Mandibular Joint Arthritis" International Journal of Environmental Research and Public Health 19, no. 24: 16518. https://doi.org/10.3390/ijerph192416518
APA StyleTurosz, N., Chęcińska, K., Chęciński, M., Kamińska, M., Nowak, Z., Sikora, M., & Chlubek, D. (2022). A Scoping Review of the Use of Pioglitazone in the Treatment of Temporo-Mandibular Joint Arthritis. International Journal of Environmental Research and Public Health, 19(24), 16518. https://doi.org/10.3390/ijerph192416518