How to Achieve Carbon Neutrality: From the Perspective of Innovative City Pilot Policy in China
Abstract
:1. Introduction
2. Policy Background and Literature Review
2.1. Policy Background
2.2. Theoretical Analysis and Hypothesis Formulation
2.2.1. The Pilot Policy and Carbon Efficiency
2.2.2. Mechanism Analysis of the Pilot Policy to Improve Carbon Efficiency
2.2.3. Space Emission Reduction Effects of the Pilot Policy
3. Research Design
3.1. Data
3.2. Model
3.3. Variable
4. Empirical Results
4.1. Parallel Trend Test
4.2. Baseline Regression
4.3. Robust Test
4.3.1. Placebo Test
4.3.2. Replacing Dependent Variable
4.3.3. PSM-DID
4.3.4. Excluding Other Policies
4.3.5. Adding Covariates
4.3.6. Other Robustness Tests
4.4. Heterogeneity Analysis
4.4.1. Resource Endowments
4.4.2. Eco-Friendly Type
4.5. Transmission Mechanism Test
5. Spatial Effect Analysis
5.1. Spatial Econometric Model
5.2. Regression Results
6. Conclusions and Implications
6.1. Conclusions
- (1)
- The carbon emission efficiency of innovative pilot cities is noticeably improved, while the improvement of non-pilot cities is not obvious. The effect of innovative cities on carbon emission performance has been continuously enhanced over time. The conclusion demonstrated that innovative cities can play a favorable role in promoting the performance of urban carbon emission, which remains robust after a range of tests such as the exclusion of interference policy, addition of covariates, and winsorize.
- (2)
- There is heterogeneity between different categories of cities, that is, the influence of the pilot city on non-resource cities and environmentally friendly cities are more significant from the perspective of different categories of cities.
- (3)
- What is revealed by the Mechanism analysis is that the innovative cities improve carbon emission performance by reducing carbon emission levels, which is attributed to the fact that the innovative cities can strengthen urban green technology innovation, increase government financial support, and optimize the urban industrial structure.
- (4)
- There is a space emission reduction effect of the pilot cities. The innovative city will markedly prompt the carbon performance of the adjacent regions.
6.2. Implications
- (1)
- Fully prompt and expand the polit scope of innovative city. All levels of government should sum up the lessons learned during the process of the pilot policy and combine the current economic development and the current pollution emission situation of the region to promote the construction of China’s innovative cities as a whole while ensuring economic development. Through the comprehensive implementation of innovative urban construction, the pollution emission problems of various cities will be significantly improved, and the green development of the economy will be realized.
- (2)
- Explore the road of independent innovation in the city and elevate the ability of independent Rand D ability. First of all, all levels of government can increase government capital expenditure to build innovation cooperation and exchange platform, promote the agglomeration of urban technology elements and innovation elements. Second, fully mobilize the coordination mechanism for the coordinated development of industries. All levels of governments should adjust the inherent model of industrial development to cultivate new competitive advantages and explore new momentum for regional economic development. Finally, adhere to the principle of government guidance in promoting innovation pilot work. Local governments should play a leading role, expand local investment expenditure, and strengthen the construction of environmental protection infrastructure. Increase expenditure on science and technology education and support for scientific research to units, and cultivate high-tech talents.
- (3)
- It is essential to fully consider the spatial emission reduction effect of the pilot cities on adjacent areas. Therefore, the central government should optimize the spatial layout of innovative city construction and take the strategy of point to an area and maximize the influence of pilot cities on carbon performance. Simultaneously, differentiated strategies should be formulated to avoid following suit and promote the balanced development and coordinated advancement of China’s innovative city pilot work.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, S. Environmental pollution emissions, regional productivity growth and ecological economic development in China. China Econ. Rev. 2015, 35, 171–182. [Google Scholar] [CrossRef]
- Graff Zivin, J.; Neidell, M. The impact of pollution on worker productivity. Am. Econ. Rev. 2012, 102, 3652–3673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duflo, E.; Greenstone, M.; Pande, R.; Ryan, N. The value of regulatory discretion: Estimates from environmental inspections in India. Econometrica 2016, 86, 2123–2160. [Google Scholar] [CrossRef]
- Ito, K.; Zhang, S. Willingness to pay for clean air: Evidence from air purifier markets in China. J. Political Econ. 2020, 128, 1627–1672. [Google Scholar] [CrossRef] [Green Version]
- Zheng, S.; Kahn, M.E. Understanding China’s urban pollution dynamics. J. Econ. Lit. 2013, 51, 731–772. [Google Scholar] [CrossRef] [Green Version]
- Rossi-Hansberg, E.; Wright, M.L.J. Urban structure and growth. Rev. Econ. Stud. 2007, 74, 597–624. [Google Scholar] [CrossRef] [Green Version]
- Bettencourt, L.M.A.; Lobo, J.; Helbing, D.; Kuehnert, C.; West, G.B. Growth, innovation, scaling, and the pace of life in cities. Proc. Natl. Acad. Sci. USA 2007, 104, 7301–7306. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.; Peng, J.; Xiao, J.; Su, P.; Li, S. Industrial structure transformation and provincial heterogeneity characteristics evolution of air pollution: Evidence of a threshold effect from China. Atmos. Pollut. Res. 2020, 11, 598–609. [Google Scholar] [CrossRef]
- Xu, H.; Liu, B.; Qiu, L.; Liu, X.; Lin, W.; Liu, B. Does the new energy demonstration cities construction reduce CO2 emission? Evidence from a quasi-natural experiment in China. Environ. Sci. Pollut. Res. Int. 2022, 29, 50408–50426. [Google Scholar] [CrossRef]
- Wang, L.; Wang, H.; Cao, Z.; He, Y.; Dong, Z.; Wang, S. Can industrial intellectualization reduce carbon emissions? Empirical evidence from the perspective of carbon total factor productivity in China. Technol. Forecast. Soc. Chang. 2022, 184, 121969. [Google Scholar] [CrossRef]
- Wang, A.; Lin, W.; Liu, B.; Wang, H.; Xu, H. Does Smart City Construction Improve the Green Utilization Efficiency of Urban Land? Land 2021, 10, 657. [Google Scholar] [CrossRef]
- Shi, X.; Xu, Z. Environmental regulation and firm exports: Evidence from the eleventh Five-Year Plan in China. J. Environ. Econ. Manag. 2018, 89, 187–200. [Google Scholar] [CrossRef]
- Wang, L.; Wang, H.; Dong, Z.; Wang, S.; Cao, Z. The air pollution effect of government economic growth expectations: Evidence from China’s cities based on green technology. Environ. Sci. Pollut. Res. Int. 2021, 28, 27639–27654. [Google Scholar] [CrossRef] [PubMed]
- Helveston, J.P.; He, G.; Davidson, M.R. Quantifying the cost savings of global solar photovoltaic supply chains. Nature 2022, 612, 83–87. [Google Scholar] [CrossRef] [PubMed]
- Abrell, J.; Kosch, M.; Rausch, S. How effective is carbon pricing? A machine learning approach to policy evaluation. J. Environ. Econ. Manag. 2022, 112, 102589. [Google Scholar] [CrossRef]
- Dong, Z.; Wang, H.; Wang, S.; Wang, L. The validity of carbon emission trading policies: Evidence from a quasi-natural experiment in China. Adv. Clim. Chang. Res. 2020, 11, 102–109. [Google Scholar] [CrossRef]
- Dong, Z.; He, Y.; Wang, H.; Wang, L. Is there a ripple effect in environmental regulation in China? Evidence from the local-neighborhood green technology innovation perspective. Ecol. Indic. 2020, 118, 106773. [Google Scholar] [CrossRef]
- Ma, Z.; Shen, J.; Wang, C.; Wu, H. Characterization of sustainable mortar containing high-quality recycled manufactured sand crushed from recycled coarse aggregate. Cem. Concr. Compos. 2022, 132, 104629. [Google Scholar] [CrossRef]
- Cole, M.A.; Neumayer, E. Examining the impact of demographic factors on air pollution. Popul. Environ. 2004, 26, 5–21. [Google Scholar] [CrossRef] [Green Version]
- Alam, S.; Fatima, A.; Butt, M.S. Sustainable development in Pakistan in the context of energy consumption demand and environmental degradation. J. Asian Econ. 2007, 18, 825–837. [Google Scholar] [CrossRef]
- Holtedahl, P.; Joutz, F.L. Residential electricity demand in Taiwan. Energy Econ. 2004, 26, 201–224. [Google Scholar] [CrossRef]
- Helsley, R.W.; Strange, W.C. Innovation and input sharing. J. Urban Econ. 2020, 51, 25–45. [Google Scholar] [CrossRef]
- Kalkanci, B.; Rahmani, M.; Toktay, L.B. The role of inclusive innovation in promoting social sustainability. Prod. Oper. Manag. 2019, 28, 2960–2982. [Google Scholar] [CrossRef]
- Gao, K.; Yuan, Y. The effect of innovation-driven development on pollution reduction: Empirical evidence from a quasi-natural experiment in China. Technol. Forecast. Soc. Chang. 2021, 172, 121047. [Google Scholar] [CrossRef]
- Fang, C.; Ma, H.; Wang, Z.; Li, G. The sustainable development of innovative cities in China: Comprehensive assessment and future configuration. J. Geogr. Sci. 2014, 24, 1095–1114. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Zhang, J.; Yang, X.; Wang, W.; Wu, H.; Ran, Q.; Luo, R. The impact of innovative city construction on ecological efficiency: A quasi-natural experiment from China. Sustain. Prod. Consum. 2021, 28, 1724–1735. [Google Scholar] [CrossRef]
- Cao, W.; Zhang, Y.; Qian, P. The Effect of Innovation-Driven Strategy on Green Economic Development in China-An Empirical Study of Smart Cities. Int. J. Environ. Res. Public Health 2019, 16, 1520. [Google Scholar] [CrossRef] [Green Version]
- Fan, F.; Cao, D.; Ma, N. Is improvement of innovation efficiency conducive to haze governance? Empirical evidence from 283 Chinese cities. Int. J. Environ. Res. Public Health 2020, 17, 6095. [Google Scholar] [CrossRef]
- Park, J.; Page, G.W. Innovative green economy, urban economic performance and urban environments: An empirical analysis of US cities. Eurpoean Plan. Stud. 2017, 25, 772–789. [Google Scholar] [CrossRef]
- Li, Z.; Pan, Y.; Yang, W.; Ma, J.; Zhou, M. Effects of government subsidies on green technology investment and green marketing coordination of supply chain under the cap-and-trade mechanism. Energy Econ. 2021, 101, 105426. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, X. Does innovative city construction improve the industry-university-research knowledge flow in urban China? Technol. Forecast. Soc. Chang. 2022, 174, 121200. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, X.; Zhang, B. The policy effects of innovative city pilot on the dual efficiency of industry-university-research knowledge flow. Technol. Anal. Startegic Manag. 2021, 34, 1038–1049. [Google Scholar] [CrossRef]
- Azomahou, T.; Laisney, F.; Van, P.N. Economic development and CO2 emissions: A nonparametric panel approach. J. Public Econ. 2006, 90, 1347–1363. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Deng, X.; Wang, J.; Zhang, F.; Liang, S. Carbon emission efficiency in China: A spatial panel data analysis. China Econ. Rev. 2019, 56, 101313. [Google Scholar] [CrossRef]
- Zeng, L.; Lu, H.; Liu, Y.; Zhou, Y.; Hu, H. Analysis of regional differences and influencing factors on China’s carbon emission efficiency in 2005–2015. Energies 2019, 12, 3081. [Google Scholar] [CrossRef] [Green Version]
- Fan, Y.; Wu, J.; Xia, Y.; Liu, J. How will a nationwide carbon market affect regional economies and efficiency of CO2 emission reduction in China? China Econ. Rev. 2016, 38, 151–166. [Google Scholar] [CrossRef]
- Zheng, H.; Hu, J.; Wang, S.; Wang, H. Examining the influencing factors of CO2 emissions at city level via panel quantile regression: Evidence from 102 Chinese cities. Appl. Econ. 2019, 51, 3906–3919. [Google Scholar] [CrossRef]
- Ang, J.B. CO2 emissions, research and technology transfer in China. Ecol. Econ. 2009, 68, 2658–2665. [Google Scholar] [CrossRef] [Green Version]
- Chu, Z.; Cheng, M.; Yu, N.N. A smart city is a less polluted city. Technol. Forecast. Soc. Chang. 2021, 172, 121037. [Google Scholar] [CrossRef]
- Zheng, Y.M.; Lv, Q.; Wang, Y.D. Economic development, technological progress, and provincial carbon emissions intensity: Empirical research based on the threshold panel model. Appl. Econ. 2021, 54, 3495–3504. [Google Scholar] [CrossRef]
- Porter, M.E.; Van der Linde, C. Toward a new conception of the environment-competitiveness relationship. J. Econ. Perspect. 1995, 9, 97–118. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Li, M. The spatial spillover effects of environmental regulation on China’s industrial green growth performance. Energies 2019, 12, 267. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.; Sun, X.; Zhang, C.; Wang, D.; Mao, J. Can Emission Trading Scheme Improve Carbon Emission Performance? Evidence From China. Front. Energy Res. 2021, 9, 759572. [Google Scholar] [CrossRef]
- Du, K.; Li, P.; Yan, Z. Do green technology innovations contribute to carbon dioxide emission reduction? Empirical evidence from patent data. Technol. Forecast. Soc. Chang. 2019, 146, 297–303. [Google Scholar] [CrossRef]
- Ren, S.; Hu, Y.; Zheng, J.; Wang, Y. Emissions trading and firm innovation: Evidence from a natural experiment in China. Technol. Forecast. Soc. Chang. 2020, 155, 119989. [Google Scholar] [CrossRef]
- Song, Y.; Zhang, X.; Zhang, M. The influence of environmental regulation on industrial structure upgrading: Based on the strategic interaction behavior of environmental regulation among local governments. Technol. Forecast. Soc. Chang. 2021, 170, 120930. [Google Scholar] [CrossRef]
- Qiu, S.; Wang, Z.; Liu, S. The policy outcomes of low-carbon city construction on urban green development: Evidence from a quasi-natural experiment conducted in China. Sustain. Cities Soc. 2021, 66, 102699. [Google Scholar] [CrossRef]
- Zhou, B.; Zhou, F.; Zhou, D.; Qiao, J.; Xue, B. Improvement of environmental performance and optimization of industrial structure of the Yangtze River economic belt in China: Going forward together or restraining each other? J. Chin. Gov. 2021, 61, 435–455. [Google Scholar] [CrossRef]
- Ma, J.; Hu, Q.; Shen, W.; Wei, X. Does the Low-carbon city pilot policy promote green technology innovation? Based on green patent data of Chinese a-share listed companies. Int. J. Environ. Res. Public Health 2021, 18, 3695. [Google Scholar] [CrossRef]
- Cheng, Z.; Li, L.; Liu, J. Industrial structure, technical progress and carbon intensity in China’s provinces. Renew. Sustain. Energy Rev. 2018, 81, 2935–2946. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, J.; Li, J. Industrial structural transformation and carbon dioxide emissions in China. Energy Policy 2013, 57, 43–51. [Google Scholar] [CrossRef]
- Dong, B.; Xu, Y.; Fan, X. How to achieve a win-win situation between economic growth and carbon emission reduction: Empirical evidence from the perspective of industrial structure upgrading. Environ. Sci. Pollut. Res. Int. 2020, 27, 43829–43844. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Lee, J. Repairing the R&D market failure: Public R&D subsidy and the composition of private R&D. Res. Policy 2017, 46, 1465–1478. [Google Scholar] [CrossRef]
- Leuz, C.; Oberholzer-Gee, F. Political relationships, global financing, and corporate transparency: Evidence from Indonesia. J. Financ. Econ. 2006, 81, 411–439. [Google Scholar] [CrossRef]
- Niessen, A.; Ruenzi, S. Political connectedness and firm performance: Evidence from Germany. Ger. Econ. Rev. 2010, 11, 441–464. [Google Scholar] [CrossRef] [Green Version]
- Lin, B.; Luan, R. Are government subsidies effective in improving innovation efficiency? Based on the research of China’s wind power industry. Sci. Total Environ. 2020, 710, 136339. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Zhang, W.; Wang, T.; Xu, Y.; Du, H. Impact of subsidies on innovations of environmental protection and circular economy in China. J. Environ. Manag. 2021, 289, 112385. [Google Scholar] [CrossRef]
- Ma, T.; Cao, X. The effect of the industrial structure and haze pollution: Spatial evidence for China. Environ. Sci. Pollut. Res. 2021, 29, 23578–23594. [Google Scholar] [CrossRef]
- Li, Z.; Zhou, Q. Research on the spatial effect and threshold effect of industrial structure upgrading on carbon emissions in China. J. Water Clim. Change 2021, 12, 3886–3898. [Google Scholar] [CrossRef]
- Li, J.; Li, S. Energy investment, economic growth and carbon emissions in China-Empirical analysis based on spatial Durbin model. Energy Policy 2020, 140, 111425. [Google Scholar] [CrossRef]
- You, W.; Lv, Z. Spillover effects of economic globalization on CO2 emissions: A spatial panel approach. Energy Econ. 2018, 73, 248–257. [Google Scholar] [CrossRef]
- Zhang, X.; Lu, F.; Xue, D. Does China’s carbon emission trading policy improve regional energy efficiency? An analysis based on quasi-experimental and policy spillover effects. Environ. Sci. Pollut. Res. 2021, 29, 21166–21183. [Google Scholar] [CrossRef] [PubMed]
- Marbuah, G.; Amuakwa-Mensah, F. Spatial analysis of emissions in Sweden. Energy Econ. 2017, 68, 383–394. [Google Scholar] [CrossRef] [Green Version]
- Meng, B.; Wang, J.; Andrew, R.; Xiao, H.; Xue, J.; Peters, G.P. Spatial spillover effects in determining China’s regional CO2 emissions growth: 2007–2010. Energy Econ. 2017, 63, 161–173. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, K. The linkage of CO2 emissions for China, EU, and USA: Evidence from the regional and sectoral analyses. Environ. Sci. Pollut. Res. 2018, 25, 20179–20192. [Google Scholar] [CrossRef]
- Lan, F.; Sun, L.; Pu, W. Research on the influence of manufacturing agglomeration modes on regional carbon emission and spatial effect in China. Econ. Model. 2021, 96, 346–352. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, N. Low-carbon city pilot and carbon emission efficiency: Quasi-experimental evidence from China. Energy Econ. 2021, 96, 105125. [Google Scholar] [CrossRef]
- Fan, M.; Li, M.; Liu, J.; Shao, S. Is high natural resource dependence doomed to low carbon emission efficiency? Evidence from 283 cities in China. Energy Econ. 2022, 115, 106328. [Google Scholar] [CrossRef]
- Gehrsitz, M. The effect of low emission zones on air pollution and infant health. J. Environ. Econ. Manag. 2017, 83, 121–144. [Google Scholar] [CrossRef]
Type | Index | Symbol | Obs | Min | Mean | Sd | Max |
---|---|---|---|---|---|---|---|
dependent | emission efficiency | Sco2 | 3934 | −2.641 | −1.104 | 0.403 | 0.599 |
core independent | the status of innovative city (dummy variable) | DID | 3934 | −1.969 | −0.680 | 0.303 | 0.255 |
control | population density | popden | 3934 | 1.609 | 5.729 | 0.775 | 7.882 |
industrial structure | industry | 3934 | 11.70 | 47.84 | 10.94 | 90.97 | |
FDI proportion | fdi | 3934 | 4.317 | 13.29 | 1.873 | 18.83 | |
gross domestic product per capita | pgdp | 3934 | 4.595 | 10.41 | 0.726 | 13.06 | |
local budget revenue | finan | 3934 | 9.722 | 13.57 | 1.212 | 18.09 |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
Sco2 | Sco2 | Sco2 | Sco2 | |
DID | 0.137 *** | 0.247 *** | 0.189 *** | 0.189 *** |
(0.019) | (0.018) | (0.019) | (0.018) | |
_cons | −1.121 *** | −1.136 *** | −1.128 *** | −4.668 *** |
(0.007) | (0.004) | (0.004) | (0.300) | |
control | N | N | N | Y |
City-fixed effect | N | Y | Y | Y |
Year-fixed effect | N | N | Y | Y |
N | 3934 | 3934 | 3934 | 3934 |
R-sq | 0.013 | 0.701 | 0.722 | 0.756 |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
Eco2 | Eco2 | Eco2 | Eco2 | |
DID | 0.068 *** | 0.118 *** | 0.136 *** | 0.139 *** |
(0.014) | (0.013) | (0.014) | (0.013) | |
_cons | −0.689 *** | −0.695 *** | −0.698 *** | −3.567 *** |
(0.005) | (0.003) | (0.003) | (0.225) | |
control | N | N | N | Y |
City-fixed effect | N | Y | Y | Y |
Year-fixed effect | N | N | Y | Y |
N | 3934 | 3934 | 3934 | 3934 |
R-sq | 0.006 | 0.702 | 0.715 | 0.757 |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
Radius Matching | Kernel Matching | |||
Sco2 | Sco2 | Sco2 | Sco2 | |
DID | 0.185 *** | 0.145 *** | 0.184 *** | 0.149 *** |
(0.022) | (0.020) | (0.021) | (0.020) | |
_cons | −1.111 *** | −6.453 *** | −1.110 *** | −6.500 *** |
(0.005) | (0.382) | (0.005) | (0.378) | |
control | N | Y | N | Y |
City-fixed effect | Y | Y | Y | Y |
Year-fixed effect | Y | Y | Y | Y |
N | 2993 | 2993 | 3043 | 3043 |
R-sq | 0.728 | 0.771 | 0.726 | 0.769 |
(1) | (2) | (3) | (4) | (5) | (6) | |
---|---|---|---|---|---|---|
The Policy of Low-Carbon City Pilot | The Policy of Emissions Trading Right | The Pilot Policy of New Energy Vehicles | ||||
Sco2 | Sco2 | Sco2 | Sco2 | Sco2 | Sco2 | |
DID | 0.144 *** | 0.133 *** | 0.178 *** | 0.166 *** | 0.162 *** | 0.158 *** |
(0.024) | (0.023) | (0.020) | (0.019) | (0.023) | (0.022) | |
_cons | −1.137 *** | −5.528 *** | −1.158 *** | −4.687 *** | −1.134 *** | −4.712 *** |
(0.005) | (0.424) | (0.005) | (0.319) | (0.004) | (0.309) | |
control | N | Y | N | Y | N | Y |
City-fixed effect | Y | Y | Y | Y | Y | Y |
Year-fixed effect | Y | Y | Y | Y | Y | Y |
N | 2632 | 2632 | 3304 | 3304 | 3612 | 3612 |
R-sq | 0.726 | 0.763 | 0.702 | 0.745 | 0.711 | 0.746 |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
Sco2 | Sco2 | Sco2 | Sco2 | |
DID | 0.073 *** | 0.087 *** | 0.133 *** | 0.072 *** |
(0.021) | (0.021) | (0.022) | (0.021) | |
_cons | −3.091 *** | −6.013 *** | −1.338 *** | −6.093 *** |
(0.215) | (0.322) | (0.141) | (0.315) | |
control | N | Y | N | Y |
City-fixed effect | Y | Y | Y | Y |
Year-fixed effect | Y | Y | Y | Y |
N | 3934 | 3934 | 3934 | 3934 |
R-sq | 0.756 | 0.776 | 0.751 | 0.782 |
(1) | (2) | (3) | (4) | (5) | (6) | |
---|---|---|---|---|---|---|
Sco2 | Sco2 | Sco2 | Sco2 | Sco2 | Sco2 | |
DID | 0.189 *** | 0.183 *** | 0.126 *** | 0.145 *** | 0.188 *** | 0.187 *** |
(0.018) | (0.018) | (0.019) | (0.019) | (0.019) | (0.018) | |
_cons | −1.128 *** | −5.543 *** | −1.127 *** | −3.739 *** | −1.132 *** | −4.641 *** |
(0.004) | (0.309) | (0.004) | (0.756) | (0.004) | (0.301) | |
control | N | Y | N | Y | N | Y |
City-fixed effect | Y | Y | Y | Y | Y | Y |
Year-fixed effect | Y | Y | Y | Y | Y | Y |
N | 3934 | 3934 | 2248 | 2248 | 3878 | 3878 |
R-sq | 0.719 | 0.758 | 0.835 | 0.840 | 0.717 | 0.751 |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
Non-Resource-Based City | Resource-Based City | |||
Sco2 | Sco2 | Sco2 | Sco2 | |
DID | 0.209 *** | 0.201 *** | 0.021 | 0.028 |
(0.021) | (0.021) | (0.045) | (0.042) | |
_cons | −1.097 *** | −5.854 *** | −1.182 *** | −3.518 *** |
(0.006) | (0.427) | (0.006) | (0.421) | |
control | N | Y | N | Y |
City-fixed effect | Y | Y | Y | Y |
Year-fixed effect | Y | Y | Y | Y |
N | 2520 | 2520 | 1414 | 1414 |
R-sq | 0.719 | 0.753 | 0.722 | 0.765 |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
Non-Environmentally Friendly Cities | Environmentally Friendly Cities | |||
Sco2 | Sco2 | Sco2 | Sco2 | |
DID | 0.116 ** | 0.113 ** | 0.193 *** | 0.161 *** |
(0.042) | (0.041) | (0.021) | (0.018) | |
_cons | −1.103 *** | −4.245 *** | −1.172 *** | −7.003 *** |
(0.005) | (0.393) | (0.008) | (0.444) | |
Control | N | Y | N | Y |
City-fixed effect | Y | Y | Y | Y |
Year-fixed effect | Y | Y | Y | Y |
N | 2548 | 2548 | 1386 | 1386 |
R-sq | 0.695 | 0.724 | 0.791 | 0.843 |
(1) | (2) | (3) | (4) | (5) | (6) | |
---|---|---|---|---|---|---|
inno | inno | stru | stru | tech | tech | |
DID | 0.073 ** | 0.093 ** | 0.121 *** | 0.029 ** | 0.194 *** | 0.180 *** |
(0.037) | (0.037) | (0.017) | (0.011) | (0.039) | (0.036) | |
_cons | 4.405 *** | −1.469 ** | 0.899 *** | 0.950 *** | 9.793 *** | −2.492 *** |
(0.008) | (0.616) | (0.004) | (0.191) | (0.009) | (0.597) | |
control | N | Y | N | Y | N | Y |
City-fixed effect | Y | Y | Y | Y | Y | Y |
Year-fixed effect | Y | Y | Y | Y | Y | Y |
N | 3715 | 3715 | 3933 | 3933 | 3933 | 3933 |
R-sq | 0.942 | 0.945 | 0.851 | 0.937 | 0.923 | 0.940 |
Year | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 |
Moran I | 0.036 *** | 0.034 *** | 0.036 *** | 0.022 *** | 0.021 *** | 0.020 *** | 0.018 *** |
p value | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Year | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 |
Moran I | 0.019 *** | 0.028 *** | 0.036 *** | 0.051 *** | 0.051 *** | 0.049 *** | 0.062 *** |
p value | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
(1) | (2) | |
---|---|---|
SAR | SDM | |
Sco2 | Sco2 | |
Main DID | 0.184 *** | 0.170 *** |
(0.017) | (0.018) | |
W-DID | 0.760 *** | |
(0.193) | ||
Spatial rho | 0.506 *** | 0.519 *** |
(0.091) | (0.095) | |
Direct DID | 0.185 *** | 0.177 *** |
(0.018) | (0.018) | |
Indirect DID | 0.203 ** | 1.791 *** |
(0.091) | (0.510) | |
Total DID | 0.388 *** | 1.967 *** |
(0.097) | (0.512) | |
control | Y | Y |
City-fixed effect | Y | Y |
Year-fixed effect | Y | Y |
N | 3934 | 3934 |
R-sq | 0.024 | 0.006 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.; Zhang, Y.; Liu, B.; Xiu, P.; Sun, L. How to Achieve Carbon Neutrality: From the Perspective of Innovative City Pilot Policy in China. Int. J. Environ. Res. Public Health 2022, 19, 16539. https://doi.org/10.3390/ijerph192416539
Liu L, Zhang Y, Liu B, Xiu P, Sun L. How to Achieve Carbon Neutrality: From the Perspective of Innovative City Pilot Policy in China. International Journal of Environmental Research and Public Health. 2022; 19(24):16539. https://doi.org/10.3390/ijerph192416539
Chicago/Turabian StyleLiu, Lina, Yunyun Zhang, Bei Liu, Pishi Xiu, and Lipeng Sun. 2022. "How to Achieve Carbon Neutrality: From the Perspective of Innovative City Pilot Policy in China" International Journal of Environmental Research and Public Health 19, no. 24: 16539. https://doi.org/10.3390/ijerph192416539
APA StyleLiu, L., Zhang, Y., Liu, B., Xiu, P., & Sun, L. (2022). How to Achieve Carbon Neutrality: From the Perspective of Innovative City Pilot Policy in China. International Journal of Environmental Research and Public Health, 19(24), 16539. https://doi.org/10.3390/ijerph192416539