Examining the Auditory Selective Attention Switch in a Child-Suited Virtual Reality Classroom Environment
Abstract
:1. Introduction
1.1. Previous Experiments on Auditory Selective Attention
1.2. Auditory Selective Attention in Children
1.3. Investigations of Cognitive Performance in VR
1.4. Investigating Children in VR
1.5. Virtual Reality Questionnaires
1.6. Objectives
2. Materials and Methods
2.1. Participants
2.2. Stimulus Material
2.3. Auditory Reproduction
2.4. Visual Reproduction
2.5. Experiment Room and Virtual Classroom Setup
2.6. Evaluation of the Virtual Environment
2.7. Experimental Procedure
2.8. Experimental Design
2.8.1. Experiment Group
2.8.2. Attention Transition
2.8.3. Congruency
2.8.4. Target–Distractor Position Combination
3. Results
3.1. Reaction Times
3.2. Error Rates
3.3. Head Movement
3.4. Questionnaires
4. Discussion
4.1. Group Differences
4.2. Attention Transition
4.3. Congruency
4.4. Target–Distractor Position Combination
4.5. Virtual Environment
4.6. Limitations and Future Directions
4.6.1. Participant Group
4.6.2. Auditory Reproduction
4.6.3. Visual Reproduction
4.6.4. Tracking System
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ANOVA | Analysis of variance |
ASA | Auditory selective attention |
AT | Attention transition |
C | Congruency |
CTC | Cross-talk cancellation |
ER | Error rate |
FB | Front–back condition |
G | General presence |
GR | Experiment group |
HMD | Head-mounted display |
HpTF | Headphone transfer function |
HRTF | Head-related transfer function |
IHTA | Institute for Hearing Technology and Acoustics, RWTH Aachen University |
INV | Involvement |
IPQ | iGroup Presence Questionnaire |
LR | Left–right condition |
Next | Next-to condition |
REAL | Experienced realism |
RT | Reaction time |
SP | Spatial presence |
SSQ | Simulator Sickness Questionnaire |
TD-PC | Target–distractor position combination |
VA | Virtual acoustics |
VR | Virtual reality |
References
- Cherry, E.C. Some Experiments on the Recognition of Speech, with One and with Two Ears. J. Acoust. Soc. Am. 1953, 25, 975–979. [Google Scholar] [CrossRef]
- Broadbent, D. Perception and Communication; Pergamon Press: London, UK, 1958. [Google Scholar] [CrossRef] [Green Version]
- Deutsch, J.A.; Deutsch, D. Attention: Some theoretical considerations. Psychol. Rev. 1963, 1, 80–90. [Google Scholar] [CrossRef] [PubMed]
- Treisman, A.M. Strategies and models of selective attention. Psychol. Rev. 1969, 3, 282–299. [Google Scholar] [CrossRef] [PubMed]
- Moray, N. Attention in Dichotic Listening: Affective Cues and the Influence of Instructions. Q. J. Exp. Psychol. 1959, 11, 56–60. [Google Scholar] [CrossRef]
- Wood, N.; Cowan, N. The cocktail party phenomenon revisited: How frequent are attention shifts to one’s name in an irrelevant auditory channel? J. Exp. Psychol. Learn. Mem. Cogn. 1995, 21, 255. [Google Scholar] [CrossRef]
- Bronkhorst, A.W. The cocktail-party problem revisited: Early processing and selection of multi-talker speech. Atten. Percept. Psychophys. 2015, 77, 1465–1487. [Google Scholar] [CrossRef] [Green Version]
- Murphy, S.; Spence, C.; Dalton, P. Auditory perceptual load: A review. Hear. Res. 2017, 352, 40–48. [Google Scholar] [CrossRef]
- Koch, I.; Lawo, V.; Fels, J.; Vorländer, M. Switching in the cocktail party: Exploring intentional control of auditory selective attention. J. Exp. Psychol. Hum. Percept. Perform. 2011, 37, 1140. [Google Scholar] [CrossRef]
- Fels, J.; Oberem, J.; Koch, I. Examining auditory selective attention in realistic, natural environments with an optimized paradigm. In Proceedings of the Meetings on Acoustics 22 ICA, Buenos Aires, Argentina, 5–9 September 2016; Volume 28, p. 050001. [Google Scholar] [CrossRef]
- Oberem, J.; Lawo, V.; Koch, I.; Fels, J. Intentional switching in auditory selective attention: Exploring different binaural reproduction methods in an anechoic chamber. Acta Acust. United Acust. 2014, 100, 1139–1148. [Google Scholar] [CrossRef]
- Oberem, J.; Seibold, J.; Koch, I.; Fels, J. Intentional switching in auditory selective attention: Exploring attention shifts with different reverberation times. Hear. Res. 2018, 359, 32–39. [Google Scholar] [CrossRef]
- Oberem, J.; Koch, I.; Fels, J. Intentional switching in auditory selective attention: Exploring age-related effects in a spatial setup requiring speech perception. Acta Psychol. 2017, 177, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Doyle, A.B. Listening to distraction: A developmental study of selective attention. J. Exp. Child Psychol. 1973, 15, 100–115. [Google Scholar] [CrossRef] [PubMed]
- Jones, P.R.; Moore, D.R.; Amitay, S. Development of Auditory Selective Attention: Why Children Struggle to Hear in Noisy Environments. Dev. Psychol. 2015, 51, 353–369. [Google Scholar] [CrossRef] [PubMed]
- Peng, A.; Kirkham, N.Z.; Mareschal, D. Task switching costs in preschool children and adults. J. Exp. Child Psychol. 2018, 172, 59–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Litovsky, R. Chapter 3—Development of the auditory system. In The Human Auditory System; Handbook of Clinical Neurology; Aminoff, M.J., Boller, F., Swaab, D.F., Eds.; Elsevier: Amsterdam, The Netherlands, 2015; Volume 129, pp. 55–72. [Google Scholar] [CrossRef] [Green Version]
- Loh, K.; Fintor, E.; Nolden, S.; Fels, J. Children’s intentional switching of auditory selectiveattention in spatial and noisy acoustic environmentsin comparison to adults. Dev. Psychol. 2022, 58, 69–82. [Google Scholar] [CrossRef] [PubMed]
- Klatte, M.; Bergström, K.; Lachmann, T. Does noise affect learning? A short review on noise effects on cognitive performance in children. Front. Psychol. 2013, 4, 578. [Google Scholar] [CrossRef] [Green Version]
- Rizzo, A.; Buckwalter, J.; Bowerly, T.; van der Zaag, C.; Humphrey, L.; Neumann, U.; Chua, C.; Kyriakakis, C.; Rooyen, A.; Sisemore, D. The Virtual Classroom: A Virtual Reality Environment for the Assessment and Rehabilitation of Attention Deficits. CyberPsychology Behav. 2000, 3, 483–499. [Google Scholar] [CrossRef]
- Lugrin, J.L.; Latoschik, M.E.; Habel, M.; Roth, D.; Seufert, C.; Grafe, S. Breaking Bad Behaviors: A New Tool for Learning Classroom Management Using Virtual Reality. Front. ICT 2016, 3, 26. [Google Scholar] [CrossRef] [Green Version]
- Wan, B.; Wang, Q.; Su, K.; Dong, C.; Song, W.; Pang, M. Measuring the Impacts of Virtual Reality Games on Cognitive Ability Using EEG Signals and Game Performance Data. IEEE Access 2021, 9, 18326–18344. [Google Scholar] [CrossRef]
- Redlinger, E.; Glas, B.; Rong, Y. Enhanced Cognitive Training Using Virtual Reality: Examining a Memory Task Modified for Use in Virtual Environments. In Proceedings of the 2021 5th International Conference on Artificial Intelligence and Virtual Reality (AIVR), Kumamoto, Japan, 23–25 July 2021; Association for Computing Machinery: New York, NY, USA, 2021; pp. 1–8. [Google Scholar] [CrossRef]
- Schoeffler, M.; Gernert, J.L.; Neumayer, M.; Westphal, S.; Herre, J. On the Validity of Virtual Reality-Based Auditory Experiments: A Case Study about Ratings of the Overall Listening Experience. Virtual Real. 2015, 19, 181–200. [Google Scholar] [CrossRef]
- Redlinger, E.; Glas, B.; Rong, Y. Impact of screen size on cognitive training task performance: An HMD study. Int. J. Psychophysiol. 2021, 166, 166–173. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Anguera, J.A.; Javed, S.V.; Khan, M.A.; Wang, G.; Gazzaley, A. Enhanced Attention Using Head-mounted Virtual Reality. J. Cogn. Neurosci. 2020, 32, 1438–1454. [Google Scholar] [CrossRef] [PubMed]
- Magosso, E.; De Crescenzio, F.; Ricci, G.; Piastra, S.; Ursino, M. EEG alpha power is modulated by attentional changes during cognitive tasks and virtual reality immersion. Comput. Intell. Neurosci. 2019, 2019, 7051079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Makransky, G.; Terkildsen, T.S.; Mayer, R.E. Adding immersive virtual reality to a science lab simulation causes more presence but less learning. Learn. Instr. 2019, 60, 225–236. [Google Scholar] [CrossRef]
- Lumsden, J.; Edwards, E.A.; Lawrence, N.S.; Coyle, D.; Munafò, M.R. Gamification of Cognitive Assessment and Cognitive Training: A Systematic Review of Applications and Efficacy. JMIR Serious Games 2016, 4, e11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hasenbein, L.; Stark, P.; Trautwein, U.; Queiroz, A.C.M.; Bailenson, J.; Hahn, J.U.; Göllner, R. Learning with simulated virtual classmates: Effects of social-related configurations on students’ visual attention and learning experiences in an immersive virtual reality classroom. Comput. Hum. Behav. 2022, 133, 107282. [Google Scholar] [CrossRef]
- Facebook Technologies, LLC. Oculucs Safety Center. Available online: https://www.oculus.com/safety-center/ (accessed on 12 July 2022).
- MacLachlan, C.; Howland, H.C. Normal values and standard deviations for pupil diameter and interpupillary distance in subjects aged 1 month to 19 years. Ophthalmic Phsyiological Opt. 2002, 22, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Bozkir, E.; Stark, P.; Gao, H.; Hasenbein, L.; Hahn, J.U.; Kasneci, E.; Göllner, R. Exploiting Object-of-Interest Information to Understand Attention in VR Classrooms. In Proceedings of the 2021 IEEE Virtual Reality and 3D User Interfaces (VR), Lisboa, Portugal, 27 March–1 April 2021; pp. 597–605. [Google Scholar] [CrossRef]
- Coleman, B.; Marion, S.; Rizzo, A.; Turnbull, J.; Nolty, A. Virtual Reality Assessment of Classroom—Related Attention: An Ecologically Relevant Approach to Evaluating the Effectiveness of Working Memory Training. Front. Psychol. 2019, 10, 1851. [Google Scholar] [CrossRef] [Green Version]
- Wilson, C.J.; Soranzo, A. The use of virtual reality in psychology: A case study in visual perception. Comput. Math. Methods Med. 2015, 2015, 151702. [Google Scholar] [CrossRef] [Green Version]
- Banire, B.; Thani, D.A.; Qaraqe, M.; Mansoor, B. A systematic review: Attention assessment of virtual reality based intervention for learning in children with autism spectrum disorder. In Proceedings of the 2017 7th IEEE International Conference on Control System, Computing and Engineering (ICCSCE), Penang, Malaysia, 24–26 November 2017; pp. 97–103. [Google Scholar] [CrossRef]
- Bashiri, A.; Ghazisaeedi, M.; Shahmoradi, L. The opportunities of virtual reality in the rehabilitation of children with attention deficit hyperactivity disorder: A literature review. Korean J. Pediatr. 2017, 11, 337–343. [Google Scholar] [CrossRef]
- Rizzo, A.; Koenig, S.T. Is clinical virtual reality ready for primetime? Neuropsychology 2017, 31, 877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Medical Association. Declaration of Helsinki - Ethical Principles for Medical Research Involving human Subjects. 2013. Available online: https://www.wma.net/policies-post/wma-declaration-of-helsinki-ethical-principles-for-medical-research-involving-human-subjects/ (accessed on 30 September 2022).
- Kennedy, R.S.; Lane, N.E.; Berbaum, K.S.; Lilienthal, M.G. Simulator Sickness Questionnaire: An Enhanced Method for Quantifying Simulator Sickness. Int. J. Aviat. Psychol. 1993, 3, 203–220. [Google Scholar] [CrossRef]
- Schubert, T. The sense of presence in virtual environments: A three-component scale measuring spatial presence, involvement, and realness. Z. Medien. 2003, 15, 69–71. [Google Scholar] [CrossRef]
- Hösch, A. Simulator Sickness in Fahrsimulationsumgebungen—Drei Studien zu Human Factors. Ph.D. Thesis, Technische Universität Ilmenau, Ilmenau, Germany, 2018. [Google Scholar]
- Balk, S.; Bertola, M.; Inman, V. Simulator Sickness Questionnaire: Twenty Years Later. In Driving Assesment Conference; University of Iowa: Iowa City, IA, USA, 2013; pp. 257–263. [Google Scholar] [CrossRef]
- Bimberg, P.; Weissker, T.; Kulik, A. On the Usage of the Simulator Sickness Questionnaire for Virtual Reality Research. In Proceedings of the 2020 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW), Atlanta, GA, USA, 22–26 March 2020; pp. 464–467. [Google Scholar] [CrossRef]
- Reimers, C.; Loh, K.; Leist, L.; Fremerey, S.; Raake, A.; Klatte, M.; Fels, M. Examining Auditory Selective Attention in a Classroom Setting using Audiovisual Virtual Reality. In Proceedings of the Fortschritte der Akustik: DAGA 2021; Deutsche Gesellschaft für Akustik e.V. (DEGA), Vienna, Austria, 15–18 August 2021; pp. 1340–1343. [Google Scholar] [CrossRef]
- Loh, K.; Hoog, A.; Bernhard, C.; Mayer, L.; Fels, J. Child-appropriate experiment on auditory selective attention in a virtual acoustic environment. In Proceedings of the Fortschritte der Akustik: DAGA 2020. Deutsche Gesellschaft für Akustik e.V. (DEGA), Hanover, Germany, 16–19 March 2020; pp. 76–79. [Google Scholar]
- World Health Organization. Report of the Informal Working Group on Prevention of Deafness and Hearing Impairment Programme Planning, Geneva, 18–21 June 1991. Available online: https://apps.who.int/iris/handle/10665/58839 (accessed on 30 September 2022).
- AURITEC. audiometer ear3.0. Available online: https://www.auritec.de/en/audiometer/ear30.html (accessed on 12 July 2022).
- Snellen, H. Probebuchstaben zur Bestimmung der Sehschärfe; Van De Weijer: Utrecht, The Netherlands, 1862. [Google Scholar]
- Ishihara, S. The Series of Plates Designed as a Test for Color Deficiency; Kanehara Trading Inc.: Tokyo, Japan, 2009. [Google Scholar]
- Audacity Team. Audacity(R): Free Audio Editor and Recorder [Computer application]. Version 3.0.0. Available online: https://audacityteam.org/ (accessed on 30 September 2022).
- European Broadcasting Union. R128-2020: Loudness Normalisation and Permitted Maximum Level of Audio Signals. Technical report. 2020. Available online: https://tech.ebu.ch/publications/r128/ (accessed on 12 July 2022).
- Institute for Hearing Technology and Acoustics, RWTH Aachen University. Virtual Acoustics—A real-time auralization framework for scientific research. Available online: http://virtualacoustics.de/VA/ (accessed on 12 July 2022).
- Schmitz, A. Ein neues digitales Kunstkopfmesssystem (a new digital measurement system for artificial heads). Acoustica 1995, 4, 416–420. [Google Scholar]
- Bomhardt, R.; Fels, J. Analytical Interaural Time Difference Model for the Individualization of Arbitrary Head-Related Impulse Responses. In Proceedings of the Audio Engineering Society Convention 137. Audio Engineering Society Convention 137; Audio Engineering Society, 2014. Available online: http://www.aes.org/e-lib/browse.cfm?elib=17454 (accessed on 18 July 2022).
- Oberem, J.; Seibold, J.; Koch, I.; Fels, J. Exploring influences on auditory selective attention by a static and a dynamic binaural reproduction. Fortschritte Der Akust. Daga 2017, 2017, 1154–1155. [Google Scholar]
- Masiero, B.; Fels, J. Perceptually Robust Headphone Equalization for Binaural Reproduction. In Proceedings of the Audio Engineering Society Convention 130; Audio Engineering Society, 2011. Available online: http://www.aes.org/e-lib/browse.cfm?elib=15855 (accessed on 18 July 2022).
- Dietrich, P.; Guski, M.; Pollow, M.; Müller-Trapet, M.; Masiero, B.; Scharrer, R.; Vorlaender, M. ITA-Toolbox—An Open Source MATLAB Toolbox for Acousticians. In Proceedings of the Fortschritte der Akustik: DAGA 2012. Deutsche Gesellschaft für Akustik e.V. (DEGA), Darmstadt, Germany, 19–22 March 2012. [Google Scholar]
- Breuer, C.; Loh, K.; Fels, J. Auditory Selective Attention Switch in a Virtual Reality Classroom Environment (1.0.0) [Data set]. Online at Zenodo. 2022. Available online: https://doi.org/10.5281/zenodo.7248832 (accessed on 25 October 2022).
- Trimble Inc. SketchUp 3D Design Software. Available online: https://www.sketchup.com/ (accessed on 18 July 2022).
- Schröder, D.; Vorländer, M. RAVEN: A real-time framework for the auralization of interactive virtual environments. In Proceedings of the Forum Acusticum, Aalborg, Denmark, 27 June–1 July 2011; pp. 1541–1546. [Google Scholar]
- Unity Technologies. Unity 2019 Long-Term Support Release. Available online: https://unity.com/releases/2019-lts (accessed on 18 July 2022).
- Fisher, R.A. On the probable error of a coefficient of correlation deduced from a small sample. Metron 1921, 1, 3–32. [Google Scholar]
- Field, A. Discovering Statistics Using SPSS, 3rd ed.; SAGE Publications Ltd.: Los Angeles, CA, USA; London, UK; New Delhi, India; Singapore; Washinton, DC, USA, 2009. [Google Scholar]
- Kemp, B.J. Reaction time of young and elderly subjects in relation to perceptual deprivation and signal-on versus signal-off conditions. Dev. Psychol. 1973, 8, 268–272. [Google Scholar] [CrossRef]
- Shelton, J.; Kumar, G. Comparison between Auditory and Visual Simple Reaction Times. Neurosci. Med. 2010, 1, 30–32. [Google Scholar] [CrossRef] [Green Version]
- Jain, A.; Bansal, R.; Kumar, A.; Singh, K.D. A comparative study of visual and auditory reaction times on the basis of gender and physical activity levels of medical first year students. Int. J. Appl. Basic Med Res. 2015, 5, 124–127. [Google Scholar] [CrossRef] [Green Version]
- Lau, E.; Phillips, C.; Poeppel, D. A cortical network for semantics: (de)constructing the N400. Nat. Rev. Neurosci. 2008, 9, 920–933. [Google Scholar] [CrossRef]
- Moyer, R.; Landauer, T. Time required for Judgements of Numerical Inequality. Nature 1967, 215, 1519–1520. [Google Scholar] [CrossRef] [PubMed]
- Kaimara, P.; Oikonomou, A.; Deliyannis, I. Could virtual reality applications pose real risks to children and adolescents? A systematic review of ethical issues and concerns. Virtual Real. 2021, 26, 697–735. [Google Scholar] [CrossRef] [PubMed]
- Oberem, J.; Richter, J.G.; Setzer, D.; Seibold, J.; Koch, I.; Fels, J. Experiments on localization accuracy with non-individual and individual HRTFs comparing static and dynamic reproduction methods. bioRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Schwind, V.; Knierim, P.; Haas, N.; Henze, N. Using presence questionnaires in virtual reality. In Proceedings of the the 2019 CHI Conference on Human Factors in Computing Systems, Glasgow Scotland, UK, 4–9 May 2019; pp. 1–12. [Google Scholar] [CrossRef]
- Madary, M.; Metzinger, T. Recommendations for Good Scientific Practice and the Consumers of VR-Technology. Front. Robot. AI 2016, 3, 3. [Google Scholar] [CrossRef] [Green Version]
- Slater, M. Beyond Speculation About the Ethics of Virtual Reality: The Need for Empirical Results. Front. Virtual Real. 2021, 2, 687609. [Google Scholar] [CrossRef]
- Segovia, K.Y.; Bailenson, J.N. Virtually True: Children’s Acquisition of False Memories in Virtual Reality. Media Psychol. 2009, 12, 371–393. [Google Scholar] [CrossRef]
- Niehorster, D.C.; Li, L.; Lappe, M. The Accuracy and Precision of Position and Orientation Tracking in the HTC Vive Virtual Reality System for Scientific Research. i-Perception 2017, 8, 2041669517708205. [Google Scholar] [CrossRef]
- NaturalPoint, Inc. OptiTrack—Motion Capture System. Available online: http://xxx.lanl.gov/abs/https://optitrack.com/ (accessed on 22 September 2022).
Within-Group Variable | Reaction Time | Error Rate | ||||||
---|---|---|---|---|---|---|---|---|
GR | (1,43) | 0.323 | 0.573 | 0.007 | (1,43) | 5.259 | 0.027 | 0.109 |
AT | (1,43) | 15.762 | <0.001 | 0.268 | (1,43) | 0.037 | 0.848 | 0.001 |
C | (1,43) | 32.016 | <0.001 | 0.427 | (1,43) | 263.320 | <0.001 | 0.860 |
TD-PC | (1.1,48.6) | 44.942 | <0.001 | 0.682 | (1.5,64.4) | 142.817 | <0.001 | 0.769 |
AT × GR | (1,43) | 2.088 | 0.156 | 0.046 | (1,43) | 0.026 | 0.873 | 0.001 |
AT × C | (1,43) | 1.501 | 0.227 | 0.034 | (1,43) | 0.677 | 0.415 | 0.015 |
AT × TD-PC | (1.5,65.2) | 3.104 | 0.065 | 0.067 | (1.7,74.6) | 1.227 | 0.295 | 0.028 |
C × GR | (1,43) | 0.279 | 0.600 | 0.006 | (1,43) | 7.492 | 0.009 | 0.148 |
C × TD-PC | (1.7,73.0) | 23.014 | <0.001 | 0.349 | (2,86) | 170.319 | <0.001 | 0.798 |
TD-PC × GR | (2,86) | 2.135 | 0.124 | 0.047 | (2,86) | 1.804 | 0.171 | 0.040 |
AT × C × GR | (1,43) | 1.293 | 0.262 | 0.029 | (1,43) | 0.016 | 0.898 | <0.001 |
AT × TD-PC × GR | (2,86) | 0.254 | 0.776 | 0.006 | (2,86) | 0.733 | 0.483 | 0.017 |
C × TD-PC × GR | (2,86) | 0.120 | 0.887 | 0.003 | (2,86) | 1.917 | 0.153 | 0.043 |
AT × C × TD-PC | (1.5,65.6) | 2.306 | 0.120 | 0.051 | (1.7,71.3) | 0.775 | 0.443 | 0.018 |
AT × C × TD-PC × GR | (2,86) | 0.269 | 0.764 | 0.006 | (2,86) | 0.306 | 0.737 | 0.007 |
Mean | SD | Min | Max | ||
---|---|---|---|---|---|
Start | |||||
Nausea | 11.4 | 16.8 | 0.00 | 66.8 | |
Oculomotor | 28.2 | 16.2 | 0.00 | 68.2 | |
Disorientation | 65.0 | 39.9 | 13.9 | 181.0 | |
Total | 35.8 | 21.3 | 3.70 | 86.0 | |
End | |||||
Nausea | 20.9 | 19.7 | 0.00 | 76.3 | |
Oculomotor | 34.7 | 20.7 | 7.58 | 75.8 | |
Disorientation | 86.8 | 49.3 | 13.9 | 194.9 | |
Total | 48.6 | 27.5 | 7.48 | 108.5 | |
Difference (End-Start) | |||||
Nausea | 9.54 | 11.8 | −9.54 | 38.1 | |
Oculomotor | 6.50 | 13.1 | −15.2 | 45.5 | |
Disorientation | 21.9 | 34.3 | −41.8 | 111.4 | |
Total | 12.8 | 18.0 | −18.7 | 59.8 |
Mean | SD | Min | Max | |
---|---|---|---|---|
G | 3.43 | 1.43 | 0 | 6 |
SP | 3.88 | 1.01 | 1.8 | 5.4 |
INV | 3.79 | 1.28 | 1.5 | 5.75 |
REAL | 2.15 | 0.71 | 1 | 3.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Breuer, C.; Loh, K.; Leist, L.; Fremerey, S.; Raake, A.; Klatte, M.; Fels, J. Examining the Auditory Selective Attention Switch in a Child-Suited Virtual Reality Classroom Environment. Int. J. Environ. Res. Public Health 2022, 19, 16569. https://doi.org/10.3390/ijerph192416569
Breuer C, Loh K, Leist L, Fremerey S, Raake A, Klatte M, Fels J. Examining the Auditory Selective Attention Switch in a Child-Suited Virtual Reality Classroom Environment. International Journal of Environmental Research and Public Health. 2022; 19(24):16569. https://doi.org/10.3390/ijerph192416569
Chicago/Turabian StyleBreuer, Carolin, Karin Loh, Larissa Leist, Stephan Fremerey, Alexander Raake, Maria Klatte, and Janina Fels. 2022. "Examining the Auditory Selective Attention Switch in a Child-Suited Virtual Reality Classroom Environment" International Journal of Environmental Research and Public Health 19, no. 24: 16569. https://doi.org/10.3390/ijerph192416569
APA StyleBreuer, C., Loh, K., Leist, L., Fremerey, S., Raake, A., Klatte, M., & Fels, J. (2022). Examining the Auditory Selective Attention Switch in a Child-Suited Virtual Reality Classroom Environment. International Journal of Environmental Research and Public Health, 19(24), 16569. https://doi.org/10.3390/ijerph192416569