Freshwater as a Sustainable Resource and Generator of Secondary Resources in the 21st Century: Stressors, Threats, Risks, Management and Protection Strategies, and Conservation Approaches
Abstract
:1. Introduction and Background
2. Water Basics and Natural Cycle
3. Freshwater Roles in Human Cultures and Civilizations
4. Water a Biosphere Cornerstone
5. Climate as a Hydrosphere Game Changer, a Freshwater Perspective
6. Human-Induced Stressors’ Effects on Freshwater Ecosystem Changes
6.1. Pollution
6.2. Habitat Fragmentation, Contraction, Destruction, and Loss
6.2.1. Habitat Fragmentation and Loss in Lotic Systems
6.2.2. Habitat Fragmentation and Loss—Freshwater Wetlands
7. The Unsustainable Exploitation/Overexploitation of Freshwater Ecosystem Biological Resources
8. Invasive Species, Parasites, and Disease Issues in Freshwater Systems
9. Freshwater Ecosystem Vegetation Issues
10. War and Water
11. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Maruyama, S.; Ikoma, M.; Genda, H.; Hirose, K.; Yokohama, T.; Santosh, M. The naked planet earth: Most essential pre-requisite for the origin and evolution of life. Geosci. Front. 2013, 4, 141–165. [Google Scholar] [CrossRef] [Green Version]
- Goncharuk, W.; Goncharuk, V.V. Water is everywhere. It holds everything a key to understanding the universe. D. I. Mendeleev’s law is the prototype of the universe constitution. J. Water Chem. Technol. 2019, 41, 341–346. [Google Scholar] [CrossRef]
- NOOA National Oceanic and Atmospheric Administration, National Weather Service. Learning Lesson: Water, Water Everywhere. Available online: https://www.weather.gov/jetstream/ll_water (accessed on 11 August 2021).
- Longo, S.B.; York, R. Structural Influences on Water Withdrawals: An Exploratory Macro-Comparative Analysis. Hum. Ecol. Rev. 2009, 16, 75–83. Available online: http://www.jstor.org/stable/24707738 (accessed on 27 August 2022).
- Ehrlich, P.R.; Ehrlich, A.H. The Population Bomb Revisited. Electron. J. Sustain. Dev. 2009, 1, 63–71. [Google Scholar]
- Boretti, A.; Rosa, L. Reassessing the projections of the World Water Development Report. NPJ Clean Water 2019, 2, 15. [Google Scholar] [CrossRef] [Green Version]
- IPCC Science Report: Climate Change Unequivocal, Human Influence at Least 95% Certain. Available online: https://ec.europa.eu/clima/news-your-voice/news/ipcc-science-report-climate-change-unequivocal-human-influence-least-95-certain-2013-09-27_en (accessed on 27 September 2013).
- Ficke, A.D.; Myrick, C.A.; Hansen, L.J. Potential impacts of global climate change on freshwater fisheries. Rev. Fish Biol. Fish. 2007, 17, 581–613. [Google Scholar] [CrossRef]
- Vorosmarty, C.J.; Green, P.; Salisbury, J.; Lammers, R.B. Globalwater resources: Vulnerability from climate change and population growth. Science 2000, 289, 284–288. [Google Scholar] [CrossRef] [Green Version]
- Curtean-Bănăduc, A.; Bănăduc, D. Aspecte privind impactul deversării apelor uzate asupra sistemelor ecologice lotice receptoare. In Apa Resursă Fundamentală a Dezvoltării Durabile. Metode şi Tehnici Neconvenţionale de Epurare şi Tratare a Apei; Oprean, L., Ed.; Editura Academiei Române: Bucharest, Romania, 2012; Volume 2, pp. 393–416. [Google Scholar]
- Burcea, A. Adding the Mureş River Basin (Transylvania, Romania) to the List of Hotspots with High Contamination with Pharmaceuticals. Sustainability 2020, 12, 10197. [Google Scholar] [CrossRef]
- Reece, J.B. Campbell Biology; Pearson: Boston, MA, USA, 2013; p. 48. [Google Scholar]
- Merriam-Webster’s Ninth New Collegiate Dictionary; Merriam-webster+ Inc.: Springfield, MA, USA, 1983; p. 1563. ISBN 9780877795087.
- Boeraş, I.; Burcea, A.; Coman, C.; Bănăduc, D.; Curtean-Bănăduc, A. Bacterial Microbiomes in the Sediments of Lotic Systems Ecologic Drivers and Role: A Case Study from the Mureş River, Transylvania, Romania. Water 2021, 13, 3518. [Google Scholar] [CrossRef]
- Gomes, R.; Levison, H.F.; Tsiganis, K.; Morbidelli, A. Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets. Nature 2005, 435, 466–469. [Google Scholar] [CrossRef] [Green Version]
- Budde, G.; Burkhardt, C.; Kleine, T. Molybdenum isotopic evidence for the late accretion of outer Solar System material to Earth. Nat. Astron. 2019, 3, 736–741. [Google Scholar] [CrossRef]
- The World Factbook; Central Intelligence Agency: Langley, VA, USA, 2016.
- USGS Science for a Changing World, Water, the Universal Solvent. Available online: https://www.usgs.gov/special-topics/water-science-school/science/water-universal-solvent2017 (accessed on 3 September 2019).
- Hubbart, J.A. Integrated Water Resources Research: Advancements in Understanding to Improve Future Sustainability. Water 2020, 12, 2208. [Google Scholar] [CrossRef]
- National Oceanic and Atmospheric Administration NOAA, Water Cycle. 2021. Available online: https://www.noaa.gov/education/resource-collections/freshwater/water-cycle (accessed on 20 June 2020).
- Water for People, Water for Life: A Joint Report by the Twenty-Three UN Agencies Concerned with Freshwater; UNESCO World Water Assessment Programme: Perugia, Italy, 2003; 576p, ISBN 978-92-3-103881-5.
- UNESCO World Water Assessment Programme. Water for People, Water for Life: The United Nations World Water Development Report; A Joint Report by the Twenty-Three UN Agencies Concerned with Freshwater; UNESCO: Paris, France, 2003; p. 575. ISBN 978-92-3-103881-8. [Google Scholar]
- UNESCO Office Bangkok and Regional Bureau for Education in Asia and the Pacific. Water Ethics and Water Resource Management; UNESCO: Paris, France, 2011; p. 84. ISBN 978-92-9223-359-4. [Google Scholar]
- UN Environment Programme Annual Report 2021. Available online: https://www.unep.org/resources/annual-report-2021 (accessed on 18 July 2021).
- The IUCN Red List of Threatened Species 2022. Available online: https://www.iucnredlist.org/ (accessed on 11 August 2022).
- Meissner, R.; Mampane, P. Global Freshwater Quantity, Quality and Distribution. Future Chall. Provid. High-Qual. Water 2001, 1, 1–5. [Google Scholar]
- Wolf, A.T.; Natharius, J.A.; Danielson, J.J.; Ward, B.S.; Pender, J.K. International river basins f the world. Int. J. Water Resour. Dev. 1999, 15, 387–427. [Google Scholar] [CrossRef]
- OECD Report 2021. Available online: https://www.oecd.org/water/reports-full-list.htm (accessed on 12 October 2021).
- OECD Report 2022. Available online: https://www.oecd.org/water/reports-full-list.htm (accessed on 26 September 2022).
- Delli Priscoli, J.; Wolf, A.T. Managing and Transforming Water Conflicts; Cambridge University Press: Cambridge, UK, 2009; pp. 211–214. [Google Scholar]
- Gleick, P.H. Water Conflict Chronology the World’s Water, 2008–2009. The Biennial Report on Freshwater Resources; Island Press: Washington, DC, USA, 2009; pp. 151–196. [Google Scholar]
- Priscoli, J.D. Water and civilization: Using history to reframe water policy debates and to build a new ecological realism. Water Policy 2000, 1, 623–636. [Google Scholar] [CrossRef]
- Hosseiny, S.H.; Bozorg-Haddad, O.; Bocchiola, D. Water, culture, civilization, and history. In Economical, Political, and Social Issues in Water Resources; Elsevier: Amsterdam, The Netherlands, 2021; pp. 189–216. [Google Scholar]
- Cannon, T.; Schipper, L. (Eds.) Disasters Report 2014—Focus on Culture and Risk; International Federation of Red Cross and Red Crescent Societies: Paris, France, 2014. [Google Scholar]
- Available online: https://www.worldwater.org/conflict/list (accessed on 2 September 2022).
- Juuti, P.; Katko, T.; Vuorinen, H. Environmental History of Water—Global Views on Community Water Supply and Sanitation; IWA Publishing: London, UK, 2007; ISBN 978-1-84339-110-4. [Google Scholar]
- Vanneuville, W.; Werner, B.; Kjeldsen, T.; Miller, J.; Kossida, M.; Tekidou, A.; Kakawa, A.; Crouzet, P. Water Resources in Europe in the Context of Vulnerability, European Environment Agency Report no 11/2012, State of Water Assessment; European Environment Agency: Copenhagen, Denmark, 2012; ISBN 978-92-9213-344-3. [Google Scholar] [CrossRef]
- Barinova, S. Influence of Macro-Environmental Climatic Factors on Distribution and Productivity of Freshwater Algae. Int. J. Environ. Sci. Nat. Res. 2017, 4, 555629. [Google Scholar] [CrossRef]
- Barinova, S. On the Classification of Water Quality from an Ecological Point of View. Int. J. Environ. Sci. Nat. Resour. 2017, 2, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Sládeček, V. System of water quality from the biological point of view. Arch. Hydrobiol. 1973, 7, 1–218. [Google Scholar]
- EPA. Available online: https://archive.epa.gov/emergencies/content/learning/web/html/freshwat.html (accessed on 17 August 2022).
- Commission Decision (EU). 2018/229 of 12 February 2018 establishing, pursuant to Directive 2000/60/EC of the European Parliament and of the Council, the values of the Member State monitoring system classifications as a result of the intercalibration exercise and repealing Commission Decision 2013/480/EU. Off. J. Eur. Union 2018, 1–91. [Google Scholar]
- Annex 1. Data Sheets for Surface Water Quality Standards. Available online: https://www.oecd.org/env/outreach/38205662.pdf (accessed on 22 August 2022).
- Barinova, S. Empirical Model of the Functioning of Aquatic Ecosystems. Int. J. Oceanogr. Aquac. 2017, 1, 1–9. [Google Scholar] [CrossRef]
- Barinova, S. Essential and practical bioindication methods and systems for the water quality assessment. Int. J. Environ. Sci. Nat. Resour. 2017, 2, 555588. [Google Scholar] [CrossRef]
- Water Quality Standards Regulatory Revisions Final Rule Fact Sheet. Available online: https://www.epa.gov/system/files/documents/2022-01/wqs-regulatory-revisions-final-rule-factsheet.pdf (accessed on 3 September 2022).
- Poikane, S.; Kelly, M.; Cantonati, M. Benthic algal assessment of ecological status in European lakes and rivers: Challenges and opportunities. Sci. Total Environ. 2016, 568, 603–613. [Google Scholar] [CrossRef] [PubMed]
- Burger, J. Bioindicators: Types, development, and use in ecological assessment and research. Environ. Bioindic. 2006, 1, 22–39. [Google Scholar] [CrossRef]
- UNDP UNEP/IPCS 1999; UNDP UNEP/IPCS 2006. Training Module No. 3. Section C. In Ecological Risk Assessment; The Edinburgh Centre for Toxicology: Scotland, UK, 2006; p. 222.
- Predicting Aquatic Ecosystems Quality Using Artificial Neural Networks (PAEQUANN). Available online: http://www.eugris.info/DisplayProject.asp?P=4220 (accessed on 15 October 2021).
- Park, Y.-S.; Baehr, C.; Larocque, G.R.; Sánchez-Pérez, J.M.; Sauvage, S. Ecological modelling for ecosystem sustainability. Ecol. Model. 2015, 306, 1–5. [Google Scholar] [CrossRef]
- Grimm, V. Ten years of individual-based modelling in ecology: What have we learned and what could we learn in the future? Ecol. Model. 1999, 115, 129–148. [Google Scholar] [CrossRef]
- Echelpoel, W.V.; Boets, P.; Landuyt, D.; Gobeyn, S.; Everaert, G.; Bennetsen, E.; Mouton, A.; Goethals, P.L.M. Chapter 6. Species distribution models for sustainable ecosystem management. Dev. Environ. Model. 2015, 27, 115–134. [Google Scholar]
- Grimm, V.; Berger, U.; DeAngelis, D.L.; Polhill, J.G.; Giske, J.; Railsback, S.F. The ODD protocol: A review and first update. Ecol. Model. 2010, 221, 2760–2768. [Google Scholar] [CrossRef] [Green Version]
- Joy, M.K.; Death, R.G. Predictive modelling and spatial mapping of freshwater fish and decapod assemblages using GIS and neural networks. Freshw. Biol. 2004, 49, 1036–1052. [Google Scholar] [CrossRef]
- Chon, T.-S. Self-Organizing Maps applied to ecological sciences. Ecol. Inform. 2011, 6, 50–61. [Google Scholar] [CrossRef]
- Dedić, A.; Gerhardt, A.; Kelly, M.G.; Stanić-Koštroman, S.; Šiljeg, M.; Kalamujić Stroil, B.; Kamberović, J.; Mateljak, Z.; Pešić, V.; Vučković, I.; et al. Innovative methods and approaches for WFD: Ideas to fill knowledge gaps in science and policy. Water Solut. 2020, 3, 30–42. [Google Scholar]
- Barinova, S. Ecological Mapping in Application to Aquatic Ecosystems BioIndication: Problems and Methods. Int. J. Environ. Sci. Nat. Resour. 2017, 3, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Protasov, A.; Barinova, S.; Novoselova, T.; Sylaieva, A. The Aquatic Organisms Diversity, Community Structure, and Environmental Conditions. Diversity 2019, 11, 190. [Google Scholar] [CrossRef] [Green Version]
- Barinova, S.; Fahima, T. The Development of the a World Database of Freshwater Algae-Indicators. J. Environ. Ecol. 2017, 8, 1–7. Available online: http://www.macrothink.org/journal/index.php/jee/article/view/11228/8981 (accessed on 27 September 2022). [CrossRef] [Green Version]
- Barinova, S.; Dyadichko, V. Zoological water quality indicators for assessment of organic pollution and trophic status of continental water bodies. Transylv. Rev. Syst. Ecol. Res. 24.3 Wetl. Divers. 2022; in press. [Google Scholar] [CrossRef]
- Barinova, S. Plants, mosses, charophytes, protozoan, and bacteria water quality indicators for assessment of organic pollution and trophic status of continental water bodies. Transylv. Rev. Syst. Ecol. Res. 23.3 Wetl. Divers. 2021, 23, 17–36. [Google Scholar] [CrossRef]
- Barinova, S.S. On the need to develop regional databases for the bioindicators of the state of water bodies. Aquat. Bioresour. Environ. 2020, 3, 7–16. Available online: http://hdl.handle.net/1834/17350 (accessed on 25 September 2021). [CrossRef] [PubMed]
- IUCN 2012 Standards and Petitions Committee. Guidelines for Using the IUCN Red List Categories and Criteria. Version 15. Prepared by the Standards and Petitions Committee. 2022. Available online: https://www.iucnredlist.org/documents/RedListGuidelines.pdf (accessed on 22 September 2022).
- Available online: https://www.britannica.com/science/hydrosphere (accessed on 27 September 2022).
- Available online: https://www.britannica.com/science/climate-meteorology (accessed on 29 September 2022).
- Agenţia Europeană de Mediu (AEM). Available online: https://www.eea.europa.eu/ro/themes/climate/about-climate-change (accessed on 23 July 2021).
- Treut, L.; Somerville, R.; Cubasch, U.; Ding, Y.; Mauritzen, C.; Mokssit, A.; Peterson, T.; Prather, M.; Qin, D.; Manning, M.; et al. Historical overview of climate change science. Earth 2007, 43, 93–127. [Google Scholar]
- Heaviside, C. Understanding the impacts of climate change on health to better manage adaptation action. Atmosphere 2019, 10, 119. [Google Scholar] [CrossRef] [Green Version]
- Murray, V.; Waite, T.D. Climate change and human health—The links to the UN landmark agreement on disaster risk reduction. Atmosphere 2018, 9, 231. [Google Scholar] [CrossRef] [Green Version]
- Mann, M.E.; Bradley, R.S.; Hughes, M.K. Global-scale temperature patterns and climate forcing over the past six centuries. Nature 1998, 392, 779–787. [Google Scholar] [CrossRef]
- Bates, B.C.; Kundzewicz, Z.W.; Wu, S.; Palutikof, J.P. Climate change and water. In Technical Paper of the Intergovernmental Panel on Climate Change; IPCC Secretariat: Geneva, Switzerland, 2008. [Google Scholar]
- United Nations Secretary-General Meetings Coverage and Press Releases. Available online: https://www.un.org/press/en/2021/sgsm20847.doc.htm (accessed on 28 August 2021).
- Fenoglio, S.; Bo, T.; Cucco, M.; Mercalli, L.; Malacarne, G. Effects of global climate change on freshwater biota: A review with special emphasis on the Italian situation. Ital. J. Zool. 2010, 77, 374–383. [Google Scholar] [CrossRef]
- Svenning, J.C.; Kerr, J.; Rahbek, C. Predicting future shifts in species diversity. Ecography 2009, 32, 3–4. [Google Scholar] [CrossRef]
- Bănăduc, D.; Sas, A.; Cianfaglione, K.; Barinova, S.; Curtean-Bănăduc, A. The role of aquatic refuge habitats for fish, and threats in the context of climate change and human impact, during seasonal hydrological drought in the Saxon Villages area (Transylvania, Romania). Atmosphere 2021, 12, 1209. [Google Scholar] [CrossRef]
- Jenkins, M. Prospects for biodiversity. Science 2003, 302, 1175–1177. [Google Scholar] [CrossRef] [PubMed]
- Cianfaglione, K.; Chelli, S.; Campetella, G.; Wellstein, C.; Cerivellini, M.; Ballelli, S.; Lucarini, D.; Canullo, R.; Jentsch, A. European grasslands gradient and the resilience to extreme climate events: The SIGNAL project in Italy. In Climate Gradients and Biodiversity in Mountains of Italy; Pedrotti, F., Ed.; Springer: Berlin/Heidelberg, Germany, 2008; p. 175. [Google Scholar]
- Brönnimann, S. Early twentieth-century warming. Nature 2009, 2, 735–736. [Google Scholar] [CrossRef]
- Lloyd-Hughes, B. The impracticality of a universal drought definition. Theor. Appl. Climatol. 2014, 117, 607–611. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Summary for policymakers. In Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation; Field, C.B., Barros, V.R., Stocker, D., Qin, D.J., Dokken, K.L., Ebi, M.D., Mastrandrea, K.J., Mach, G.-K., Plattner, S.K., Allen, M.T., et al., Eds.; Cambridge University Press: Cambridge, UK, 2012; pp. 3–21. [Google Scholar]
- Stahle, D.W. Anthropogenic megadrought, human-driven climate warming worsens an otherwise moderate drought. Science 2020, 368, 238–239. [Google Scholar] [CrossRef]
- Wilhite, D.A.; Pulwarty, R.S. Drought as hazard: Understanding the natural and social context. In Drought and Water Crises; Wilhite, D.A., Pulwarty, R.S., Eds.; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Levitus, S.; Antonov, J.I.; Wang, J.; Delworth, T.L.; Dixon, K.W.; Broccoli, A.J. Anthropogenic warming of Earth’s climate system. Science 2001, 292, 267–270. [Google Scholar] [CrossRef]
- Gerald, A.M.; Washington, W.M.; Arblaster, J.M.; Hu, A.; Teng, H.; Tebaldi, C.; Sanderson, B.N.; Lamarque, J.-F.; Conley, A.J.; Strand, W.G.; et al. Climate system response to external forcings and climate change projections in CCSM4. J. Clim. 2007, 25, 361–368. [Google Scholar]
- Bănăduc, D.; Marić, S.; Cianfaglione, K.; Afanasyev, S.; Somogy, D.; Nyeste, K.; Antal, L.; Koščo, J.; Ćaleta, M.; Wanzenböck, J.; et al. Stepping stone wetlands, last sanctuaries for European Mudminnow: How can the human impact, climate change, and non-native species drive a fish to the edge of extinction? Sustainability 2022, 14, 13493. [Google Scholar] [CrossRef]
- Singh, V.; Barinova, S. Cladocera from the sediment of high Arctic lake in Svalbard. Transylv. Rev. Syst. Ecol. Res. 2021, 23, 17–24. [Google Scholar] [CrossRef]
- Cianfaglione, K. On the potential of Quercus pubescens willd and other species of Quercus in the camerino syncline (central Italy). In Warm-Temperate Deciduous Forests around the Northern Hemisphere; Box, E., Fujiwara, K., Eds.; Springer: Cham, Switzerland, 2015. [Google Scholar]
- Arthington, A. The challenge of providing environmental flow rules to sustain river ecosystems. Ecol. Appl. 2006, 16, 1311–1318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bunn, S.E.; Arthington, A.H. Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environ. Manag. 2002, 30, 492–507. [Google Scholar] [CrossRef] [Green Version]
- Kuriqi, A.; Pinheiro, A.N.; Sordo-Ward, A.; Garrote, L. Influence of hydrological based environmental flow methods on flow alteration and energy production in a run-of-river hydropower plant. J. Clean. Prod. 2019, 232, 1028–1042. [Google Scholar] [CrossRef]
- Kuriqi, A.; Pinheiro, A.N.; Sordo-Ward, A.; Bejarano, M.D.; Garrote, L. Ecological impacts of run-of-river hydropower plants—Current status and future prospects on the brink of energy transition. Renew. Sustain. Energy Rev. 2021, 142, 110833. [Google Scholar] [CrossRef]
- Available online: https://www.britannica.com/science/pollution-environment (accessed on 7 July 2022).
- Curtean-Bănăduc, A.; Irimia-Hurdugan, O.; Bănăduc, D. Management of the persistent organic pollutants—Strategies, programs, regulations, actions. In Transfer of Knowledge in the Field of Persistent Organic Pollutants—Good Practices; Lucian Blaga University of Sibiu: Sibiu, Romania, 2017; pp. 77–89. ISBN 978-606-12-1441-6. [Google Scholar]
- Stockholm Convention 2001. Available online: http://www.pops.int/TheConvention/Overview/tabid/3351/Default.aspx (accessed on 25 October 2022).
- Assessment and Monitoring of Persistent Organic Pollutants in Lotic Ecosystems Methodological Guide. Available online: https://www.researchgate.net/publication/316587766_Assessment_and_monitoring_of_persistent_organic_pollutants_in_lotic_ecosystems_methodological_guide (accessed on 16 August 2022).
- Jacob, J.; Cherian, J. Review of Environmental and Human Exposure to Persistent Organic Pollutants. Asian Soc. Sci. 2013, 9, 107–120. [Google Scholar] [CrossRef]
- El-Shahawi, M.S.; Hamza, A.; Bashammakh, A.S.; Al-Saggaf, W.T. An overview on the accumulation, distribution, transformations, toxicity and analytical methods for themonitoring of persistent organic pollutants. Talanta 2010, 80, 1587–1597. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, A.P. Polychlorinated Biphenyl (PCB) congenerconcentrations in aquatic birds. Case study: Ilha Grande Bay, Riode Janeiro, Brazil. An. Acad. Bras. Ciências. 2013, 85, 1379–1388. [Google Scholar] [CrossRef]
- Curtean-Bănăduc, A.; Lyche, J.L.; Berg, V.; Burcea, A.; Bănăduc, D. Assessment and monitoring of persistent organic pollutants in lotic ecosystems. In Methodological Guide; “Lucian Blaga” University of Sibiu: Sibiu, Romania, 2016; p. 117. ISBN 978-606-12-1414-3. [Google Scholar]
- Curtean-Bănăduc, A.; Burcea, A.; Bănăduc, D. Persistent organic pollutants general considerations. In The Impact of Persistent Organic Pollutants on Freshwater Ecosystems and Human Health; Curtean-Bănăduc, A., Ed.; “Lucian Blaga” University of Sibiu: Sibiu, Romania, 2016; pp. 7–24. 152p, ISBN 978-606-12-1412-9. [Google Scholar]
- Ene, A.M. Persistent organic pollutants (pops): Environmentpersistence and bioaccumulation potential. Sci. Bull. Mircea. Cel. Batran. Nav. Acad. 2014, 17, 7. [Google Scholar]
- Wania, F.; Mackay, D. Peer Reviewed: Tracking the Distribution of Persistent Organic Pollutants. Environ. Sci. Technol. 1996, 30, 390A–396A. [Google Scholar] [CrossRef]
- Deribe, E.; Rosseland, B.O.; Borgstrøm, R.; Salbu, B.; Gebremariam, Z.; Dadebo, E.; Norli, H.R.; Eklo, O.M. Bioaccumulation ofpersistent organic pollutants (POPs) in fish species from LakeKoka, Ethiopia: The influence of lipid content and trophicposition. Sci. Total Environ. 2011, 410, 136–145. [Google Scholar] [CrossRef]
- Hong, S.; Lee, K.; Hou, S.; Hur, S.D.; Ren, J.; Burn, L.J.; Rosman, K.J.R.; Barbante, C.; Boutron, C.F. An 800-Year Record of Atmospheric As, Mo, Sn, and Sb in Central Asia in High-AltitudeIce Cores from Mt. Qomolangma (Everest), Himalayas. Environ. Sci. Technol. 2009, 43, 8060–8065. [Google Scholar] [CrossRef] [PubMed]
- Shumbula, P.; Maswanganyi, C.; Shumbula, N. Type, Sources, Methods and Treatment of Organic Pollutants in Wastewater. In Persistent Organic Pollutants (POPs)-Monitoring, Impact and Treatment; BoD—Books on Demand: Norderstedt, Germany, 2021; pp. 1–90. [Google Scholar] [CrossRef]
- Ashraf, M.A. Persistent organic pollutants (POPs): A globalissue, a global challenge. Environ. Sci. Pollut. Res. 2015, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Curtean-Bănăduc, A.; Burcea, A.; Mihuţ, C.-M.; Bănăduc, D. The benthic trophic corner stone compartment in POPs transfer from abiotic environment to higher trophic levels—Trichoptera and Ephemeroptera pre-alert indicator role. Water 2021, 13, 1778. [Google Scholar] [CrossRef]
- Curtean-Bănăduc, A.; Burcea, A.; Mihuţ, C.-M.; Berg, V.; Lyche, J.L.; Bănăduc, D. Bioaccumulation of persistent organic pollutants in the gonads of Barbus barbus (Linnaeus, 1758). Ecotoxicol. Environ. Saf. 2020, 201, 110852. [Google Scholar] [CrossRef]
- Moza Iasmina, M.; Curtean-Bănăduc, A.; Burcea, A.; Bănăduc, D. Persistent organic pollutants in continental aquatic ecosystems. In The Impact of Persistent Organic Pollutants on Freshwater Ecosystems and Human Health; Curtean-Bănăduc, A., Ed.; “Lucian Blaga” University of Sibiu: Sibiu, Romania, 2016; pp. 93–106. 152p, ISBN 978-606-12-1411-2. [Google Scholar]
- Polder, A.; Gabrielsen, G.W.; Odland, J.Ø.; Savinova, T.N.; Tkachev, A.; Løken, K.B.; Skaare, J.U. Spatial and temporal changes ofchlorinated pesticides, PCBs, dioxins (PCDDs/PCDFs) and brominated flame retardants in human breast milk from Northern Russia. Sci. Total Environ. 2008, 391, 41–54. [Google Scholar] [CrossRef]
- Zhou, R.; Zhu, L.; Kong, Q. Persistent chlorinated pesticidesin fish species from Qiantang River in East China. Chemosphere 2007, 68, 838–847. [Google Scholar] [CrossRef]
- Berg, V.; Zerihun, M.A.; Jørgensen, A.; Lie, E.; Dale, O.B.; Skaare, J.U.; Lyche, J.L. High prevalence of infections and pathologicalchanges in burbot (Lota lota) from a polluted lake (Lake Mjøsa, Norway). Chemosphere 2013, 90, 1711–1718. [Google Scholar] [CrossRef]
- Curtean-Bănăduc, A.; Bănăduc, D.; Burcea, A.; Berg, V.; Lyche Jan, L.; Gheorghe Laurian, M. Persistent organic pollutants in Mureş watershed. In The Impact of Persistent Organic Pollutants on Freshwater Ecosystems and Human Health; Curtean-Bănăduc, A., Ed.; “Lucian Blaga” University of Sibiu: Sibiu, Romania, 2016; pp. 117–152. 152p, ISBN 978-606-12-1411-2. [Google Scholar]
- Fahrig, L. Effects of Habitat Fragmentation on Biodiversity. Annu. Rev. Ecol. Evol. Syst. 2002, 34, 487–515. [Google Scholar] [CrossRef] [Green Version]
- Primack, R.B. Essentials of Conservation Biology. In Habitat Destruction, 4th ed.; Sinauer Associates: Sunderland, MA, USA, 2006; pp. 177–188. [Google Scholar]
- Angelier, E. Ecology of Streams and Rivers; Science Publishers Inc.: Enfield, NH, USA, 2003. [Google Scholar]
- Finalayson, C.M.; D’Cruz, R. Ecosystems and Human Well-Being: Current State and Trends, Chapter 20 Inland Water Systems; Island press: Washington, DC, USA, 2005; pp. 553–578. [Google Scholar]
- Simić, V.; Bănăduc, D.; Curtean-Bănăduc, A.; Petrović, A.; Veličković, T.; Stojković-Piperac, M.; Simić, S. Assessment of the ecological sustainability of river basins based on the modified the ESHIPPOfish model on the example of the Velika Morava basin (Serbia, Central Balkans). Front. Environ. Sci. 2022, 10, 952692. [Google Scholar] [CrossRef]
- Zare-Shahraki, M.; Ebrahimi-Dorche, E.; Bruder, A.; Flotermersch, J.; Blocksom, K.; Bănăduc, D. Fish species composition, distribution and community structure in relation to environmental variation in a semi-arid mountainous river basin, Iran. Water 2022, 14, 2226. [Google Scholar] [CrossRef]
- Bănăduc, D.; Curtean-Bănăduc, A.; Cianfaglione, K.; Akeroyd, J.R.; Cioca, L.-I. Proposed environmental risk management elements in a Carpathian valley basin, within the Roşia Montană European historical mining area. Int. J. Environ. Res. Public Health 2021, 18, 4565. [Google Scholar] [CrossRef] [PubMed]
- Popa, G.-O.; Dudu, A.; Bănăduc, D.; Curtean-Bănăduc, A.; Burcea, A.; Ureche, D.; Nechifor, R.; Georgescu, S.E.; Costache, M. Genetic analysis of populations of brown trout (Salmo trutta L.) from the Romanian Carpathians. Aquat. Living Resour. 2019, 32, 23. [Google Scholar] [CrossRef]
- Curtean-Bănăduc, A.; Marić, S.; Gabor, G.; Didenko, A.; Rey Planellas, S.; Bănăduc, D. Hucho hucho (Linnaeus, 1758): Last natural viable population in the Eastern Carpathians—Conservation elements. Turk. J. Zool. 2019, 43, 215–223. [Google Scholar] [CrossRef]
- Curtean-Bănăduc, A.; Didenko, A.; Guti, G.; Bănăduc, D. Telestes souffia (Risso, 1827) species conservation at the eastern limit of range—Vişeu River basin, Romania. Appl. Ecol. Environ. Res. 2018, 16, 291–303. [Google Scholar] [CrossRef]
- Popa, G.-O.; Curtean-Bănăduc, A.; Bănăduc, D.; Florescu, I.E.; Burcea, A.; Dudu, A.; Georgescu, S.E.; Costache, M. Molecular markers reveal reduced genetic diversity in Romanian populations of Brown Trout, Salmo trutta L., 1758 (Salmonidae). Acta Zool. Bulg. 2016, 68, 399–406. [Google Scholar]
- Curtean-Bănăduc, A.; Olosutean, H.; Bănăduc, D. Influence of environmental variables on the structure and diversity of ephemeropteran communities: A case study of the Timiş River, Romania. Acta Zool. Bulg. 2016, 68, 215–224. [Google Scholar]
- Bănăduc, D.; Oprean, L.; Bogdan, A. Fish species of community interest management issues in Natura 2000 site Sighişoara-Târnava Mare (Transylvania, Romania). Rev. Econ. 2011, 3, 23–27. [Google Scholar]
- Curtean-Bănăduc, A.; Bănăduc, D.; Bucşa, C. Watersheds Management (Transylvania/Romania): Implications, risks, solutions. In Strategies to Enhance Environmental Security in Transition Countries, NATO Science for Peace and Security Series C-Environmental Security; Springer: Berlin/Heidelberg, Germany, 2007; pp. 225–238. ISBN 978-1-4020-5994-0. [Google Scholar] [CrossRef]
- Protasov, A.; Tomchenko, O.; Novoselova, T.; Barinova, S.; Singh, S.K.; Gromova, Y.; Curtean-Bănăduc, A. Remote sensing and in-situ approach for investigation of pelagic communities in the reservoirs of the electrical power complex. Front. Biosci. 2022, 27, 221. [Google Scholar] [CrossRef]
- Afanasyev, S.; Lyashenko, A.; Iarochevitch, A.; Lietytska, O.; Zorina-Sakharova, K.; Marushevska, O. Pressures and Impacts on Ecological Status of Surface Water Bodies in Ukrainian Part of the Danube River Basin. Geobot. Stud. 2020, 327, 3582020. [Google Scholar]
- Voicu, R.; Miles, K.; Sotir, R.; Curtean-Bănăduc, A.; Bănăduc, D. Proposing a technical solution for restoring longitudinal connectivity in the Brădeni/Retiş accumulation area of Hârtibaciu River. Transylv. Rev. Syst. Ecol. Res. 2016, 18, 57–58. [Google Scholar] [CrossRef]
- Curtean-Bănăduc, A.; Pauli, S.; Bănăduc, D.; Didenko, A.; Sender, J.; Marić, S.; Del Monte, P.; Khoshnood, Z.; Zakeyuddin, S. Environmental aspects of implementation of micro hydro power plants—A short review. Transylv. Rev. Syst. Ecol. Res. 2015, 179–198. [Google Scholar] [CrossRef] [Green Version]
- Bănăduc, D.; Curtean-Bănăduc, A. Management elements proposal for Sutla Natura 2000 Site. Transylv. Rev. Syst. Ecol. Res. 2015, 17, 143–152. [Google Scholar] [CrossRef] [Green Version]
- Bănăduc Doru Curtean-Bănăduc, A.; Lenhardt, M.; Guti, G. Porţile de Fier/Iron Gates” Gorges area (Danube) fish fauna. Transylv. Rev. Syst. Ecol. Res. 2014, 16, 171–196. [Google Scholar]
- Gracey, E.; Verones, F. Impacts from hydropower production on biodiversity in an LCA framework—Review and recomandations. Int. J. Life Cycle Assess. 2016, 21, 412–428. [Google Scholar] [CrossRef]
- Macklin, M.G.; Lewin, J. The rivers of civilization. Quat. Sci. Rev. 2015, 114, 228–244. [Google Scholar] [CrossRef]
- Naiman, R.J.; Latterell, J.J.; Pettit, N.E.; Olden, J.D. Flow variability and the biophysical vitality of river systems. Comptes Rendus Geosci. 2008, 340, 629–643. [Google Scholar] [CrossRef] [Green Version]
- Bănăduc, D.; Voicu, R.; Voicu, L.; Baki AB, M.; Serrano, I.; Barb, C.; Curtean-Bănăduc, A. Coştei hydrographic diversion node, a historical environment quality and biological resources accessibility game changer (Middle Danube Watershed); anthropogenic induced problems and sustainable solutions—An ichthyologic perspective. Transylv. Rev. Syst. Ecol. Res. 2021, 21, 87–114. [Google Scholar]
- Bănăduc, D.; Voicu, R.; Curtean-Bănăduc, A. Sediments as factor in the fate of the threatened endemic fish species Romanichthys valsanicola Dumitrescu, Bănărescu and Stoica, 1957 (Vâlsan River basin, Danube Basin). Transylv. Rev. Syst. Ecol. Res. 2020, 22, 15–30. [Google Scholar] [CrossRef]
- Curtean-Bănăduc, A.; Voicu, R.; Marić, S.; Baumgartner, L.J.; Dobre, A.; Bănăduc, D. Technical solutions to mitigate shifting fish fauna zones impacted by long term habitat degradation in the Bistra Mărului River—A case study. Transylv. Rev. Syst. Ecol. Res. 2018, 20, 75–114. [Google Scholar]
- Burghelea, B.; Bănăduc, D.; Angela-Curtean, B. The Timiş River basin (Banat, Romania) natural and anthropogenic elements. A study case—Management chalenges. Transylv. Rev. Syst. Ecol. Res. 2013, 15, 173. [Google Scholar] [CrossRef]
- Novoselova, T.; Barinova, S.; Protasov, A. Phytoplankton Indicators in the Assessment of the Ecological Status of Two Reservoirs with Different Purposes in Southern Ukraine. Ecologies 2022, 3, 96–119. [Google Scholar] [CrossRef]
- Costea, G.; Push, M.; Bănăduc, D.; Cosmoiu, D.; Bănăduc, A. A review of hydropower plants in Romania: Distribution, current knowledge, and their effects on fish in headwater streams. Renew. Sustain. Energy Rev. 2021, 145, 111003. [Google Scholar] [CrossRef]
- WWDR (World Water Development Report). In Water for People, Water for Life; United Nations World Water Assessment Programme: Paris, France, 2003; 575p, Available online: www.unesco.org/water/wwap/wwdr/index.shtmlcheckpublisher—Web (accessed on 12 August 2021).
- Dugan, P.J. (Ed.) Wetland Conservation: A Review of Current Issues and Required Action; IUCN: Gland, Switzerland, 1990; 94p. [Google Scholar]
- Lundqvist, J.; Gleick, P. Comprehensive Assessment of the Freshwater Resources of the World. In Sustaining Our Waters into the 21st Century; Stockholm Environment Institute: Stockholm, Sweden, 2000. [Google Scholar]
- Shanono, N.J. Co-evolutionary Dynamics of Human Behaviour and Water Resource Systems Performance: A Socio-Hydrological Framework. Acad. Lett. 2021, 1191. [Google Scholar] [CrossRef]
- Bănăduc, D.; Cianfaglione, K.; Curtean-Bănăduc, A. (Eds.) Transylvanian Review of Systematical and Ecological Research 23.2. In The Wetlands Diversity; Preface: Sibiu, Romania, 2020. [Google Scholar]
- Mccall, G.; Akpan, A.; Bănăduc, D.; Tran, T.A. The estuarine ecological knowledge network makes progress: International project sites and potential forward. Mar. Technol. Soc. J. 2022, 56, 116–117. [Google Scholar] [CrossRef]
- Bănăduc, D.; Joy, M.; Olosutean, H.; Afanasyev, S.; Curtean-Bănăduc, A. Natural and anthropogenic driving forces as key elements in the Lower Danube Basin—South-Eastern Carpathians—North-Western Black Sea coast area lakes, a broken stepping stones for fish in a climatic change scenario? Environ. Sci. Eur. 2020, 32, 73. [Google Scholar] [CrossRef]
- Bănăduc, D.; Rey, S.; Trichkova, T.; Lenhardt, M.; Curtean-Bănăduc, A. The Lower Danube River—Danube Delta—North West Black Sea: A pivotal area of major interest for the past, present and future of its fish fauna—A short review. Sci. Total Environ. 2016, 545, 137–151. [Google Scholar] [CrossRef]
- Bullock, J.M.; Aronson, J.; Newton, A.C.; Pywell, R.F.; Rey-Benayas, J.M. Restoration of ecosystem services and biodiversity: Conflicts and opportunities. Trends Ecol. Evol. 2011, 26, 541–549. [Google Scholar] [CrossRef]
- Dawson, T.P.; Berry, P.M.; Kampa, E. Climate change impacts on freshwater wetland habitats. J. Nat. Conserv. 2003, 11, 25–30. [Google Scholar] [CrossRef]
- Herbert, E.R.; Boon, P.; Burgin, A.J.; Neubauer, S.C.; Franklin, R.B.; Ardón, M.; Hopfensperger, K.N.; Lamers, L.P.M.; Gell, P. A global perspective on wetland salinization: Ecological consequences of a growing threat to freshwater wetlands. Ecosphere 2015, 6, 206. [Google Scholar] [CrossRef]
- Menotti, F. Wetland Archaeology and beyond: Theory and Practice; Oxford University Press: Oxford, UK, 2012. [Google Scholar]
- Verhoeven, J.T.; Setter, T.L. Agricultural use of wetlands: Opportunities and limitations. Ann. Bot. 2010, 105, 155–163. [Google Scholar] [CrossRef] [Green Version]
- Hudson, B. The urban littoral frontier: Land reclamation in the history of human settlements. In Proceedings of the 14th IPHS Conference Urban Transformation: Controversies, Contrasts and Challenges, İstanbul, Turkey, 12–15 July 2010; Onem, A., Gunay, Z., Ayatac, H., Koramaz, T., Ayranci, I., Zeren, G., Eds.; Urban and Environment Planning and Research Center Istanbul Technical University: Istanbul, Turkey, 2010; Volume 2, pp. 3–10. [Google Scholar]
- Mitsch, W.J.; Hernandez, M.E. Landscape and climate change threats to wetlands of North and Central America. Aquat. Sci. 2013, 75, 133–149. [Google Scholar] [CrossRef]
- Kelly, R.L. Late Holocene great basin prehistory. J. World Prehistory 1997, 11, 1–49. [Google Scholar] [CrossRef] [Green Version]
- Ramsey, M.N.; Rosen, A.M. Wedded to wetlands: Exploring Late Pleistocene plant-use in the Eastern Levant. Quat. Int. 2016, 396, 5–19. [Google Scholar] [CrossRef]
- Salim, S.M. MARSH dwellers of the Euphrates Delta; Routledge: London, UK, 2021. [Google Scholar]
- Available online: https://www.lawinsider.com/dictionary/biological-resources (accessed on 5 May 2021).
- Allan, J.D.; Abell, R.; Hogan, Z.E.B.; Revenga, C.; Taylor, B.W.; Welcomme, R.L.; Winemiller, K. Overfishing of inland waters. Bio Sci. 2005, 55, 1041–1051. [Google Scholar] [CrossRef] [Green Version]
- Brian, E. Freshwater Fisheries Ecology, Inland Fisheries of Tropical Africa, 1st ed.; Craig, J.F., Ed.; Marshall: London, UK, 2016; p. 349. [Google Scholar]
- Welcomme, R.L.; Baird, I.G.; Dudgeon, D.; Halls, A.; Lamberts, D.; Mustaf, M.G. Freshwater Fisheries Ecology, Fisheries of the rivers of Southeast Asia, 1st ed.; Craig, J.F., Ed.; Marshall: London, UK, 2016; p. 363. [Google Scholar]
- Bethesda, M.D. History of inland fisheries management in North America. In Inland Fisheries Management in North America, 2nd ed.; Kohler, C.C., Hubert, W.A., Eds.; American Fisheries Society: Bethesda, MA, USA, 1999; pp. 3–30. [Google Scholar]
- Zhao, Y.; Gozlan, R.E.; Zhang, C. Current state of freshwater fisheries in China. Freshw. Fish. Ecol. 2015, 221–230. [Google Scholar] [CrossRef]
- Welcomme, R. Review of the State of the World Fishery Resources: Inland Fisheries; Food and Agriculture Organization of the United Nations: Rome, Italy, 2011. [Google Scholar]
- Welcomme, R.L.; Cowx, I.G.; Coates, D.; Béné, C.; Funge-Smith, S.; Halls, A.; Lorenzen, K. Inland capture fisheries. Philos. Trans. R. Soc. 2010, B365, 2881–2896. [Google Scholar] [CrossRef] [PubMed]
- Dgebuadze, Y.Y. Fishery and freshwater ecosystems of Russia: Status, trends, research, management and priorities. Freshw. Fish. Ecol. 2015, 120–133. [Google Scholar] [CrossRef]
- Jonsson, B.; Jonsson, N. Ecology of Atlantic Salmon and Brown Trout: Habitat as a Template for Life Histories. Dordrecht; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Jonsson, B.; Jonsson, N. Fennoscandian freshwater fishes: Diversity, use, threats and management. Freshw. Fish. Ecol. 2016, 101–119. [Google Scholar] [CrossRef]
- Nielsen, L.A. Lakes. In Freshwater Fisheries Ecology; Craig, J.F., Ed.; Wiley-Blackwell: Chichester, UK, 1999; pp. 134–150. [Google Scholar]
- Clark, J.H.; McGregor, A.; Mecum, R.D.; Krasnowski, P.; Carroll, A.M. The commercial salmon fishery in Alaska. Alsk. Fish. Res. Bull. 2016, 12, 1–146. [Google Scholar]
- Kroglund, F.; Finstad, B.; Stefansson, S.O.; Nilsen, T.O.; Kristensen, T.; Rosseland, B.O.; Teien, H.-C.; Salbu, B. Exposure to moder-ate acid water and aluminum reduces Atlantic salmon post—Smolt survival. Aquaculture 2007, 273, 360–373. [Google Scholar] [CrossRef]
- Pavlov, D.S.; Dgebuadze, Y.Y.; Evlanov, I.A. Assessment and prevention of natural and anthropogenic impact on fish of the Volga basin. Ecol. Ind. Russ. 2010, 11, 16–23. (In Russian) [Google Scholar]
- Egerton, F.N. History of Ecological Sciences, Part 60: American Great Lakes before 2000. Bull. Ecol. Soc. Am. 2018, 99, 77–136. [Google Scholar] [CrossRef] [Green Version]
- Agostinho, A.A.; Baigún, C.; Okada, E.K.; Catella, A.C.; Fontoura, N.F.; Pompeu, P.S.; Jiménez-Segura, L.F.; Batista, V.S.; Lasso, C.A.; Taphorn, D. Fisheries Ecology in South American River Basins; Marshall: London, UK, 2016; Volume 2016. [Google Scholar]
- Simić, V.; Simić, S.; Stojković Piperac, M.; Petrović, A.; Milošević, D.J. Commercial fish species of inland waters: A model for sustainability assessment and management. Sci. Total Environ. 2014, 497, 642–650. [Google Scholar] [CrossRef]
- Djikanovic, V.; Skoric, S.; Lenhardt, M.; Smederevac-Lalic, M.; Visnjic-Jeftic, Z.; Spasic, S.; Mickovic, B. Review of sterlet (Acipenser ruthenus L. 1758) (Actinopterygii: Acipenseridae) feeding habits in the River Danube, 1694–1852 river km. J. Nat. Hist. 2015, 49, 411–417. [Google Scholar] [CrossRef]
- Available online: https://www.britannica.com/science/invasive-species (accessed on 11 July 2022).
- Bellard, C.; Genovesi, P.; Jeschke, J.M. Global patterns in threats to vertebrates by biological invasions. Proc. R. Soc. B Biol. Sci. 2016, 283, 20152454. [Google Scholar] [CrossRef]
- Anastasiu, P.; Preda, C.; Bănăduc, D.; Cogălniceanu, D. Alien species of European Union concern in Romania. Transylv. Rev. Syst. Ecol. Res. 2017, 19, 93–106. [Google Scholar]
- Bernery, C.; Bellard, C.; Courchamp, F.; Brosse, S.; Gozlan, R.E.; Jarić, I.; Teletchea, F.; Leroy, B. Freshwater Fish Invasions: A Comprehensive Review, Annual Review of Ecology. Evol. Syst. 2022, 53, 427–456. [Google Scholar] [CrossRef]
- Esmaeili, H.R.; Teimori, A.; Owfi, F.; Abbasi, K.; Coad, B.W. Alien and invasive freshwater fish species in Iran: Diversity, environmental impacts and management. Iran. J. Ichthyol. 2015, 1, 61–72. [Google Scholar] [CrossRef]
- Cucherousset, J.; Olden, J.D. Ecological Impacts of Nonnative Freshwater Fishes. Fisheries 2011, 36, 215–230. [Google Scholar] [CrossRef]
- Baxter, C.V.; Fausch, K.D.; Murakami, M.; Chapman, P.L. Invading rainbow trout usurp a terrestrial prey subsidy from nativecharr and reduce their growth and abundance. Oecologia 2007, 153, 461–470. [Google Scholar] [CrossRef]
- Segev, O.; Mangel, M.; Blaustein, L. Deleterious effects by mosquitofish (Gambusia affinis) on the endangered fire salamander (Salamandra infraimmaculata). Anim. Conserv. 2009, 12, 29–37. [Google Scholar] [CrossRef]
- Muhlfeld, C.C.; Kalinowski, S.T.; McMahon, T.E.; Painter, S.; Leary, R.F.; Taper, M.L.; Allendorf, F.W. Hybridization reduces fitness of cutthroat trout in the wild. Biol. Lett. 2009, 5, 328–331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alcaraz, C.; Bisazza, A.; García-Berthou, E. Salinity mediates the competitive interactions between invasive mosquitofish and an endangered fish. Oecologia 2008, 10, 1–11. [Google Scholar] [CrossRef]
- Cucherousset, J.; Aymes, J.C.; Poulet, N.; Santoul, F.; Céréghino, R. Do native brown trout and non-native brook trout interact reproductively? Naturwissenschaften 2008, 95, 647–654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Korsu, K.; Huusko, A.; Muotka, T. Niche characteristics explain the reciprocal invasion success of stream salmonids in different continents. Proc. Natl. Acad. Sci. USA 2007, 104, 9725–9729. [Google Scholar] [CrossRef] [Green Version]
- Curtean-Bănăduc, A.; Bănăduc, D. Trophic elements regarding the non-indigenous Pseudorasbora parva (Schlegel) 1842 fish species spreading success—Olt River Basin, a case study. Rom. J. Bioloy-Zool. 2008, 6, 185–196. [Google Scholar]
- Starling, F.; Lazzaro, X.; Cavalcanti, C.; Moreira, R. Contribution of omnivorous tilapia to eutrophication of a shallow tropical reservoir: Evidence from a fish kill. Freshw. Biol. 2002, 47, 2443–2452. [Google Scholar] [CrossRef]
- Pipalova, I. A review of grass carp use for aquatic weed control and its impact on water bodies. J. Aquat. Plant Manag. 2006, 44, 1–12. [Google Scholar]
- Bourke, P.; Magnan, P.; Rodriguez, M.A. Phenotypic responses of lacustrine brook charr in relation to the intensity of interspecific competition. Evol. Ecol. 1999, 13, 19–31. [Google Scholar] [CrossRef]
- Pinto-Coelho, R.M.; Bezerra-Neto, J.F.; Miranda, F.; Mota, T.G.; Resck, R.; Santos, A.M.; Maia-Barbosa, P.M.; Mello, N.A.S.T.; Marques, M.M.; Campos, M.O.; et al. The inverted trophic cascade in tropical plankton communities: Impacts of exotic fish in the Middle Rio Doce lake district, Minas Gerais, Brazil. Braz. J. Biol. 2008, 68, 1025–1037. [Google Scholar] [CrossRef] [Green Version]
- Taraschewski, H. Hosts and parasites as aliens. J. Helminthol. 2006, 80, 99–128. [Google Scholar] [CrossRef] [PubMed]
- Fu, P.P.; Xiong, F.; Wu, S.G.; Zou, H.; Li, M.; Wang, G.T.; Wen, X.L. Effects of Schyzocotyle acheilognathi (Yamaguti, 1934) infection on the intestinal microbiota, growth and immune reactions of grass carp (Ctenopharyngodon idella). PLoS ONE 2022, 17, e0266766. [Google Scholar] [CrossRef] [PubMed]
- Kuchta, R.; Choudhury, A.; Scholz, T. Asian fish tapeworm: The most successful invasive parasite in freshwaters. Trends Parasitol. 2018, 34, 511–523. [Google Scholar] [CrossRef]
- Hoffman, G.L.; Schubert, G. Some parasites of exotic fishes. In Distribution, Biology and Management of Exotic Fishes; Courtenay, W.R., Stauffer, J.R., Eds.; John Hopkins University Press: Baltimore, MD, USA, 1984; pp. 233–261. [Google Scholar]
- Scott, A.L.; Grizzle, J.M. Pathology of cyprinid fishes caused by Bothriocephalus gowkongensis Yea, 1955 (Cestoda: Pseudophyllidea). J. Fish Dis. 1979, 2, 69–73. [Google Scholar] [CrossRef]
- Hoole, D.; Nisan, H. Ultrastructural studies on intestinal response of carp, Cyprinus carpio L., to the pseudophyllidean tapeworm, Bothriocephalus acheilognathi Yamaguti, 1934. J. Fish Dis. 1994, 7, 623–629. [Google Scholar] [CrossRef]
- Korting, W. Larval development of Bothriocephalus sp. (Cestoda: Pseudophyllidea) from carp (Cyprinus carpio L.) in Germany. J. Fish Biol. 1975, 7, 727–733. [Google Scholar] [CrossRef]
- Arkush, K.D.; Mendoza, L.; Adkison, M.A.; Hedrick, R.P. Observations on the Life Stages of Sphaerothecum destruens n. g., n. sp., a Mesomycetozoean Fish Pathogen Formally Referred to as the Rosette Agent. J. Eukaryot. Microbiol. 2003, 50, 430–438. [Google Scholar] [CrossRef]
- Gozlan, R.E.; St-Hilaire, S.; Feist, S.W.; Martin, P.; Kent, M.L. Disease threat to European fish. Nature 2005, 435, 1046. [Google Scholar] [CrossRef]
- Molnár, K.; Székely, C.; Baska, F. Mass mortality of eel in Lake Balaton due to Anguillicola crassus infection. Bull. Eur. Assoc. Fish Pathol. 1991, 11, 211–212. [Google Scholar]
- Molnár, K.; Baska, F.; Csaba, G.; Glávatis, R.; Székely, C. Pathological and histopathological studies of the swimbladder of eels (Anguilla anguilla) infected by Anguillicola crassus (Nematoda:Dracunculoidea). Dis. Aquat. Org. 1993, 15, 41–50. [Google Scholar] [CrossRef] [Green Version]
- Pace, A.; Dipineto, L.; Aceto, S.; Censullo, M.C.; Valoroso, M.C.; Varriale, L.; Rinaldi, L.; Menna, L.F.; Fioretti, A.; Borrelli, L. Diagnosis of Centrocestus formosanus Infection in Zebrafish (Danio rerio) in Italy: A Window to a New Globalization-Derived Invasive Microorganism. Animals 2020, 10, 456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Francis-Floyd, R.; Gildea, J.; Reed, P.; Klinger, R. Use of Bayluscide (Bayer 73) for Snail Control in Fish Ponds. J. Aquat. Anim. Health 1997, 9, 41–48. [Google Scholar] [CrossRef]
- Mitchell, A.J.; Overstreet, R.M.; Goodwin, A.E.; Brandt, T.M. Spread of an exotic fish-gill trematode: A farreaching and complex problem. Fisheries 2005, 30, 11–16. [Google Scholar] [CrossRef]
- Chai, J.Y.; Sohn, W.M.; Yong, T.S.; Eom, K.S.; Min, D.Y.; Lee, M.Y.; Lim, H.; Insisiengmay, B.; Phommasack, B.; Rim, H.J. Centrocestus formosanus (Heterophyidae): Human Infections and theInfection Source in Lao PDR. J. Parasitol. 2013, 99, 531–536. [Google Scholar] [CrossRef]
- Chai, J.Y.; Sohn, W.M.; Jung, B.K.; Yong, T.S.; Eom, K.S.; Min, D.Y.; Insisiengmay, B.; Insisiengmay, S.; Phommasack, B.; Rim, H.J. Intestinal Helminths Recovered from Humans in Xieng Khouang Province, Lao PDR with a Particular Note on Haplorchis pumilio Infection. Korean J. Parasitol. 2015, 53, 439–445. [Google Scholar] [CrossRef] [PubMed]
- Bravo, S.; Campos, M. Coho Salmon Syndrome in Chile; Fish Health Section, American Fisheries Society Newsletter: Bethesda, MD, USA, 1989; Volume 17. [Google Scholar]
- Cvitanich, J.; Garate, O.; Smith, C.E. Etiological agent in a Chilean coho disease isolated and confirmed by Koch’s postulates. In FHS/AFS Newsletter; American Fisheries Society Newsletter: Bethesda, MD, USA, 1990; Volume 18, pp. 1–2. [Google Scholar]
- The Hyporheic Handbook: A Handbook on the Groundwater-Surface Water Interface and Hyporheic Zone for Environment Managers; Environment Agency: Bristol, UK, 2009; ISBN 978-1-84911-131-7.
- Schaper, J.L.; Posselt, M.; Bouchez, C.; Jaeger, A.; Nuetzmann, G.; Putschew, A.; Singer, G.; Lewandowski, J. Fate of Trace Organic Compounds in the Hyporheic Zone: Influence of Retardation, the Benthic Biolayer, and Organic Carbon. Environ. Sci. Technol. 2019, 53, 4224–4234. [Google Scholar] [CrossRef]
- Riparian Zone/Riparian Vegetation Definition: Principles and Recommendations, Simon Dufour, Patricia Maria Rodriguez-González. April 2019 Project: COST Action CA16208 for Enhancing Management of European Riparian Ecosystems and Services; Riparian Paper Erika + D. Available online: https://www.researchgate.net/publication/332171637_Riparian_zone_Riparian_vegetation_definition_principles_and_recommendations (accessed on 1 September 2022).
- Khan, N.; Jhariya, M.K.; Banerjee, A.; Meena, R.S.; Raj, A.; Yadav, S.K. Chapter 9–Riparian conservation and restoration for ecological sustainability. In Natural Resources Conservation and Advances in Sustainability; Elsevier: Amsterdam, The Netherlands, 2022; pp. 195–216. [Google Scholar] [CrossRef]
- Cianfaglione, K. The Hygrophilous Vegetation of the Sulmona Basin (Abruzzo, Italy); Contribuţii Botanice; University Babeş-Bolyai, Grădina Botanică “Alexandru Borza”: Cluj-Napoca, Romania, 2009; Volume XLIV, pp. 49–56. [Google Scholar]
- Mondal, S.; Patel, P.P. Measuring and Modelling Common Fluvial Hazards in Riparian Zones: A Brief Review of Relevant Concepts and Methods. In Advances in Geographic Information Science Geospatial Technology for Environmental Hazards; Springer: Berlin/Heidelberg, Germany, 2021; pp. 353–389. [Google Scholar] [CrossRef]
- Curtean-Bănăduc, A.; Schneider-Binder, E.; Bănăduc, D. The importance of the riverine ligneous vegetation 2014. In L’importanza Degli Alberi e Del Bosco. Cultura, Scienza e Coscienza del Territorio, Chapter: The importance of the Riverine Ligneous Vegetation for the Danube Basin Lotic Ecosystems; Cianfaglione, K., Ed.; Temi: Trento, Italia, 2014; pp. 187–210. ISBN 978-88-973772-63-9. [Google Scholar]
- Moga, C.I.; Öllerer, K. The importance of the riparian forest habitat forbird species richness in the Târnava Mare Valley (Transylvania, Romania. Transylv. Rev. Syst. Ecol. 2007, 4, 179–186. [Google Scholar]
- Schneider-Binder, E. Riparian vegetation on the left tributaries of the Danube along the "Clisura" cross valley. Transylv. Rev. Syst. Ecol. 2016, 18, 21–38. [Google Scholar] [CrossRef]
- Stella, J.C.; Bendix, J. Multiple Stressors in River Ecosystems, Status, Impacts and Prospects for the Future; Elsevier: Amsterdam, The Netherlands, 2019; pp. 81–110. [Google Scholar] [CrossRef]
- Cianfaglione, K. Plant Landscape and Models of French Atlantic Estuarine Systems. Extended Summary of the Doctoral Thesis. Transylv. Rev. Syst. Ecol. Res. 2021, 23, 15–36. [Google Scholar] [CrossRef]
- Cianfaglione, K. The Variations of Water Level and Influence of Artificial Regulations in Marshy Woodland of Alnus glutinosa in the Peligna Valley (Abruzzo, Central Italy): 4 Years of Investigation; Contribuţii Botanice; University Babeş-Bolyai, Grădina Botanică “Alexandru Borza”: Cluj-Napoca, Romania, 2014; Volume XLIX, pp. 121–127. [Google Scholar]
- Cianfaglione, K.; Bioret, F. Autoecological and Synecological Resilience of Angelica heterocarpa M.J. Lloyd, Observed in the Loire Estuary (France). In Geographi cal Changes in Vegetation and Plant Functional Types; Greller, A.M., Fujiwara, K., Pedrotti, F., Eds.; Geobotany Studies; Springer: Berlin, Germany, 2018; pp. 333–346. [Google Scholar] [CrossRef]
- Bottacci, A. Il TUFF, la gestione attiva dei boschi e le generazioni future. Italia For. Mont. 2018, 73, 207–214. [Google Scholar]
- Searchinger, T.D.; Beringer, T.; Holtsmark, B.; Kammen, D.M.; Lambin, E.F.; Lucht, W.; Raven, P.; Van Ypersele, J.-P. Europe’s renewable energy directive poised to harm global forests. Nat. Commun. 2018, 9, 1–4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lipu. Dossier Fiumi distrutti. Impati Sull’ambiente e la Biodiversità Causati Dalla Distruzione Della Vegetazione Lungo I Corsi d’Acqua Della Toscana; Lipu: Parma, Italy, 2018; pp. 1–107. [Google Scholar]
- Cianfaglione, K.; Pedrotti, F. Italy in the Danube Geography: Territory, Landscape, Environment, Vegetation, Fauna, Culture, Human Management and Outlooks for the Future. In Human Impacts on the Danube Watershed Running Waters Biodiversity in the XXI Century. Geobotany Studies; Bănăduc, D., Curtean-Bănăduc, A., Pedrotti, F., Cianfaglione, K., Akeroyd, J.R., Eds.; Springer: Berlin/Heidelberg, Germany, 2020; pp. 87–118, 437. [Google Scholar] [CrossRef]
- Corpo Forestale dello Stato and Legambiente. Fiumi e Legalità-Monitoraggio sull’illegalità e sullo Stato di Salute dei Fiumi Italiani; Corpo Forestale dello Stato and Legambiente: Rome, Italy, 2007. [Google Scholar]
- ISPRA–Istituto Superiore per la Protezione e la Ricerca Ambientale. Rapporto Nazionale Pesticidi nelle Acque: Dati 2009–2010; Edizione: Treviso, Italy, 2013. [Google Scholar]
- WWF and Univerisity of Vienna. Save the Alpine Rivers; WWF EALP Freshwater: Vienna, Austria, 2014; pp. 1–62. [Google Scholar]
- Sender, J.; Maślanko, W.; Różańska-Boczula, M.; Cianfaglione, K. A new multi-criteria method for the ecological assessment of lakes: A case study from the Transboundary Biosphere Reserve ‘West Polesie’ (Poland). J. Limnol. 2017, 76, 60–74. [Google Scholar] [CrossRef] [Green Version]
- Yeganeh, Y.; Bakhshandeh, E. Iran’s Model of Water Diplomasy to Promote Cooperation and Prevent Conflict Over Transboundary Rivers in Southwest Asia. World Aff. 2022, 185, 331–358. [Google Scholar] [CrossRef]
- Brockley, M. The Environment Weapon: Water in Ancient Mesopotamia. ICE Case Studies 303. 2004. Available online: http://mandalaprojects.com/ice/ice-cases/sumerianwater.htm (accessed on 6 November 2021).
- Cooley, J.K. The War over Water. In Foreign Policy; Slate Group, LLC: Washington, DC, USA, 1984; pp. 3–26, JSTOR. [Google Scholar] [CrossRef]
- Урядoвий кур'єр 2 липня 2022. Available online: https://ukurier.gov.ua/uk/articles/dnipro-nash-rubizh-i-rubikon/ (accessed on 6 November 2021).
- Water: A Military Weapon and Target During Armed Conflict. International Year of FreshWater 2003. Available online: http://mandalaprojects.com/ice/ice-cases/sumerianwater.htm (accessed on 26 November 2002).
- They Flooded They Own Village, and Kept the Russians at Bay. Available online: https://www.nytimes.com/2022/04/27/world/europe/ukraine-russia-war-flood-infrastructure.html (accessed on 7 July 2022).
- Afanasyev, S. Results and perspectives of hydrobiological studies in Ukraine in view of modern challenges. Report at the General meeting of the Department of General Biology within the frames of the Spring Session of General Meeting of National Academy of Sciences of Ukraine, 14.06.2022 Результати та перспективи гідрoбіoлoгічних дoсліджень в Україні на тлі сучасних викликів. Дoпoвідь на Загальних збoрах Відділення Загальнoї Біoлoгії в межах веснянoї сесії Загальних збoрів Націoнальнoї академії наук України, 14 June 2022. Available online: https://www.nas.gov.ua/UA/Messages/Pages/View.aspx?MessageID=9343 (accessed on 7 July 2022).
- Bilous, O.; Afanasyev, S.; Lietytska, O.; Manturova, O.; Polishchuk, O.; Nezbrytska, I.; Pohorielova, M.; Barinova, S. Preliminary assessment of ecological status of the Siversky Donets river basin (Ukraine) based on phytoplankton parameters and its verification by other biological data. Water 2021, 13, 3368. [Google Scholar] [CrossRef]
- Economic Valuation of “Wet” Ecosystems. Available online: https://iwlearn.net/valuation/overview (accessed on 7 July 2022).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bănăduc, D.; Simić, V.; Cianfaglione, K.; Barinova, S.; Afanasyev, S.; Öktener, A.; McCall, G.; Simić, S.; Curtean-Bănăduc, A. Freshwater as a Sustainable Resource and Generator of Secondary Resources in the 21st Century: Stressors, Threats, Risks, Management and Protection Strategies, and Conservation Approaches. Int. J. Environ. Res. Public Health 2022, 19, 16570. https://doi.org/10.3390/ijerph192416570
Bănăduc D, Simić V, Cianfaglione K, Barinova S, Afanasyev S, Öktener A, McCall G, Simić S, Curtean-Bănăduc A. Freshwater as a Sustainable Resource and Generator of Secondary Resources in the 21st Century: Stressors, Threats, Risks, Management and Protection Strategies, and Conservation Approaches. International Journal of Environmental Research and Public Health. 2022; 19(24):16570. https://doi.org/10.3390/ijerph192416570
Chicago/Turabian StyleBănăduc, Doru, Vladica Simić, Kevin Cianfaglione, Sophia Barinova, Sergey Afanasyev, Ahmet Öktener, Grant McCall, Snežana Simić, and Angela Curtean-Bănăduc. 2022. "Freshwater as a Sustainable Resource and Generator of Secondary Resources in the 21st Century: Stressors, Threats, Risks, Management and Protection Strategies, and Conservation Approaches" International Journal of Environmental Research and Public Health 19, no. 24: 16570. https://doi.org/10.3390/ijerph192416570
APA StyleBănăduc, D., Simić, V., Cianfaglione, K., Barinova, S., Afanasyev, S., Öktener, A., McCall, G., Simić, S., & Curtean-Bănăduc, A. (2022). Freshwater as a Sustainable Resource and Generator of Secondary Resources in the 21st Century: Stressors, Threats, Risks, Management and Protection Strategies, and Conservation Approaches. International Journal of Environmental Research and Public Health, 19(24), 16570. https://doi.org/10.3390/ijerph192416570