High Prevalence of Iron Deficiency Exhibited in Internationally Competitive, Non-Professional Female Endurance Athletes—A Case Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Training Diaries
2.3. Blood Sampling
2.4. Resting Metabolic Rate (RMR)
2.5. Body Composition Analysis
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Badenhorst, C.E.; Goto, K.; O’Brien, W.J.; Sims, S. Iron status in athletic females, a shift in perspective on an old paradigm. J. Sports Sci. 2021, 39, 1565–1575. [Google Scholar] [CrossRef] [PubMed]
- Nabhan, D.; Bielko, S.; Sinex, J.A.; Surhoff, K.; Moreau, W.J.; Schumacher, Y.O.; Bahr, R.; Chapman, R.F. Serum ferritin distribution in elite athletes. J. Sci. Med. Sport 2019, 23, 554–558. [Google Scholar] [CrossRef] [PubMed]
- Pate, R.R.; Miller, B.J.; Davis, J.M.; Slentz, C.A.; Klingshirn, L.A. Iron status of female runners. Int. J. Sport Nutr. Exerc. Metab. 1993, 3, 222–231. [Google Scholar] [CrossRef] [PubMed]
- Chatard, J.-C.; Mujika, I.; Guy, C.; Lacour, J.-R. Anaemia and Iron Deficiency in Athletes. Sports Med. 1999, 27, 229–240. [Google Scholar] [CrossRef] [PubMed]
- Capra, S. Nutrient Reference Values for Australia and New Zealand: Including Recommended Dietary Intakes; Commonwealth of Australia: Canberra, Australia, 2006. [Google Scholar]
- Peeling, P. Exercise as a mediator of hepcidin activity in athletes. Eur. J. Appl. Physiol. 2010, 110, 877–883. [Google Scholar] [CrossRef]
- Hinton, P.S. Iron and the endurance athlete. Appl. Physiol. Nutr. Metab. 2014, 39, 1012–1018. [Google Scholar] [CrossRef]
- DellaValle, D.M.; Haas, J.D. Impact of Iron Depletion Without Anemia on Performance in Trained Endurance Athletes at the Beginning of a Training Season: A Study of Female Collegiate Rowers. Int. J. Sport Nutr. Exerc. Metab. 2011, 21, 501–506. [Google Scholar] [CrossRef]
- Mccormick, R.; Moretti, D.; Mckay, A.K.A.; Laarakkers, C.M.; Vanswelm, R.; Trinder, D.; Cox, G.R.; Zimmerman, M.B.; Sim, M.; Goodman, C.; et al. The Impact of Morning versus Afternoon Exercise on Iron Absorption in Athletes. Med. Sci. Sports Exerc. 2019, 51, 2147–2155. [Google Scholar] [CrossRef]
- McCormick, R.; Sim, M.; Dawson, B.; Peeling, P. Refining Treatment Strategies for Iron Deficient Athletes. Sports Med. 2020, 50, 2111–2123. [Google Scholar] [CrossRef]
- Rietjens, G.J.W.M.; Kuipers, H.; Hartgens, F.; Keizer, H.A. Red Blood Cell Profile of Elite Olympic Distance Triathletes. A Three-Year Follow-Up. Endoscopy 2002, 23, 391–396. [Google Scholar] [CrossRef]
- Billat, V.L.; Demarle, A.; Slawinski, J.; Paiva, M.; Koralsztein, J.P. Physical and training characteristics of top-class marathon runners. Med. Sci. Sports Exerc. 2001, 33, 2089–2097. [Google Scholar] [CrossRef]
- Wardenaar, F.C.; Ceelen, I.J.; Van Dijk, J.-W.; Hangelbroek, R.W.; Van Roy, L.; Van der Pouw, B.; Witkamp, R.F. Nutritional supplement use by Dutch elite and sub-elite athletes: Does receiving dietary counseling make a difference? Int. J. Sport Nutr. Exerc. Metab. 2017, 27, 32–42. [Google Scholar] [CrossRef]
- Beard, J.L. Iron Biology in Immune Function, Muscle Metabolism and Neuronal Functioning. J. Nutr. 2001, 131, 568S–580S. [Google Scholar] [CrossRef] [Green Version]
- Nazem, T.G.; Ackerman, K.E. The Female Athlete Triad. Sport. Health A Multidiscip. Approach 2012, 4, 302–311. [Google Scholar] [CrossRef] [Green Version]
- Petkus, D.L.; Murray-Kolb, L.E.; De Souza, M.J. The Unexplored Crossroads of the Female Athlete Triad and Iron Deficiency: A Narrative Review. Sports Med. 2017, 47, 1721–1737. [Google Scholar] [CrossRef] [PubMed]
- Clénin, G.; Cordes, M.; Huber, A.; Schumacher, Y.O.; Noack, P.; Scales, J.; Kriemler, S. Iron deficiency in sports-definition, influence on performance and therapy. Swiss Med. Wkly. 2015, 145, w14196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fallon, K.E. Utility of Hematological and Iron-Related Screening in Elite Athletes. Clin. J. Sport Med. 2004, 14, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Govus, A.D.; Garvican-Lewis, L.A.; Abbiss, C.; Peeling, P.; Gore, C.J. Pre-Altitude Serum Ferritin Levels and Daily Oral Iron Supplement Dose Mediate Iron Parameter and Hemoglobin Mass Responses to Altitude Exposure. PLoS ONE 2015, 10, e0135120. [Google Scholar] [CrossRef] [PubMed]
- De V. Weir, J.B. New methods for calculating metabolic rate with special reference to protein metabolism. J. Physiol. 1949, 109, 1–9. [Google Scholar] [CrossRef]
- Mackay, K.J.; Schofield, K.L.; Sims, S.T.; Mcquillan, J.A.; Driller, M.W. The Validity of Resting Metabolic Rate-Prediction Equations and Reliability of Measured RMR in Female Athletes. Int. J. Exerc. Sci. 2019, 12, 886–897. [Google Scholar]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive Statistics for Studies in Sports Medicine and Exercise Science. Med. Sci. Sports Exerc. 2009, 41, 3–13. [Google Scholar] [CrossRef]
- New View of Statistics: Effect Magnitudes. Available online: https://www.sportsci.org/resource/stats/effectmag.html (accessed on 20 December 2018).
- Suominen, P.; Punnonen, K.; Rajamaki, A.; Irjala, K. Serum transferrin receptor and transferrin receptor-ferritin index identify healthy subjects with subclinical iron deficits. Blood 1998, 92, 2934–2939. [Google Scholar] [CrossRef]
- Hinton, P.S.; Sinclair, L.M. Iron supplementation maintains ventilatory threshold and improves energetic efficiency in iron-deficient nonanemic athletes. Eur. J. Clin. Nutr. 2006, 61, 30–39. [Google Scholar] [CrossRef] [Green Version]
- Clarke, A.C.; Anson, J.M.; E Dziedzic, C.; A Mcdonald, W.; Pyne, D.B. Iron monitoring of male and female rugby sevens players over an international season. J. Sports Med. Phys. Fit. 2018, 58, 1490–1496. [Google Scholar] [CrossRef]
- Koehler, K.; Braun, H.; Achtzehn, S.; Hildebrand, U.; Predel, H.-G.; Mester, J.; Schänzer, W. Iron status in elite young athletes: Gender-dependent influences of diet and exercise. Eur. J. Appl. Physiol. 2011, 112, 513–523. [Google Scholar] [CrossRef]
- Reinke, S.; Taylor, W.R.; Duda, G.N.; von Haehling, S.; Reinke, P.; Volk, H.-D.; Anker, S.D.; Doehner, W. Absolute and functional iron deficiency in professional athletes during training and recovery. Int. J. Cardiol. 2010, 156, 186–191. [Google Scholar] [CrossRef]
- Sim, M.; Garvican-Lewis, L.A.; Cox, G.R.; Govus, A.; McKay, A.K.A.; Stellingwerff, T.; Peeling, P. Iron considerations for the athlete: A narrative review. Eur. J. Appl. Physiol. 2019, 119, 1463–1478. [Google Scholar] [CrossRef]
- Kasapis, C.; Thompson, P.D. The Effects of Physical Activity on Serum C-Reactive Protein and Inflammatory Markers: A Systematic Review. J. Am. Coll. Cardiol. 2005, 45, 1563–1569. [Google Scholar] [CrossRef] [Green Version]
- Bouget, M.; Rouveix, M.; Michaux, O.; Pequignot, J.-M.; Filaire, E. Relationships among training stress, mood and dehydroepiandrosterone sulphate/cortisol ratio in female cyclists. J. Sports Sci. 2006, 24, 1297–1302. [Google Scholar] [CrossRef]
- Hloogeveen, A.R.; Zonderland, M.L. Relationships between Testosterone, Cortisol and Performance in Professional Cyclists. Int. J. Sports Med. 1996, 17, 423–428. [Google Scholar] [CrossRef]
- Sterringer, T.; Larson-Meyer, D.E. RMR Ratio as a Surrogate Marker for Low Energy Availability. Curr. Nutr. Rep. 2022, 11, 263–272. [Google Scholar] [CrossRef]
- Woods, A.L.; Rice, A.J.; Garvican-Lewis, L.A.; Wallett, A.M.; Lundy, B.; Rogers, M.A.; Welvaert, M.; Halson, S.; McKune, A.; Thompson, K.G. The effects of intensified training on resting metabolic rate (RMR), body composition and performance in trained cyclists. PLoS ONE 2018, 13, e0191644. [Google Scholar] [CrossRef]
- Esteve-Lanao, J.; Foster, C.; Seiler, S.; Lucia, A. Impact of Training Intensity Distribution on Performance in Endurance Athletes. J. Strength Cond. Res. 2007, 21, 943–949. [Google Scholar] [CrossRef]
ID (n = 6) | Non ID (n = 7) | |
---|---|---|
Age (yrs) | 31 ± 3 | 34 ± 10 |
Height (cm) | 170.7 ± 2.4 | 164.2 ± 6.8 |
Body Mass (kg) | 62.6 ± 7.5 | 58.8 ± 5.7 |
Body Fat (%) | 21.0 ± 6.2 | 18.8 ± 5.0 |
BMI | 21.6 ± 2.3 | 21.9 ± 1.7 |
Training (hrs/wk) | 17 ± 5 | 20 ± 3 |
Marker | Normal Ranges ^ | ID (Mean ± SD) | Non ID (Mean ± SD) | p-Value (p) | Effect Size (Mean ± 90% CI) |
---|---|---|---|---|---|
Serum Ferritin (ug/L) | 15–200 | 27.5 ± 2.8 | 41.0 ± 7.3 | 0.002 * | 1.97 ±0.92 (large) |
Serum Iron (mmol/L) | 11–29 | 20.5 ± 1.0 | 25.5 ± 3.4 | 0.011 * | 1.55 ±0.91 (large) |
Transferrin (g/L) | 2.1–3.6 | 3.9 ± 0.1 | 3.1 ± 0.6 | 0.004 * | −1.82 ±0.91 (large) |
Crp (mg/dL) | <0.5 | 2.8 ± 0.5 | 0.8 ± 0.6 | 0.0001 * | −3.33 ±0.93 (very large) |
Cortisol (nmol/L) | 251–552 | 359.3 ± 112.4 | 320.8 ± 96.4 | 0.373 | −0.47 ±0.95 (unclear) |
Hb (g/L) | 120–160 | 130.5 ± 7.8 | 143.8 ± 8.4 | 0.036 * | 1.24 ±0.94 (large) |
Hct (g/L) | 0.355–0.449 | 0.392 ± 0.01 | 0.430 ± 0.02 | 0.034 * | 1.27 ± 0.92 (large) |
BMD (g/cm2) | 1.2 ± 0.1 | 1.2 ± 0.1 | 0.70 | −0.20 ±0.96 (unclear) | |
RMR (kcal) | 1581.7 ± 84.2 | 1670.9 ± 247.9 | 0.42 | 0.43 ±0.91 (unclear) |
Body Mass | % BF | RMR | Cortisol | Serum Ferritin | Serum Iron | Transferrin | Crp | BMD | Age | Hct | Hb | Training hrs/wk | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
% BF | 0.60 ** | ||||||||||||
RMR | 0.14 | −0.09 | |||||||||||
Cortisol | 0.41 * | −0.01 | −0.49 * | ||||||||||
Serum Ferritin | −0.21 | −0.32 * | 0.11 | 0.06 | |||||||||
Serum Iron | 0.03 | −0.21 | 0.45 * | −0.11 | 0.70 ** | ||||||||
Transferrin | 0.40 * | 0.38 * | −0.48 * | 0.53 ** | −0.23 | −0.45 * | |||||||
Crp | 0.04 | 0.13 | −0.52 ** | 0.31 * | −0.66 ** | −0.72 *** | 0.70 ** | ||||||
BMD | 0.66 ** | 0.23 | 0.12 | 0.48 * | 0.03 | 0.16 | 0.16 | −0.11 | |||||
Age | 0.02 | 0.18 | −0.20 | −0.13 | 0.37 * | 0.31 * | 0 | −0.3 | −0.37 * | ||||
Hct | −0.24 | −0.21 | 0.08 | −0.15 | 0.81 *** | 0.71 *** | −0.21 | −0.44 * | −0.19 | 0.32 * | |||
Hb | −0.09 | −0.13 | 0.15 | −0.22 | 0.75 *** | 0.74 *** | −0.22 | −0.5 | −0.19 | 0.45 * | 0.95 *** | ||
Total training duration | 0.10 | −0.23 | −0.66 ** | 0.31 * | 0.13 | 0.04 | 0.2 | 0.25 | 0.06 | 0.26 | 0.27 | 0.27 | |
High-intensity duration | 0.30 * | −0.13 | −0.34 * | 0.48 * | 0.18 | 0.24 | 0.15 | 0.03 | 0.68 ** | −0.06 | 0.1 | 0.12 | 0.70 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sims, S.T.; Mackay, K.; Leabeater, A.; Clarke, A.; Schofield, K.; Driller, M. High Prevalence of Iron Deficiency Exhibited in Internationally Competitive, Non-Professional Female Endurance Athletes—A Case Study. Int. J. Environ. Res. Public Health 2022, 19, 16606. https://doi.org/10.3390/ijerph192416606
Sims ST, Mackay K, Leabeater A, Clarke A, Schofield K, Driller M. High Prevalence of Iron Deficiency Exhibited in Internationally Competitive, Non-Professional Female Endurance Athletes—A Case Study. International Journal of Environmental Research and Public Health. 2022; 19(24):16606. https://doi.org/10.3390/ijerph192416606
Chicago/Turabian StyleSims, Stacy T., Kelsi Mackay, Alana Leabeater, Anthea Clarke, Katherine Schofield, and Matthew Driller. 2022. "High Prevalence of Iron Deficiency Exhibited in Internationally Competitive, Non-Professional Female Endurance Athletes—A Case Study" International Journal of Environmental Research and Public Health 19, no. 24: 16606. https://doi.org/10.3390/ijerph192416606
APA StyleSims, S. T., Mackay, K., Leabeater, A., Clarke, A., Schofield, K., & Driller, M. (2022). High Prevalence of Iron Deficiency Exhibited in Internationally Competitive, Non-Professional Female Endurance Athletes—A Case Study. International Journal of Environmental Research and Public Health, 19(24), 16606. https://doi.org/10.3390/ijerph192416606