Prediction of Factors Affecting Mobility in Patients with Stroke and Finding the Mediation Effect of Balance on Mobility: A Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Outcome Measures
2.3.1. Rivermead Mobility Index (RMI)
2.3.2. Berg Balance Scale (BBS)
2.3.3. Time Up and GO (TUG)
2.3.4. Handheld Dynamometer (HHD)
2.4. Statistical Analysis
3. Results
3.1. Descriptive Results
3.2. Correlations
3.3. Regression
3.3.1. Criteria
3.3.2. Regression Analysis
3.4. Mediation by Balance
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wilkins, E.; Wilson, L.; Wickramasinghe, K.; Bhatnagar, P.; Leal, J.; Luengo-Fernandez, R.; Burns, R.; Rayner, M.; Townsend, N. European Cardiovascular Disease Statistics 2017; European Heart Network: Brussels, Belgium, 2017. [Google Scholar]
- Sacco, R.L.; Kasner, S.E.; Broderick, J.P.; Caplan, L.R.; Connors, J.J.; Culebras, A.; Elkind, M.S.; George, M.G.; Hamdan, A.D.; Higashida, R.T.; et al. An Updated Definition of Stroke for the 21st Century: A statement for healthcare professionals from the American heart association/American stroke association. Stroke 2013, 44, 2064–2089. [Google Scholar] [CrossRef] [Green Version]
- Tsao, C.W.; Aday, A.W.; Almarzooq, Z.I.; Alonso, A.; Beaton, A.Z.; Bittencourt, M.S.; Boehme, A.K.; Buxton, A.E.; Carson, A.P.; Commodore-Mensah, Y.; et al. Heart Disease and Stroke Statistics—2022 Update: A Report From the American Heart Association. Circulation 2022, 145, e153–e639. [Google Scholar] [CrossRef] [PubMed]
- Cramer, S.C.; Nelles, G.; Benson, R.R.; Kaplan, J.D.; Parker, R.A.; Kwong, K.K.; Kennedy, D.N.; Finklestein, S.P.; Rosen, B.R. A Functional MRI Study of Subjects Recovered From Hemiparetic Stroke. Stroke 1997, 28, 2518–2527. [Google Scholar] [CrossRef] [PubMed]
- Hatem, S.M.; Saussez, G.; della Faille, M.; Prist, V.; Zhang, X.; Dispa, D.; Bleyenheuft, Y. Rehabilitation of Motor Function after Stroke: A Multiple Systematic Review Focused on Techniques to Stimulate Upper Extremity Recovery. Front. Hum. Neurosci. 2016, 10, 442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van de Port, I.G.; Kwakkel, G.; van Wijk, I.; Lindeman, E. Susceptibility to Deterioration of Mobility Long-Term After Stroke. Stroke 2006, 37, 167–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rössler, R.; Bridenbaugh, S.A.; Engelter, S.T.; Weibel, R.; Infanger, D.; Giannouli, E.; Sofios, A.; Iendra, L.; Portegijs, E.; Rantanen, T.; et al. Recovery of mobility function and life-space mobility after ischemic stroke: The MOBITEC-Stroke study protocol. BMC Neurol. 2020, 20, 348. [Google Scholar] [CrossRef] [PubMed]
- Jang, S.H. A review of motor recovery mechanisms in patients with stroke. NeuroRehabilitation 2007, 22, 253–259. [Google Scholar] [CrossRef]
- WHO. International Classification of Functioning, Disability and Health: ICF; World Health Organization: Geneva, Switzerland, 2001. [Google Scholar]
- Langhorne, P.; Collier, J.M.; Bate, P.J.; Thuy, M.N.; Bernhardt, J. Very early versus delayed mobilisation after stroke. Cochrane Database Syst. Rev. 2018, 2018, CD006187. [Google Scholar] [CrossRef]
- Tyson, S.F.; Hanley, M.; Chillala, J.; Selley, A.B.; Tallis, R.C. The Relationship Between Balance, Disability, and Recovery After Stroke: Predictive Validity of the Brunel Balance Assessment. Neurorehabilit. Neural Repair 2007, 21, 341–346. [Google Scholar] [CrossRef]
- Harvey, R.L. Predictors of Functional Outcome Following Stroke. Phys. Med. Rehabil. Clin. N. Am. 2015, 26, 583–598. [Google Scholar] [CrossRef]
- Bower, K.; Thilarajah, S.; Pua, Y.-H.; Williams, G.; Tan, D.; Mentiplay, B.; Denehy, L.; Clark, R. Dynamic balance and instrumented gait variables are independent predictors of falls following stroke. J. Neuroeng. Rehabil. 2019, 16, 3. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Hunter, J.; Philip, A.; Todd, I. Predicting those who will walk after rehabilitation in a specialist stroke unit. Clin. Rehabil. 2006, 20, 149–152. [Google Scholar] [CrossRef] [PubMed]
- An, S.; Lee, Y.; Shin, H.; Lee, G. Gait velocity and walking distance to predict community walking after stroke. Nurs. Health Sci. 2015, 17, 533–538. [Google Scholar] [CrossRef] [PubMed]
- Jørgensen, H.S.; Nakayama, H.; Raaschou, H.O.; Olsen, T.S. Recovery of walking function in stroke patients: The copenhagen stroke study. Arch. Phys. Med. Rehabil. 1995, 76, 27–32. [Google Scholar] [CrossRef]
- Bijleveld-Uitman, M.; Port, I.; Kwakkel, G. Is gait speed or walking distance a better predictor for community walking after stroke? J. Rehabil. Med. 2013, 45, 535–540. [Google Scholar] [CrossRef] [Green Version]
- Wonsetler, E.C.; Bowden, M.G. A systematic review of mechanisms of gait speed change post-stroke. Part 2: Exercise capacity, muscle activation, kinetics, and kinematics. Top. Stroke Rehabil. 2017, 24, 394–403. [Google Scholar] [CrossRef]
- Dorsch, S.; Ada, L.; Canning, C.G. Lower Limb Strength Is Significantly Impaired in All Muscle Groups in Ambulatory People With Chronic Stroke: A Cross-Sectional Study. Arch. Phys. Med. Rehabil. 2016, 97, 522–527. [Google Scholar] [CrossRef]
- Desrosiers, J.; Malouin, F.; Bourbonnais, D.; Richards, C.L.; Rochette, A.; Bravo, G. Arm and leg impairments and disabilities after stroke rehabilitation: Relation to handicap. Clin. Rehabil. 2003, 17, 666–673. [Google Scholar] [CrossRef] [PubMed]
- Spink, M.J.; Fotoohabadi, M.R.; Wee, E.; Hill, K.D.; Lord, S.R.; Menz, H.B. Foot and Ankle Strength, Range of Motion, Posture, and Deformity Are Associated With Balance and Functional Ability in Older Adults. Arch. Phys. Med. Rehabil. 2011, 92, 68–75. [Google Scholar] [CrossRef]
- Lexell, J.; Flansbjer, U.B. Muscle strength training, gait performance and physiotherapy after stroke. Minerva Med. 2008, 99, 353–368. [Google Scholar]
- Collen, F.M.; Wade, D.; Robb, G.F.; Bradshaw, C.M. The Rivermead Mobility Index: A further development of the Rivermead Motor Assessment. Int. Disabil. Stud. 1991, 13, 50–54. [Google Scholar] [CrossRef] [PubMed]
- Blum, L.; Korner-Bitensky, N. Usefulness of the Berg Balance Scale in Stroke Rehabilitation: A Systematic Review. Phys. Ther. 2008, 88, 559–566. [Google Scholar] [CrossRef] [PubMed]
- Shumway-Cook, A.; Brauer, S.; Woollacott, M. Predicting the Probability for Falls in Community-Dwelling Older Adults Using the Timed Up & Go Test. Phys. Ther. 2000, 80, 896–903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Craig, L.E.; Wu, O.; Bernhardt, J.; Langhorne, P. Predictors of Poststroke Mobility: Systematic Review. Int. J. Stroke 2011, 6, 321–327. [Google Scholar] [CrossRef]
- van de Port, I.; Kwakkel, G.; Schepers, V.; Lindeman, E. Predicting mobility outcome one year after stroke: A prospective cohort study. J. Rehabil. Med. 2006, 38, 218–223. [Google Scholar] [CrossRef] [Green Version]
- Garland, S.; Willems, D.A.; Ivanova, T.D.; Miller, K.J. Recovery of Standing Balance and Functional Mobility after Stroke. 11No Commercial Party Having a Direct Financial Inter-est in the Results of the Research Supporting This Article Has or Will Confer a Benefit upon the Author(s) or upon Any Or-ganization with Which the Author(s) Is/Are Associated. Arch. Phys. Med. Rehabil. 2003, 84, 1753–1759. [Google Scholar] [CrossRef]
- Lee, K.; Lee, D.; Hong, S.; Shin, D.; Jeong, S.; Shin, H.; Choi, W.; An, S.; Lee, G. The relationship between sitting balance, trunk control and mobility with predictive for current mobility level in survivors of sub-acute stroke. PLoS ONE 2021, 16, e0251977. [Google Scholar] [CrossRef]
- Ng, S.S.M. Contribution of subjective balance confidence on functional mobility in subjects with chronic stroke. Disabil. Rehabil. 2011, 33, 2291–2298. [Google Scholar] [CrossRef]
- Cho, K.; Lee, G. Impaired Dynamic Balance Is Associated with Falling in Post-Stroke Patients. Tohoku J. Exp. Med. 2013, 230, 233–239. [Google Scholar] [CrossRef] [Green Version]
- Harris, J.E.; Eng, J.; Marigold, D.S.; Tokuno, C.D.; Louis, C.L. Relationship of Balance and Mobility to Fall Incidence in People With Chronic Stroke. Phys. Ther. 2005, 85, 150–158. [Google Scholar] [CrossRef] [Green Version]
- Denissen, S.; Staring, W.; Kunkel, D.; Pickering, R.M.; Lennon, S.; Geurts, A.C.; Weerdesteyn, V.; Verheyden, G.S. Interventions for preventing falls in people after stroke. Cochrane Database Syst. Rev. 2019, 2019, CD008728. [Google Scholar] [CrossRef] [PubMed]
- Faria, C.D.C.M.; Teixeira-Salmela, L.F.; Nadeau, S. Predicting levels of basic functional mobility, as assessed by the Timed “Up and Go” test, for individuals with stroke: Discriminant analyses. Disabil. Rehabil. 2013, 35, 146–152. [Google Scholar] [CrossRef] [PubMed]
- Persson, C.U.; Danielsson, A.; Sunnerhagen, K.S.; Grimby-Ekman, A.; Hansson, P.-O. Timed Up & Go as a measure for longitudinal change in mobility after stroke—Postural Stroke Study in Gothenburg (POSTGOT). J. Neuroeng. Rehabil. 2014, 11, 83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bischoff, H.A.; Stähelin, H.B.; Monsch, A.U.; Iversen, M.D.; Weyh, A.; von Dechend, M.; Akos, R.; Conzelmann, M.; Dick, W.; Theiler, R. Identifying a cut-off point for normal mobility: A comparison of the timed ‘up and go’ test in community-dwelling and institutionalised elderly women. Age Ageing 2003, 32, 315–320. [Google Scholar] [CrossRef] [Green Version]
- Itotani, K.; Murakami, M.; Itotani, M.; Nagai, A.; Imabori, Y.; Fujimoto, K.; Tanaka, M.; Kato, J. Relationship between the weight-bearing ratio on the affected lower extremity and gait ability using a portable electronic foot sensor shoe (Step Aid®) in hemiplegic stroke patients. J. Phys. Ther. Sci. 2015, 27, 321–323. [Google Scholar] [CrossRef] [Green Version]
- Bok, S.-K.; Lee, T.H.; Lee, S.S. The Effects of Changes of Ankle Strength and Range of Motion According to Aging on Balance. Ann. Rehabil. Med. 2013, 37, 10–16. [Google Scholar] [CrossRef]
- Menz, H.B.; Auhl, M.; Spink, M.J. Foot problems as a risk factor for falls in community-dwelling older people: A systematic review and meta-analysis. Maturitas 2018, 118, 7–14. [Google Scholar] [CrossRef]
- Mickle, K.J.; Munro, B.J.; Lord, S.R.; Menz, H.B.; Steele, J.R. ISB Clinical Biomechanics Award 2009: Toe weakness and deformity increase the risk of falls in older people. Clin. Biomech. 2009, 24, 787–791. [Google Scholar] [CrossRef]
- Patten, C.; Lexell, J.; Brown, H.E. Weakness and strength training in persons with poststroke hemiplegia: Rationale, method, and efficacy. J. Rehabil. Res. Dev. 2004, 41, 293–312. [Google Scholar] [CrossRef]
- Veldema, J.; Jansen, P. Resistance training in stroke rehabilitation: Systematic review and meta-analysis. Clin. Rehabil. 2020, 34, 1173–1197. [Google Scholar] [CrossRef]
- Hicks, G.E.; Shardell, M.; Alley, D.E.; Miller, R.R.; Bandinelli, S.; Guralnik, J.M.; Lauretani, F.; Simonsick, E.M.; Ferrucci, L. Absolute Strength and Loss of Strength as Predictors of Mobility Decline in Older Adults: The InCHIANTI Study. J. Gerontol. Ser. A 2011, 67, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Patterson, S.L.; Forrester, L.W.; Rodgers, M.M.; Ryan, A.S.; Ivey, F.M.; Sorkin, J.D.; Macko, R.F. Determinants of Walking Function After Stroke: Differences by Deficit Severity. Arch. Phys. Med. Rehabil. 2007, 88, 115–119. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.B.; Lim, S.H.; Ko, E.H.; Kim, Y.S.; Lee, K.S.; Hwang, B.Y. Factors related to community ambulation in patients with chronic stroke. Top. Stroke Rehabil. 2015, 22, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Middleton, A.; Braun, C.H.; Lewek, M.D.; Fritz, S.L. Balance impairment limits ability to increase walking speed in individuals with chronic stroke. Disabil. Rehabil. 2017, 39, 497–502. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.-H.; Kim, N.-J. The effects of balance training and ankle training on the gait of elderly people who have fallen. J. Phys. Ther. Sci. 2015, 27, 139–142. [Google Scholar] [CrossRef] [PubMed]
Variables | Frequency (%) |
---|---|
Gender (male/female) | 33 (80.48)/8 (19.51) |
Side of hemiplegia (left/right) | 28 (68.29)/13 (31.70) |
Assistive device (with/without) | 18 (43.90)/23(56.09) |
Diabetes mellitus (with/without) | 13 (31.70)/28 (68.29) |
Hypertension (with/without) | 21 (51.21)/20 (48.78) |
Mean ± SD (range) | |
Age (y) | 57.2 ± 88.6 (41 to 94) |
Time since stroke (m) | 18.0 ± 30.0 (2 to 168) |
Ankle dorsiflexion strength (kg) | 3.4 ± 4.1 (0 to 18) |
Ankle plantarflexion strength (kg) | 4.5 ± 3.5 (0 to 12) |
Knee extension strength (kg) | 10.5 ± 6.1 (1 to 30) |
Knee flexion strength (kg) | 6.0 ± 5.4 (0 to 20) |
TUG (s) | 35.0 ± 30.3 (6.75 to 165) |
Median, IQR (range) | |
BBS | 47.14 (10 to 56) |
RMI | 12.5 (4 to 15) |
Unstandardized Coefficients | Standardized Coefficients | 95% CI | |||||
---|---|---|---|---|---|---|---|
Model | B | Std. Error | Beta | t | Sig | Lower Bound | Upper Bound |
(Constant) | 5.188 | 1.827 | 2.84 | 0.008 | 1.475 | 8.9 | |
BBS | 0.138 | 0.037 | 0.534 | 3.745 | 0.001 | 0.063 | 0.213 |
TUG | −0.032 | 0.013 | −0.316 | −2.409 | 0.022 | −0.06 | −0.005 |
Isometric Knee Flexion | −0.113 | 0.091 | −0.195 | −1.245 | 0.222 | −0.297 | 0.071 |
Isometric Knee Extension | 0.065 | 0.059 | 0.127 | 1.095 | 0.281 | −0.055 | 0.185 |
Isometric Plantar Flexion | 0.299 | 0.143 | 0.331 | 2.1 | 0.043 | 0.01 | 0.589 |
Isometric Dorsiflexion | −0.037 | 0.1 | −0.048 | −0.366 | 0.716 | −0.24 | 0.167 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, F.; Abusharha, S.; Alfuraidy, A.; Nimatallah, K.; Almalki, R.; Basaffar, R.; Mirdad, M.; Chevidikunnan, M.F.; Basuodan, R. Prediction of Factors Affecting Mobility in Patients with Stroke and Finding the Mediation Effect of Balance on Mobility: A Cross-Sectional Study. Int. J. Environ. Res. Public Health 2022, 19, 16612. https://doi.org/10.3390/ijerph192416612
Khan F, Abusharha S, Alfuraidy A, Nimatallah K, Almalki R, Basaffar R, Mirdad M, Chevidikunnan MF, Basuodan R. Prediction of Factors Affecting Mobility in Patients with Stroke and Finding the Mediation Effect of Balance on Mobility: A Cross-Sectional Study. International Journal of Environmental Research and Public Health. 2022; 19(24):16612. https://doi.org/10.3390/ijerph192416612
Chicago/Turabian StyleKhan, Fayaz, Sami Abusharha, Aljowhara Alfuraidy, Khadeeja Nimatallah, Raghad Almalki, Rafa’a Basaffar, Mawada Mirdad, Mohamed Faisal Chevidikunnan, and Reem Basuodan. 2022. "Prediction of Factors Affecting Mobility in Patients with Stroke and Finding the Mediation Effect of Balance on Mobility: A Cross-Sectional Study" International Journal of Environmental Research and Public Health 19, no. 24: 16612. https://doi.org/10.3390/ijerph192416612
APA StyleKhan, F., Abusharha, S., Alfuraidy, A., Nimatallah, K., Almalki, R., Basaffar, R., Mirdad, M., Chevidikunnan, M. F., & Basuodan, R. (2022). Prediction of Factors Affecting Mobility in Patients with Stroke and Finding the Mediation Effect of Balance on Mobility: A Cross-Sectional Study. International Journal of Environmental Research and Public Health, 19(24), 16612. https://doi.org/10.3390/ijerph192416612