Differentiation Analysis on Carbon Emission Efficiency and Its Factors at Different Industrialization Stages: Evidence from Mainland China
Abstract
:1. Introduction
2. Data and Methodology
2.1. Data Sources and Pre-Processing
2.1.1. Selection of Variables
2.1.2. Industrialization Stages Division Criteria
2.2. Research Methods
2.2.1. Super-SBM Model of Undesirable Output
2.2.2. Measuring CEE’s Regional Differences
2.2.3. Econometric Model
3. Results Analysis
3.1. CEE’s Spatio-Temporal Evolution
3.1.1. Temporal Evolution
3.1.2. Spatial Evolution
3.2. Factor Analysis
3.2.1. Analysis of the Overall Results
3.2.2. Analysis of Zoning Results
3.2.3. Robustness Test
4. Discussion
4.1. Problem and Recommendations
4.2. Research Perspectives
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Modise, R.K.; Mpofu, K.; Adenuga, O.T. Energy and Carbon Emission Efficiency Prediction: Applications in Future Transport Manufacturing. Energies 2021, 14, 8466. [Google Scholar] [CrossRef]
- Li, Y.; Sun, X.; Bai, X. Differences of Carbon Emission Efficiency in the Belt and Road Initiative Countries. Energies 2022, 15, 1576. [Google Scholar] [CrossRef]
- Dong, F.; Li, Y.; Gao, Y.; Zhu, J.; Qin, C.; Zhang, X. Energy Transition and Carbon Neutrality: Exploring the Non-Linear Impact of Renewable Energy Development on Carbon Emission Efficiency in Developed Countries. Resour. Conserv. Recycl. 2022, 177, 106002. [Google Scholar] [CrossRef]
- Dong, F.; Zhu, J.; Li, Y.; Chen, Y.; Gao, Y.; Hu, M.; Qin, C.; Sun, J. How Green Technology Innovation Affects Carbon Emission Efficiency: Evidence from Developed Countries Proposing Carbon Neutrality Targets. Environ. Sci. Pollut. Res. 2022, 29, 35780–35799. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Chen, X.; Wang, Z.; Li, W.; Zhang, C.; Yao, X. Analyzing Land Use Structure Efficiency with Carbon Emissions: A Case Study in the Middle Reaches of the Yangtze River, China. J. Clean. Prod. 2020, 274, 123076. [Google Scholar] [CrossRef]
- Gan, X.; Jiao, Y.; Qin, C.; Jiang, E. Carbon Dioxide Emissions Efficiency Analysis on China’s Coastal Areas: A Super-Efficiency SBM Model. In Proceedings of the 2018 15th International Conference on Service Systems and Service Management (ICSSSM), Hangzhou, China, 21–22 July 2018; IEEE: New York, NY, USA, 2018. [Google Scholar]
- Zhang, Y.; Xu, X. Carbon Emission Efficiency Measurement and Influencing Factor Analysis of Nine Provinces in the Yellow River Basin: Based on SBM-DDF Model and Tobit-CCD Model. Environ. Sci. Pollut. Res. 2022, 29, 33263–33280. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Tai, H.; Cheng, K.; Zhu, Y.; Hou, J. Carbon Emission Efficiency Network Formation Mechanism and Spatial Correlation Complexity Analysis: Taking the Yangtze River Economic Belt as an Example. Sci. Total Environ. 2022, 841, 156719. [Google Scholar] [CrossRef]
- Gao, P.; Yue, S.; Chen, H. Carbon Emission Efficiency of China’s Industry Sectors: From the Perspective of Embodied Carbon Emissions. J. Clean. Prod. 2021, 283, 124655. [Google Scholar] [CrossRef]
- Li, J.; Cheng, Z. Study on Total-Factor Carbon Emission Efficiency of China’s Manufacturing Industry When Considering Technology Heterogeneity. J. Clean. Prod. 2020, 260, 121021. [Google Scholar] [CrossRef]
- Zhao, X.; Xu, H.; Sun, Q. Research on China’s Carbon Emission Efficiency and Its Regional Differences. Sustainability 2022, 14, 9731. [Google Scholar] [CrossRef]
- Xu, Y.; Cheng, Y.; Zheng, R.; Wang, Y. Spatiotemporal Evolution and Influencing Factors of Carbon Emission Efficiency in the Yellow River Basin of China: Comparative Analysis of Resource and Non-Resource-Based Cities. Int. J. Environ. Res. Public. Health 2022, 19, 11625. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Xie, Q.; Shahbaz, M.; Song, M.; Li, L. Impact of Bilateral Trade on Fossil Energy Consumption in BRICS: An Extended Decomposition Analysis. Econ. Model. 2022, 106, 105698. [Google Scholar] [CrossRef]
- Lin, Y.; Huang, J.; Li, M.; Lin, R. Does Lower Regional Density Result in Less CO2 Emission per Capita?: Evidence from Prefecture-Level Administrative Regions in China. Environ. Sci. Pollut. Res. 2022, 29, 29887–29903. [Google Scholar] [CrossRef] [PubMed]
- Yamaji, K.; Matsuhashi, R.; Nagata, Y.; Kaya, Y. A Study on Economic Measures for CO2 Reduction in Japan. Energy Policy 1993, 21, 123–132. [Google Scholar] [CrossRef]
- Ferreira, A.; Pinheiro, M.D.; de Brito, J.; Mateus, R. Combined Carbon and Energy Intensity Benchmarks for Sustainable Retail Stores. Energy 2018, 165, 877–889. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Liu, Y. Influence of Digital Finance and Green Technology Innovation on China’s Carbon Emission Efficiency: Empirical Analysis Based on Spatial Metrology. Sci. Total Environ. 2022, 838, 156463. [Google Scholar] [CrossRef]
- Xian, Y.; Wang, K.; Shi, X.; Zhang, C.; Wei, Y.-M.; Huang, Z. Carbon Emissions Intensity Reduction Target for China’s Power Industry: An Efficiency and Productivity Perspective. J. Clean. Prod. 2018, 197, 1022–1034. [Google Scholar] [CrossRef]
- Zhang, M.; Li, L.; Cheng, Z. Research on Carbon Emission Efficiency in the Chinese Construction Industry Based on a Three-Stage DEA-Tobit Model. Environ. Sci. Pollut. Res. 2021, 28, 51120–51136. [Google Scholar] [CrossRef]
- Sun, W.; Huang, C. How Does Urbanization Affect Carbon Emission Efficiency? Evidence from China. J. Clean. Prod. 2020, 272, 122828. [Google Scholar] [CrossRef]
- He, A.; Xue, Q.; Zhao, R.; Wang, D. Renewable Energy Technological Innovation, Market Forces, and Carbon Emission Efficiency. Sci. Total Environ. 2021, 796, 148908. [Google Scholar] [CrossRef]
- Wang, K.; Wu, M.; Sun, Y.; Shi, X.; Sun, A.; Zhang, P. Resource Abundance, Industrial Structure, and Regional Carbon Emissions Efficiency in China. Resour. Policy 2019, 60, 203–214. [Google Scholar] [CrossRef]
- Zhu, R.; Zhao, R.; Sun, J.; Xiao, L.; Jiao, S.; Chuai, X.; Zhang, L.; Yang, Q. Temporospatial Pattern of Carbon Emission Efficiency of China’s Energy-Intensive Industries and Its Policy Implications. J. Clean. Prod. 2021, 286, 125507. [Google Scholar] [CrossRef]
- Wang, L.; Chen, Z.; Ma, D.; Zhao, P. Measuring Carbon Emissions Performance in 123 Countries: Application of Minimum Distance to the Strong Efficiency Frontier Analysis. Sustainability 2013, 5, 5319–5332. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Xing, Y.; Zeng, X.; Ji, Y.; Hou, H.; Zhang, Y.; Zhu, Z. Factors Influencing Carbon Emissions from China’s Electricity Industry: Analysis Using the Combination of LMDI and K-Means Clustering. Environ. Impact Assess. Rev. 2022, 93, 106724. [Google Scholar] [CrossRef]
- Zhu, X.; Lu, K.; Peng, Z.; He, H.; Xu, S. Spatiotemporal Variations of Carbon Dioxide (CO2) at Urban Neighborhood Scale: Characterization of Distribution Patterns and Contributions of Emission Sources. Sustain. Cities Soc. 2022, 78, 103646. [Google Scholar] [CrossRef]
- Wang, R.; Wang, Q.; Yao, S. Evaluation and Difference Analysis of Regional Energy Efficiency in China under the Carbon Neutrality Targets: Insights from DEA and Theil Models. J. Environ. Manag. 2021, 293, 112958. [Google Scholar] [CrossRef]
- Jijian, Z.; Twum, A.K.; Agyemang, A.O.; Edziah, B.K.; Ayamba, E.C. Empirical Study on the Impact of International Trade and Foreign Direct Investment on Carbon Emission for Belt and Road Countries. Energy Rep. 2021, 7, 7591–7600. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, X.; Zhang, M.; Feng, Y.; Liu, Y.; Wen, J.; Liu, L. Influencing Factors of Carbon Emissions in Transportation Industry Based on CD Function and LMDI Decomposition Model: China as an Example. Environ. Impact Assess. Rev. 2021, 90, 106623. [Google Scholar] [CrossRef]
- Alajmi, R.G. Factors That Impact Greenhouse Gas Emissions in Saudi Arabia: Decomposition Analysis Using LMDI. Energy Policy 2021, 156, 112454. [Google Scholar] [CrossRef]
- Su, K.; Wei, D.; Lin, W. Influencing Factors and Spatial Patterns of Energy-Related Carbon Emissions at the City-Scale in Fujian Province, Southeastern China. J. Clean. Prod. 2020, 244, 118840. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, J.; Wang, Y.; Ma, X.; Liu, H.; Wang, H.; Tao, Y. Do Foreign Direct Investment and Environmental Regulation Improve Green Technology Innovation? An Empirical Analysis Based on Panel Data from the Chinese Manufacturing Industry. Environ. Sci. Pollut. Res. 2021, 28, 55302–55314. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, H.; Ahmad, M.; Xue, C. Analysis of Influencing Factors of Carbon Emissions in Resource-Based Cities in the Yellow River Basin under Carbon Neutrality Target. Environ. Sci. Pollut. Res. 2022, 29, 23847–23860. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Wang, B.; Liu, Z. Carbon Emissions Dynamics, Efficiency Gains, and Technological Innovation in China’s Industrial Sectors. Energy 2016, 99, 10–19. [Google Scholar] [CrossRef]
- Lara Allende, A.; Stephan, A. Life Cycle Embodied, Operational and Mobility-Related Energy and Greenhouse Gas Emissions Analysis of a Green Development in Melbourne, Australia. Appl. Energy 2022, 305, 117886. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the Efficiency of Decision Making Units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Tone, K. A Slacks-Based Measure of Efficiency in Data Envelopment Analysis. Eur. J. Oper. Res. 2001, 130, 498–509. [Google Scholar] [CrossRef] [Green Version]
- Tone, K. A Slacks-Based Measure of Super-Efficiency in Data Envelopment Analysis. Eur. J. Oper. Res. 2002, 143, 32–41. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Shi, J. Energy Efficiency Analysis on Chinese Industrial Sectors: An Improved Super-SBM Model with Undesirable Outputs. J. Clean. Prod. 2014, 65, 97–107. [Google Scholar] [CrossRef]
- Ehrlich, P.R.; Holdren, J.P. Impact of Population Growth. Science 1971, 171, 1212–1217. [Google Scholar] [CrossRef]
- Xie, Z.; Wu, R.; Wang, S. How Technological Progress Affects the Carbon Emission Efficiency? Evidence from National Panel Quantile Regression. J. Clean. Prod. 2021, 307, 127133. [Google Scholar] [CrossRef]
- Bano, S.; Zhao, Y.; Ahmad, A.; Wang, S.; Liu, Y. Identifying the Impacts of Human Capital on Carbon Emissions in Pakistan. J. Clean. Prod. 2018, 183, 1082–1092. [Google Scholar] [CrossRef]
- Abid, A.; Mehmood, U.; Tariq, S.; Ul Haq, Z. The Effect of Technological Innovation, FDI, and Financial Development on CO2 Emission: Evidence from the G8 Countries. Environ. Sci. Pollut. Res. 2022, 29, 11654–11662. [Google Scholar] [CrossRef]
- Yang, Z.; Gao, W.; Han, Q.; Qi, L.; Cui, Y.; Chen, Y. Digitalization and Carbon Emissions: How Does Digital City Construction Affect China’s Carbon Emission Reduction? Sustain. Cities Soc. 2022, 87, 104201. [Google Scholar] [CrossRef]
- Zhu, E.; Qi, Q.; Chen, L.; Wu, X. The Spatial-Temporal Patterns and Multiple Driving Mechanisms of Carbon Emissions in the Process of Urbanization: A Case Study in Zhejiang, China. J. Clean. Prod. 2022, 358, 131954. [Google Scholar] [CrossRef]
- Liu, B.; Tian, C.; Li, Y.; Song, H.; Ma, Z. Research on the Effects of Urbanization on Carbon Emissions Efficiency of Urban Agglomerations in China. J. Clean. Prod. 2018, 197, 1374–1381. [Google Scholar] [CrossRef]
- Duan, X.; Li, X.; Tan, W.; Xiao, R. Decoupling Relationship Analysis between Urbanization and Carbon Emissions in 33 African Countries. Heliyon 2022, 8, e10423. [Google Scholar] [CrossRef] [PubMed]
- Zheng, R.; Cheng, Y.; Liu, H.; Chen, W.; Chen, X.; Wang, Y. The Spatiotemporal Distribution and Drivers of Urban Carbon Emission Efficiency: The Role of Technological Innovation. Int. J. Environ. Res. Public. Health 2022, 19, 9111. [Google Scholar] [CrossRef]
- Jiang, J.; Zhu, S.; Wang, W.; Li, Y.; Li, N. Coupling Coordination between New Urbanisation and Carbon Emissions in China. Sci. Total Environ. 2022, 850, 158076. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, N. Low-Carbon City Pilot and Carbon Emission Efficiency: Quasi-Experimental Evidence from China. Energy Econ. 2021, 96, 105125. [Google Scholar] [CrossRef]
- Wu, S.; Zhang, K. Influence of Urbanization and Foreign Direct Investment on Carbon Emission Efficiency: Evidence from Urban Clusters in the Yangtze River Economic Belt. Sustainability 2021, 13, 2722. [Google Scholar] [CrossRef]
- Qi, G.; Wei, W.; Wang, Z.; Wang, Z.; Wei, L. The Spatial-Temporal Evolution Mechanism of PM2.5 Concentration Based on China’s Climate Zoning. J. Environ. Manag. 2023, 325, 116671. [Google Scholar] [CrossRef] [PubMed]
Variables | Indicators | Unit | Meaning |
---|---|---|---|
Explained variable | Carbon emission efficiency (CEE) | - | Measurement of Super-SBM model with undesirable output |
Explanatory variables | Technology (ST) | PC | Number of patents granted |
Economic development (ED) | 108 RMB | Gross Domestic Product | |
Population capacity (PC) | (people/km2) | District population/area of jurisdiction | |
Population urbanization (PU) | % | Urban population/year-end resident population | |
Industrial structure (IS) | % | Secondary industry added value/GDP | |
Energy consumption (EC) | 104 tons of standard coal | Total energy consumption | |
Foreign investment (FI) | % | Foreign direct investment/GDP |
Variables | Mean | Standard Deviation | Minimum | Maximum | Variables | HT Test | Conclusion | |
---|---|---|---|---|---|---|---|---|
Statistic | p-Value | |||||||
CEE | 0.687 | 0.250 | 0.254 | 1.434 | CEE | - | - | - |
ST | 49,015.270 | 81,336.180 | 228.000 | 709,725.000 | lnST | 0.047 | 0.0000 | stationary |
ED | 47,275.110 | 26,846.980 | 3005.920 | 164,220.000 | lnED | 0.094 | 0.0000 | stationary |
PC | 2844 | 1181 | 649 | 5967 | lnPC | 0.938 | 0.0014 | stationary |
PU | 57.025 | 13.141 | 29.110 | 89.600 | lnPU | −0.074 | 0.0000 | stationary |
IS | 42.079 | 8.278 | 15.800 | 62.000 | lnIS | 0.065 | 0.0000 | stationary |
EC | 14,427.640 | 8760.397 | 1135.330 | 41,845.000 | lnEC | −0.247 | 0.0000 | stationary |
FI | 2.066 | 1.945 | 0.107 | 12.099 | lnFI | 0.220 | 0.0000 | stationary |
Basic Indicators | Pre-Industrialization | Industrialization Realization Stages | Post-Industrialization | ||
---|---|---|---|---|---|
Early Industrialization | Mid-Industrialization | Late-Industrialization | |||
Economic development level (GDP per capita) | |||||
1995 USD | 610–1220 | 1220–2430 | 2430–4870 | 4870–9120 | >9120 |
2020 USD | 970–1930 | 1930–3850 | 3850–7700 | 7700–14,430 | >14,430 |
Industrial structure | |||||
Output value structure of three industries | A > I | A > 20%, A < I | A < 20%, I > S | A < 10%, I > S | A < 10%, I < S |
Manufacturing structure | |||||
Total manufacturing value added as a proportion of total merchandise value | <20% | 20–40% | 40–50% | 50–60% | >60% |
Spatial structure | |||||
population urbanization rate | <30% | 30–50% | 50–60% | 60–75% | >75% |
employment structure | |||||
Percentage of labors employed in primary sector | >60% | 45–60% | 30–45% | 10–30% | <10% |
Industrialization Stages | Provinces |
---|---|
Mid-industrialization | Hainan, Heilongjiang, Guangxi, Guizhou, Yunnan, Gansu |
Late-industrialization | Hebei, Inner Mongolia, Jilin, Hunan, Qinghai, Xinjiang, Shanxi, Liaoning, Jiangsu, Anhui, Fujian, Jiangxi, Shandong, Henan, Hubei, Guangdong, Chongqing, Sichuan, Shaanxi, Ningxia, Zhejiang |
Post-industrialization | Beijing, Tianjin, Shanghai |
Indicators | First Grade Indexes | Second Grade Indexes | Unit |
---|---|---|---|
Input indicators | Capital input | Capital stocks | 108 RMB |
Labor input | Urban working population | 104 persons | |
Energy input | Total energy consumption | 104 tons of standard coal | |
Output indicators | Desired output | GDP | 108 RMB |
Undesired output | CO2 emissions | 104 tons |
Variables | RE Model | FE Model | FE-tw Model |
---|---|---|---|
lnST | 0.0353 * (1.93) | 0.1334 *** (13.00) | −0.0160 (−0.38) |
lnED | 0.1215 *** (4.33) | 0.2988 *** (7.27) | 0.2518 *** (6.87) |
lnPC | −0.2502 *** (−5.17) | −0.1008 *** (−3.82) | −0.2102 *** (−3.64) |
lnPU | −0.0907 (−0.62) | −0.2343 ** (−2.64) | −0.1662 (−0.73) |
lnIS | 0.5002 *** (5.34) | −0.3765 *** (−6.89) | 0.7124 *** (4.37) |
lnEC | −0.0286 * (−1.83) | −0.0279 (−1.79) | −0.0234 * (−1.81) |
lnFI | 0.1062 *** (6.31) | 0.0715 *** (6.46) | 0.0404 * (2.20) |
cons | 1.4226 ** (2.33) | −2.5982 *** (−5.99) | 1.3339 (1.03) |
R2 | 0.36 | 0.72 | 0.85 |
F-statistic | - | 51.21 | 39.37 |
Variables | Mid-Industrialization | Late-Industrialization | Post-Industrialization | ||||||
---|---|---|---|---|---|---|---|---|---|
RE | FE | FE-tw | RE | FE | FE-tw | RE | FE | FE-tw | |
lnST | −0.1341 *** (8.68) | −0.1464 *** (−4.47) | 0.0369 (0.59) | 0.0881 *** (3.86) | 0.1480 *** (11.39) | −0.1070 ** (−2.01) | 0.2624 ** (2.50) | 0.2200 (0.97) | 0.3011 (0.86) |
lnED | 0.0447 (0.32) | 0.1875 *** (2.72) | 0.1455 ** (2.38) | 0.1454 *** (4.12) | 0.2957 *** (6.07) | 0.2633 *** (6.10) | 0.1646 ** (2.56) | 0.6320 (2.53) | 0.5161 (1.69) |
lnPC | −0.4159 *** (11.06) | −0.3787 *** (−10.57) | −0.1626 ** (−2.02) | −0.2313 *** (−4.10) | −0.0574 (−1.44) | −0.1104 (−1.54) | −0.9846 *** (−4.44) | −0.5465 (−1.10) | −0.4156 (−0.75) |
lnPU | 0.9668 *** (8.68) | 0.8022 *** (6.73) | 0.7352 ** (2.53) | −0.4233 * (−1.88) | −0.0586 (−0.39) | 1.2451 ** (3.03) | −3.7436 * (−1.78) | −5.2674 (−1.70) | −7.2689 * (−1.82) |
lnIS | 0.6306 *** (7.99) | 0.5252 *** (3.69) | 0.7480 *** (4.00) | 1.1620 *** (6.52) | −0.3562 ** (−2.14) | 1.1985 *** (4.43) | 1.0236 *** (2.85) | 0.4068 (0.65) | 0.1132 (0.07) |
lnEC | −0.0009 (−0.05) | 0.0068 (0.35) | 0.0062 (0.37) | −0.0311 * (−1.66) | −0.0293 (−1.49) | −0.0124 (−0.75) | −0.1888 * (−1.88) | −0.1498 (−0.86) | −0.0288 (−0.13) |
lnFI | 0.0582 *** (5.58) | 0.0555 *** (4.19) | 0.0002 (0.01) | 0.0740 ** (3.46) | 0.0704 *** (4.47) | 0.0315 (1.41) | −0.0595 (−1.42) | −0.0045 (−0.09) | −0.0056 (−0.10) |
cons | 0.6510 (1.36) | −0.4331 (−0.50) | −3.1732 * (−1.94) | 2.1685 ** (2.65) | −3.7042 *** (−4.45) | −4.8200 ** (−2.71) | 20.7779 * (2.20) | 18.3408 (1.35) | 26.7429 (1.59) |
R2 | 0.82 | 0.89 | 0.93 | 0.53 | 0.72 | 0.84 | 0.69 | 0.83 | 0.84 |
F-statistic | - | 24.65 | 31.10 | - | 33.85 | 31.67 | - | 5.01 | 4.30 |
Variables | q10 | q25 | q50 | q75 | q90 |
---|---|---|---|---|---|
lnST | 0.1040 *** (3.02) | 0.1064 *** (4.58) | 0.0682 *** (4.83) | 0.0739 *** (4.43) | 0.0803 *** (5.76) |
lnED | 0.0526 (0.91) | 0.1726 *** (3.53) | 0.1466 *** (2.87) | 0.0978 (1.16) | 0.0630 (0.90) |
lnPD | −0.1659 ** (−2.55) | −0.2498 *** (−4.34) | −0.2072 *** (−3.33) | −0.2681 *** (−6.18) | −0.2286 *** (−4.59) |
lnPU | −0.5655 *** (−3.50) | −0.4865 *** (−3.58) | 0.0909 (0.68) | 0.1475 (0.75) | 0.1638 (0.73) |
lnIS | 0.2606 (1.45) | −0.1426 (−0.76) | −0.0403 (−0.59) | 0.0580 (0.88) | 0.0181 (0.26) |
lnEC | −0.0089 (−0.31) | −0.0297 (−0.96) | −0.0213 (−1.14) | −0.0355 (−1.39) | −0.0635 ** (−2.31) |
lnFI | 0.1699 *** (4.43) | 0.1332 *** (4.81) | 0.1248 *** (7.37) | 0.1058 *** (4.71) | 0.1000 *** (4.23) |
cons | 2.2205 *** (2.68) | 1.1603 (1.41) | −0.6624 (−1.18) | 0.3323 (0.55) | 0.5790 (1.01) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, L.; Wang, Z. Differentiation Analysis on Carbon Emission Efficiency and Its Factors at Different Industrialization Stages: Evidence from Mainland China. Int. J. Environ. Res. Public Health 2022, 19, 16650. https://doi.org/10.3390/ijerph192416650
Wei L, Wang Z. Differentiation Analysis on Carbon Emission Efficiency and Its Factors at Different Industrialization Stages: Evidence from Mainland China. International Journal of Environmental Research and Public Health. 2022; 19(24):16650. https://doi.org/10.3390/ijerph192416650
Chicago/Turabian StyleWei, Lijie, and Zhibao Wang. 2022. "Differentiation Analysis on Carbon Emission Efficiency and Its Factors at Different Industrialization Stages: Evidence from Mainland China" International Journal of Environmental Research and Public Health 19, no. 24: 16650. https://doi.org/10.3390/ijerph192416650
APA StyleWei, L., & Wang, Z. (2022). Differentiation Analysis on Carbon Emission Efficiency and Its Factors at Different Industrialization Stages: Evidence from Mainland China. International Journal of Environmental Research and Public Health, 19(24), 16650. https://doi.org/10.3390/ijerph192416650