Toxicity of Per- and Polyfluoroalkyl Substances to Aquatic Invertebrates, Planktons, and Microorganisms
Abstract
:1. Introduction
2. Toxicity of Per- and Polyfluoroalkyl Substances to Aquatic Invertebrates
2.1. Bivalvia
2.1.1. Green Mussel (Perna viridis)
2.1.2. Pearl Mussel (Hyriopsis cumingii)
2.2. Other Bivalves
Invertebrate | Life Stage | Pollutant | Effect | Indicator | Value | Refs |
---|---|---|---|---|---|---|
Perna viridis | Adult | PFOS | LC50 | 96 h lethal | 68.3 mg/L | [18,19] |
PFOS | EC50 | Integrated genotoxicity | 33 (29–37) μg/L | [22] | ||
PFOA | 594 (341–1036) μg/L | |||||
PFNA | 195 (144–265) μg/L | |||||
PFDA | 78 (73–84) μg/L | |||||
Fatmucket | Juvenile | PFOS | EC50 | 48 h, 96 h lethal | 158.1, 158.1 mg/L | [25] |
Black sandshell | 158.1, 141.7 (80.4–249.6) mg/L | |||||
Fatmucket | Glochidia | PFOS | EC50 | 24 h, 48 h lethal | 16.5 (8.0–33.9), 17.7 (7.2–43.5) mg/L | |
PFOA | 164.4 (116.0–232.8), 162.6 (130.6–202.3) mg/L | |||||
Black sandshell | PFOS | 13.5 (5.7–31.8), 17.1 (9.4–31.1) mg/L | ||||
PFOA | 161.0 (135.8–191.0), 161.3 (135.0–192.7) mg/L | |||||
Perinereis nuntia | Adult | PFOS | LC50 | 96 h lethal | 64 mg/L | [29] |
Dugesia japonica | Adult | PFOS, PFOA | LC50 | 24 h lethal | 34 (30–38), 352 (331–374) mg/L | [30] |
48 h lethal | 27 (24–31), 345 (325–366) mg/L | |||||
72 h lethal | 26 (23–29, 343 (324–364) mg/L | |||||
96 h lethal | 23 (20–25), 337 (318–357) mg/L | |||||
Neocaridina denticulate | PFOS, PFOA | 24 h lethal | >200, >1000 mg/L | |||
48 h lethal | 57 (43–75), 712 (663–764) mg/L | |||||
72 h lethal | 20 (17–24), 546 (502–594) mg/L | |||||
96 h lethal | 10 (9–12), 454 (418–494) mg/L | |||||
Physa acuta | PFOS, PFOA | 24 h lethal | 271, 856 (768–954) mg/L | |||
48 h lethal | 233 (226–241), 732 (688–779) mg/L | |||||
72 h lethal | 208 (197–219), 697 (661–735) mg/L | |||||
96 h lethal | 178 (167–189), 672 (635–711) mg/L | |||||
Gammarus insensibilis | Adult | PFOS | LC50 | 48 h lethal | 9.99 mg/L | [31] |
Macrobrachium rosenbergii | Adult | PFOS | LC50 | 96 h lethal | 0.68 ± 0.22 mg/L | [32] |
Paracentrotus lividus | Adult | PFOS, PFOA | LC50 | 72 h lethal | 0.11, 110 mg/L | [33] |
Siriella armata | 6.9, 15.5 mg/L | |||||
Limnodrilus hoffmeisteri | Adult | PFOS | EC50 | 48 h lethal pH 6.2 | 23.81 ± 1.14 mg/L | [34,35] |
48 h lethal pH 7.0 | 35.89 ± 0.49 mg/L | |||||
48 h lethal pH 8.0 | 39.80 ± 1.15 mg/L | |||||
PFOS | LC50 | 24 h lethal pH 5.0 | 45.26 mg/L | [35] | ||
24 h lethal pH 6.0 | 46.23 mg/L | |||||
24 h lethal pH 7.0 | 60.70 mg/L | |||||
24 h lethal pH 8.0 | 64.48 mg/L | |||||
24 h lethal pH 9.0 | 65.74 mg/L |
Classification | Damage/Effect | Impact Detail | PFOS | PFOA |
---|---|---|---|---|
Cumulative toxicity | Accumulation | Whole soft tissues | Cf [27] Cv [36] Lh [34,35] | |
Hepatopancreas | Es [37] | |||
Muscle | Es [37] | |||
Developmental toxicity | Growth | Body weight | Pv [20] | |
Relative condition factor | Pv [20] | Pv [20] | ||
Oxidative toxicity | Visceral mass | SOD, GSH | Pv [18,19] | |
Mantle | SOD, GSH | Pv [18,19] | ||
Gill | SOD, GSH, GR, GST, POD | Hc [23] Aw [26] Mr [32] | ||
Hepatopancreas | SOD, GSH, GR, GST | Hc [23,24] Cv [36] Mr [32] | ||
Gastrointestinal tract | SOD, CAT | Mr [32] | ||
Humor | SOD, CAT | Gc [38] | ||
Whole soft tissues | CAT, EROD, GSH, GPX, ROS, POD | Pv [20,21] Cf [27] Dj [39] Pn [29] Gi [31] Lh [34,35] | Pv [20,21] Rp [40] Dj [39] | |
Lipid peroxidation | MDA | Pv [18,19,21] Hc [23] Cf [27] Gi [31] Mr [32] | Pv [21] | |
Genetic toxicity | DNA damage | Strand break | Pv [20,21,22] Pn [29] | Pv [21,22] Dj [41] |
Point mutation | Gc [38] | |||
Gene expression | Antioxidant enzyme | Cf [27] Mj [42] | ||
Immune related (heat shock protein) | Cf [27] Dj [43] | |||
P450 and phase II enzymes | Cf [27] Cv [36] Pn [29] | |||
Neurogenesis | Dj [39] | Dj [39] | ||
Cytotoxicity | Apoptosis | Membrane damage | Cv [36] | Pv [20] |
Caspase-3, -6 expression | Hc [23] | |||
Organ toxicity | Liver | ALT, AST | Hc [23,24] | |
Digestive gland | Histological alteration | Cf [27] | ||
Gonad | Histological alteration | Cf [27] | ||
Hepatopancreas | Histological alteration | Es [37] | ||
Gill | Histological alteration | Es [37] | ||
Metabolic toxicity | Whole body | Oxygen consumption | Dp [28] | Dp [28] |
Multixenobiotic transporter activity | Dp [28] | Dp [28] | ||
Hepatopancreas | Respiration | Es [37] | ||
Glycogen | Es [37] | |||
CCO, LDH | Es [37] | |||
Behavioral toxicity | Predation/Feeding | Suppressed filtration rate | Pv [20] Cf [27] | |
Siphoning behavior inhibition | Cf [27] | |||
Neurology toxicity | Neurology system | Abdominal nerve cord injury | Dj [39] | |
Cerebral ganglion | Dj [39] | |||
Nerve of the tail | Dj [39] | |||
Immune toxicity | Critical enzyme | ACP, ALP | Hc [23] Mr [32] Gc [38] | |
Heat shock protein | Cf [27] Dj [43] | |||
Overall toxicity | Enhanced integrated biomarker response | Pv [22] Cf [27] | Pv [22] |
2.3. Dugesia japonica
2.4. Perinereis nuntia
2.5. Crustaceans
2.5.1. Crabs
2.5.2. Shrimp
2.6. Echinidae
2.7. Tubifex
3. Toxicity of Per- and Polyfluoroalkyl Substances to Plankton
3.1. Daphnia magna
3.2. Brachionus calyciflorus
3.3. Other Zooplankton
3.4. Phytoplankton
3.4.1. Scenedesmus obliquus
3.4.2. Pseudokirchneriella subcapitata
3.4.3. Chlorella vulgaris
3.4.4. Chlorella pyrenoidosa
3.4.5. Prorocentrum lima
3.4.6. Selenastrum capricornutum
3.4.7. Other Algae
3.4.8. Protozoa
3.4.9. Lemna
4. Toxicity of Per- and Polyfluoroalkyl Substances to Microorganisms
4.1. Luminescent Bacteria
4.2. Other Bacteria
5. Discussion
5.1. Comparison of PFAS Toxicity and Related Factors
5.2. Differences between Experimental Organisms
5.3. Application of Substitutes
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brennan, N.M.; Evans, A.T.; Fritz, M.K.; Peak, S.A.; von Holst, H.E. Trends in the regulation of per- and polyfluoroalkyl substances (PFAS): A scoping review. Int. J. Environ. Res. Public Health 2021, 18, 10900. [Google Scholar] [CrossRef] [PubMed]
- Domingo, J.L.; Nadal, M. Human exposure to per- and polyfluoroalkyl substances (PFAS) through drinking water: A review of the recent scientific literature. Environ. Res. 2019, 177, 108648. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Cheng, X.; Hua, X.; Jiang, B.; Tian, C.; Tang, J.; Li, Q.; Sun, H.; Lin, T.; Liao, Y.; et al. Emerging and legacy per- and polyfluoroalkyl substances in water, sediment, and air of the Bohai Sea and its surrounding rivers. Environ. Pollut. 2020, 263, 114391. [Google Scholar] [CrossRef]
- Jasrotia, R.; Langer, S.; Dhar, M. Endocrine disrupting chemicals in aquatic ecosystem: An emerging threat to wildlife and human health. Proc. Zool. Soc. 2021, 74, 634–647. [Google Scholar] [CrossRef]
- Langenbach, B.; Wilson, M. Per- and polyfluoroalkyl substances (PFAS): Significance and considerations within the regulatory framework of the USA. Int. J. Environ. Res. Public Health 2021, 18, 11142. [Google Scholar] [CrossRef]
- Evangelou, M.W.H.; Robinson, B.H. The phytomanagement of PFAS-contaminated land. Int. J. Environ. Res. Public Health 2022, 19, 6817. [Google Scholar] [CrossRef]
- Silva, A.V.; Ringblom, J.; Lindh, C.; Scott, K.; Jakobsson, K.; Öberg, M. A probabilistic approach to evaluate the risk of decreased total triiodothyronine hormone levels following chronic exposure to PFOS and PFHxS via contaminated drinking water. Environ. Health Perspect. 2020, 128, 76001. [Google Scholar] [CrossRef]
- Zhao, Z.; Li, J.; Zhang, X.; Wang, L.; Wang, J.; Lin, T. Perfluoroalkyl and polyfluoroalkyl substances (PFASs) in groundwater: Current understandings and challenges to overcome. Environ. Sci. Pollut. Res. Int. 2022, 29, 49513–49533. [Google Scholar] [CrossRef]
- Teymourian, T.; Teymoorian, T.; Kowsari, E.; Ramakrishna, S. A review of emerging PFAS contaminants: Sources, fate, health risks, and a comprehensive assortment of recent sorbents for PFAS treatment by evaluating their mechanism. Res. Chem. Intermed. 2021, 47, 4879–4914. [Google Scholar] [CrossRef]
- Dartey, E.; Ellingsen, D.G.; Berlinger, B.; Thomassen, Y.; Odland, J.Ø.; Brox, J.; Nartey, V.K.; Yeboah, F.A.; Huber, S. Per- and polyfluoroalkyl substances in human serum samples of selected populations from Ghana. Int. J. Environ. Res. Public Health 2021, 18, 1581. [Google Scholar] [CrossRef]
- Ahrens, L.; Bundschuh, M. Fate and effects of poly- and perfluoroalkyl substances in the aquatic environment: A review. Environ. Toxicol. Chem. 2014, 33, 1921–1929. [Google Scholar] [CrossRef] [PubMed]
- Acid, P. (PFOA) (IARC Monographs-110). Available online: https://monographs.iarc.fr/wp-content/uploads/2018/06/mono110-01.pdf (accessed on 10 August 2020).
- Li, J.; He, J.; Niu, Z.; Zhang, Y. Legacy per- and polyfluoroalkyl substances (PFASs) and alternatives (short-chain analogues, F-53B, GenX and FC-98) in residential soils of China: Present implications of replacing legacy PFASs. Environ. Int. 2020, 135, 105419. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Feng, C. Biological toxicity response of Asian clam (Corbicula fluminea) to pollutants in surface water and sediment. Sci. Total Environ. 2018, 631–632, 56–70. [Google Scholar] [CrossRef]
- Hong, Y.; Hao, L.C.; Chen, Z.Y. Research progress on the toxic effects of emerging pollutants on microalgae and the mechanisms. Asian J. Ecotoxicol. 2019, 14, 22–45. [Google Scholar]
- Teunen, L.; Bervoets, L.; Belpaire, C.; De Jonge, M.; Groffen, T. PFAS accumulation in indigenous and translocated aquatic organisms from Belgium, with translation to human and ecological health risk. Environ. Sci. Eur. 2021, 33, 39. [Google Scholar] [CrossRef]
- Dai, Y.; Zhao, J.; Sun, C.; Li, D.; Liu, X.; Wang, Z.; Yue, T.; Xing, B.S. Interaction and combined toxicity of microplastics and per- and polyfluoroalkyl substances in aquatic environment. Front. Environ. Sci. Eng. 2022, 16, 136. [Google Scholar] [CrossRef]
- Wang, H.W. Effects of Perfluorooctanesulfonate on Antioxidant System, Tissues Injury and Genes Expression of Perna viridis and Pagrosomus major. Master’s Thesis, Shanghai Ocean University, Shanghai, China, 2012. [Google Scholar]
- Wang, H.W.; Ma, S.W.; Zhang, Z.; Chen, H.G.; Huang, Z.F.; Gong, X.Y.; Cai, W.G.; Jia, X.P. Effects of perfluorooctanesulfonate (PFOS) exposure on antioxidant enzymes of Perna viridis. Asian J. Ecotoxicol. 2012, 7, 508–516. [Google Scholar]
- Liu, C.; Gin, K.Y.H.; Chang, V.W.C. Multi-biomarker responses in green mussels exposed to PFCs: Effects at molecular, cellular, and physiological levels. Environ. Sci. Pollut. Res. Int. 2014, 21, 2785–2794. [Google Scholar] [CrossRef]
- Liu, C.; Chang, V.W.C.; Gin, K.Y.H. Oxidative toxicity of perfluorinated chemicals in green mussel and bioaccumulation factor dependent quantitative structure-activity relationship. Environ. Toxicol. Chem. 2014, 33, 2323–2332. [Google Scholar] [CrossRef]
- Liu, C.; Chang, V.W.C.; Gin, K.Y.H.; Nguyen, V.T. Genotoxicity of perfluorinated chemicals (PFCs) to the green mussel (Perna viridis). Sci. Total Environ. 2014, 487, 117–122. [Google Scholar] [CrossRef]
- Pan, R.L. Effects on Antioxidant System and Apoptosis Induction of Perfluorooctane Sulfonate (PFOS) to Hyriopsis cumingii. Master’s Thesis, Shanghai Ocean University, Shanghai, China, 2016. [Google Scholar]
- Pan, R.L.; Yang, S.W.; Jiang, M. Perfluorooctane sulfonate (PFOS) -induced oxidative damage in hepatopancreas of Hyriopsis cumingii. Asian J. Ecotoxicol. 2016, 11, 112–120. [Google Scholar]
- Hazelton, P.D.; Cope, W.G.; Pandolfo, T.J.; Mosher, S.; Strynar, M.J.; Barnhart, M.C.; Bringolf, R.B. Partial life-cycle and acute toxicity of perfluoroalkyl acids to freshwater mussels. Environ. Toxicol. Chem. 2012, 31, 1611–1620. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Liu, C.M. Effect of perfluorooctane sulfonate on the protective enzyme activities in the gill of Anodonta woodiana. J. Anhui Agric. Sci. 2010, 8, 11150–11151. [Google Scholar]
- Liu, Y.; Junaid, M.; Xu, P.; Zhong, W.; Pan, B.; Xu, N. Suspended sediment exacerbates perfluorooctane sulfonate mediated toxicity through reactive oxygen species generation in freshwater clam Corbicula fluminea. Environ. Pollut. 2020, 267, 115671. [Google Scholar] [CrossRef]
- Fernández-Sanjuan, M.; Faria, M.; Lacorte, S.; Barata, C. Bioaccumulation and effects of perfluorinated compounds (PFCs) in zebra mussels (Dreissena polymorpha). Environ. Sci. Pollut. Res. Int. 2013, 20, 2661–2669. [Google Scholar] [CrossRef]
- Chen, X. A Study on the Toxic Effect of PFOS on Perinereis nuntia. Master’s Thesis, Jimei University, Xiamen, China, 2016. [Google Scholar]
- Li, M.H. Toxicity of perfluorooctane sulfonate and perfluorooctanoic acid to plants and aquatic invertebrates. Environ. Toxicol. 2009, 24, 95–101. [Google Scholar] [CrossRef]
- Touaylia, S.; Khazri, A.; Mezni, A.; Bejaoui, M. Effects of emerging persistent organic pollutant perfluorooctane sulfonate (PFOS) on the Crustacean Gammarus insensibilis. Hum. Ecol. Risk Assess. Int. J. 2019, 25, 2133–2141. [Google Scholar] [CrossRef]
- Xu, J.; Jiang, M.; Wu, H.; Zheng, L.; Liu, X. Effects of PFOS on the metabolism and antioxidant enzymes of juvenile Macrobrachium rosenbergii. J. Fish. Sci. China 2022, 29, 562–573. [Google Scholar]
- Mhadhbi, L.; Rial, D.; Pérez, S.; Beiras, R. Ecological risk assessment of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) in marine environment using Isochrysis galbana, Paracentrotus lividus, Siriella armata and Psetta maxima. J. Environ. Monit. 2012, 14, 1375–1382. [Google Scholar] [CrossRef] [Green Version]
- Qu, R.; Liu, J.; Wang, L.; Wang, Z. The toxic effect and bioaccumulation in aquatic oligochaete Limnodrilus hoffmeisteri after combined exposure to cadmium and perfluorooctane sulfonate at different pH values. Chemosphere 2016, 152, 496–502. [Google Scholar] [CrossRef]
- Liu, J.Q. Joint Toxicity of PFOS and Zn2+/Cd2+ to Limnodrilus hoffmeisteri under Different pH Levels. Master’s Dissertation, Nanjing University, Nanjing, China, 2017. [Google Scholar]
- Aquilina-Beck, A.A.; Reiner, J.L.; Chung, K.W.; DeLise, M.J.; Key, P.B.; DeLorenzo, M.E. Uptake and biological effects of perfluorooctane sulfonate exposure in the adult eastern oyster Crassostrea virginica. Arch. Environ. Contam. Toxicol. 2020, 79, 333–342. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F. Accumulation Characteristic and Toxicity Response to Exposure to Perfluorooctanesulfonate in Chinese Mitten-Handed Crab, Eriocheir sinensis, under Different Salinities. Master’s Dissertation, East China Normal University, Shanghai, China, 2015. [Google Scholar]
- Wang, L.Y. A Study on the Effect of PFOS to Enzyme Activity and DNA Methylation in Glyptocidaris crenularis Vivo. Master’s Thesis, Dalian Maritime University, Dalian, China, 2013. [Google Scholar]
- Miao, Z.L. Toxic Effects of PFOS and PFOA on Planarian Dugesia japonica. Master’s Thesis, Shandong University of Technology, Zibo, China, 2015. [Google Scholar]
- Liu, Z.Y.; Zhai, Y.X.; Yao, L.; Jiang, Y.H.; Li, F.L.; Wang, L.S.; Shang, D.R.; Yang, Y.H.; Guo, M.M.; Tan, Z.J. The effects of perfluorooctanoic acid (PFOA) on enzyme activities in Ruditapes philippinarum. Asian J. Ecotoxicol. 2017, 12, 695–704. [Google Scholar]
- Yuan, Z.; Gong, X. Detection of genotoxicity of PFOS and PFOA in planarian Dugesia japonica by SCGE. Genom. Appl. Biol. 2014, 33, 906–909. [Google Scholar]
- Park, K.; Nikapitiya, C.; Kwak, T.-S.; Kwak, I.-S. Antioxidative-related genes expression following perfluorooctane sulfonate (PFOS) exposure in the intertidal mud crab, Macrophthalmus japonicus. Ocean Sci. J. 2015, 50, 547–556. [Google Scholar] [CrossRef]
- Gong, X.N.; Yuan, Z.Q.; Bai, Y. Effects of PFOS on expression of HSP70 in Planarian Dugesia japonica. Biotechnol. Bull. 2014, 10, 156–160. [Google Scholar]
- Huang, Z.Y. Water Quality Criteria and Risk Assessment of Typical Short-Chain Perfluorinated Substitutes. Master’s Thesis, Anhui Jianzhu University, Hefei, China, 2022. [Google Scholar]
- Boudreau, T.M.; Sibley, P.K.; Mabury, S.A.; Muir, D.G.C.; Solomon, K.R. Laboratory evaluation of the toxicity of perfluorooctane sulfonate (PFOS) on Selenastrum capricornutum, Chlorella vulgaris, Lemna gibba, Daphnia magna, and Daphnia pulicaria. Arch. Environ. Contam. Toxicol. 2003, 44, 307–313. [Google Scholar] [CrossRef]
- Li, Z.F. Single PFOS and Combined Ecological Effects of BDE-47 Pollution on Daphnia magna. Master’s Thesis, Neimenggu Agriculture University, Hohhot, China, 2013. [Google Scholar]
- Yang, J.P. The Preliminary Study for Toxicity Effects of Toxicology of PFCs on Daphnia magna and Zebrafish Embryo. Master’s Thesis, Hebei University of Science and Technology, Shijiazhuang, China, 2014. [Google Scholar]
- Yang, H.B.; Zhao, Y.Z.; Tang, Y.; Gong, H.Q.; Guo, F.; Sun, W.H.; Liu, S.S.; Tan, H.; Chen, F. Antioxidant defence system is responsible for the toxicological interactions of mixtures: A case study on PFOS and PFOA in Daphnia magna. Sci. Total Environ. 2019, 667, 435–443. [Google Scholar] [CrossRef]
- Liu, R.; Cao, Z.; Zhao, Y.; Wang, B.; Shen, H.; Yang, J. Experiment study on acute toxicity of PFOA and PFOS to Daphnia magna. Saf. Environ. Eng. 2015, 22, 51–56. [Google Scholar]
- Liu, M.; Yin, H.W.; Chen, X.Q.; Li, K.; Yang, J.; Zhang, J.J.; Jia, L.J. Aquatic toxicities of potassium perfluorobutane sulfonate as potential alternative of perfluorooctane sulfonate to multi—Species of different trophic levels. Asian J. Ecotoxicol. 2013, 8, 714–721. [Google Scholar]
- Phillips, M.M.; Dinglasan-Panlilio, M.J.A.; Mabury, S.A.; Solomon, K.R.; Sibley, P.K. Chronic toxicity of fluorotelomer acids to Daphnia magna and Chironomus dilutus. Environ. Toxicol. Chem. 2010, 29, 1123–1131. [Google Scholar] [CrossRef]
- Hoke, R.A.; Ferrell, B.D.; Sloman, T.L.; Buck, R.C.; Buxton, L.W. Aquatic hazard, bioaccumulation and screening risk assessment for ammonium 2,3,3,3-tetrafluoro-2-(heptafluoropropoxy)-propanoate. Chemosphere 2016, 149, 336–342. [Google Scholar] [CrossRef]
- Colombo, I.; de Wolf, W.; Thompson, R.S.; Farrar, D.G.; Hoke, R.A.; L’Haridon, J. Acute and chronic aquatic toxicity of ammonium perfluorooctanoate (APFO) to freshwater organisms. Ecotoxicol. Environ. Saf. 2008, 71, 749–756. [Google Scholar] [CrossRef] [PubMed]
- Liang, R.; He, J.; Shi, Y.; Li, Z.; Sarvajayakesavalu, S.; Baninla, Y.; Guo, F.; Chen, J.; Xu, X.; Lu, Y. Effects of perfluorooctane sulfonate on immobilization, heartbeat, reproductive and biochemical performance of Daphnia magna. Chemosphere 2017, 168, 1613–1618. [Google Scholar] [CrossRef] [PubMed]
- Shen, H.; Yang, J.; Cao, Z.; Wang, B.; Zhao, Y. Research on chronic toxicity of perfluorooctane sulfonate to Daphnia magna. J. Hebei Univ. Sci. Technol. 2014, 35, 354–360. [Google Scholar]
- Jeong, T.Y.; Yuk, M.S.; Jeon, J.; Kim, S.D. Multigenerational effect of perfluorooctane sulfonate (PFOS) on the individual fitness and population growth of Daphnia magna. Sci. Total Environ. 2016, 569–570, 1553–1560. [Google Scholar] [CrossRef]
- Yuan, S.L. Toxic Effects and Mechanisms of Typical Pollutants Based on Swimming Behavior of Daphnia magna. Doctor’s Thesis, Huazhong Agriculture University, Wuhan, China, 2021. [Google Scholar]
- Lu, G.; Liu, J.; Sun, L.; Yuan, L. Toxicity of perfluorononanoic acid and perfluorooctane sulfonate to Daphnia magna. Water Sci. Eng. 2015, 8, 40–48. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.C.; Shi, Y.; Zhu, Y.; Zeng, J.; Qian, W.; Zhou, S.; Ma, J.; Pan, K.; Jiang, Y.; Tao, Y.; et al. Combined toxicity of polystyrene microplastics and ammonium perfluorooctanoate to Daphnia magna: Mediation of intestinal blockage. Water Res. 2022, 219, 118536. [Google Scholar] [CrossRef]
- Zhang, L.; Niu, J.; Li, Y.; Wang, Y.; Sun, D. Evaluating the sub-lethal toxicity of PFOS and PFOA using rotifer Brachionus calyciflorus. Environ. Pollut. 2013, 180, 34–40. [Google Scholar] [CrossRef]
- Zhang, L.; Niu, J.; Wang, Y.; Shi, J.; Huang, Q. Chronic effects of PFOA and PFOS on sexual reproduction of freshwater rotifer Brachionus calyciflorus. Chemosphere 2014, 114, 114–120. [Google Scholar] [CrossRef]
- Zhang, L.L.; Niu, J.F. Effects of PFOS on the reproduction of Brachionus calyciflorus. In Proceedings of the POPs Forum 2012 & 7rd National Symposium on POPs, Tianjin, China, 17 May 2012. [Google Scholar]
- Logeshwaran, P.; Sivaram, A.K.; Surapaneni, A.; Kannan, K.; Naidu, R.; Megharaj, M. Exposure to perfluorooctanesulfonate (PFOS) but not perflurorooctanoic acid (PFOA) at ppb concentration induces chronic toxicity in Daphnia carinata. Sci. Total Environ. 2021, 769, 144577. [Google Scholar] [CrossRef]
- Wang, Y.; Niu, J.; Zhang, L.; Shi, J. Toxicity assessment of perfluorinated carboxylic acids (PFCAs) towards the rotifer Brachionus calyciflorus. Sci. Total Environ. 2014, 491–492, 266–270. [Google Scholar] [CrossRef] [PubMed]
- Dekker, T.; Greve, G.D.; Ter Laak, T.L.; Boivin, M.E.; Veuger, B.; Gortzak, G.; Dumfries, S.; Lücker, S.M.G.; Kraak, M.H.S.; Admiraal, W.; et al. Development and application of a sediment toxicity test using the benthic cladoceran Chydorus sphaericus. Environ. Pollut. 2006, 140, 231–238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, G.H.; Frömel, T.; van den Brandhof, E.J.; Baerselman, R.; Peijnenburg, W.J.G.M. Acute toxicity of poly- and perfluorinated compounds to two cladocerans, Daphnia magna and Chydorus sphaericus. Environ. Toxicol. Chem. 2012, 31, 605–610. [Google Scholar] [CrossRef] [PubMed]
- Cara, Á.L.; dos Santos Barboza Ortega, A.; Pusceddu, F.H.; Abessa, D.M.D.S.; Pereira, C.D.S.; Maranho, L.A. Could aqueous film-forming foams (AFFFs) and encapsulator agents (EAs) interfere on the reproduction and growth of Daphnia similis? Water Air Soil Pollut. 2021, 232, 416. [Google Scholar] [CrossRef]
- Wang, M.; Chen, H.H.; Zha, J.M.; Wang, Z.J. Ecotoxicity of alternatives of typical perfluorooctane sulfonate (PFOS) to four native aquatic organisms. Asian J. Ecotoxicol. 2015, 10, 230–235. [Google Scholar]
- Jiang, M.Q.; Xu, X.L.; Zhang, D.Y. Toxicity effects of PFOA to Scenedesmus obliquus. Resour. Econ. Environ. Prot. 2016, 6, 293–294. [Google Scholar]
- Li, J.W. Effects and Mechanisms of Chlorinated Polyfluorinated Ether Sulfonate on Green Algae and Rare Minnow. Master’s Thesis, Dalian University of Technology, Dalian, China, 2018. [Google Scholar]
- Liu, W.; Chen, S.; Quan, X.; Jin, Y.H. Toxic effect of serial perfluorosulfonic and perfluorocarboxylic acids on the membrane system of a freshwater alga measured by flow cytometry. Environ. Toxicol. Chem. 2008, 27, 1597–1604. [Google Scholar] [CrossRef]
- Yuan, L.Y. Effects of PFOS on Physiological and Biochemical Indices of Scenedesmus obliquus and Danio rerio. Master’s Thesis, Shanghai Ocean University, Shanghai, China, 2015. [Google Scholar]
- Liu, W.; Zhang, Y.B.; Quan, X.; Jin, Y.H.; Chen, S. Effect of perfluorooctane sulfonate on toxicity and cell uptake of other compounds with different hydrophobicity in green alga. Chemosphere 2009, 75, 405–409. [Google Scholar] [CrossRef]
- Xu, D.; Chen, X.; Shao, B. Oxidative damage and cytotoxicity of perfluorooctane sulfonate on Chlorella vulgaris. Bull. Environ. Contam. Toxicol. 2017, 98, 127–132. [Google Scholar] [CrossRef]
- Zhang, D.-Y.; Xu, X.-L.; Shen, X.-Y. Effects of perfluorooctane sulfonate (PFOS) on physiological status and proliferation capacity of Chlorella pyrenoidosa. Int. Conf. Biomed. Eng. Biotechnol. 2012, 2012, 1431–1434. [Google Scholar] [CrossRef]
- Hanson, M.L.; Sibley, P.K.; Brain, R.A.; Mabury, S.A.; Solomon, K.R. Microcosm evaluation of the toxicity and risk to aquatic macrophytes from perfluorooctane sulfonic acid. Arch. Environ. Contam. Toxicol. 2005, 48, 329–337. [Google Scholar] [CrossRef] [PubMed]
- Ding, G.; Wouterse, M.; Baerselman, R.; Peijnenburg, W.J.G.M. Toxicity of polyfluorinated and perfluorinated compounds to lettuce (Lactuca sativa) and green algae (Pseudokirchneriella subcapitata). Arch. Environ. Contam. Toxicol. 2012, 62, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Li, C.; Chen, H.; Shao, B. Cellular response of freshwater green algae to perfluorooctanoic acid toxicity. Ecotoxicol. Environ. Saf. 2013, 88, 103–107. [Google Scholar] [CrossRef]
- Hanson, M.L.; Small, J.; Sibley, P.K.; Boudreau, T.M.; Brain, R.A.; Mabury, S.A.; Solomon, K.R. Microcosm evaluation of the fate, toxicity, and risk to aquatic macrophytes from perfluorooctanoic acid (PFOA). Arch. Environ. Contam. Toxicol. 2005, 49, 307–316. [Google Scholar] [CrossRef] [PubMed]
- Rosal, R.; Rodea-Palomares, I.; Boltes, K.; Fernández-Piñas, F.; Leganés, F.; Petre, A. Ecotoxicological assessment of surfactants in the aquatic environment: Combined toxicity of docusate sodium with chlorinated pollutants. Chemosphere 2010, 81, 288–293. [Google Scholar] [CrossRef] [PubMed]
- Boltes, K.; Rosal, R.; García-Calvo, E. Toxicity of mixtures of perfluorooctane sulphonic acid with chlorinated chemicals and lipid regulators. Chemosphere 2012, 86, 24–29. [Google Scholar] [CrossRef]
- Latała, A.; Nędzi, M.; Stepnowski, P. Acute toxicity assessment of perfluorinated carboxylic acids towards the Baltic microalgae. Environ. Toxicol. Pharmacol. 2009, 28, 167–171. [Google Scholar] [CrossRef]
- Zhou, J.; Duan, S. Joint toxic effect of perfluorooctanoic acid and perfluorononanoic acid on two marine algae. Ecol. Sci. 2016, 35, 84–90. [Google Scholar]
- Bi, B.; Zhou, Y.; Li, L. Study on Toxicity of OBS Fluorine Protein Foam Extinguishing Agent to Aquatic Organisms. J. Chin. People’s Armed Police Force Acad. 2017, 33, 10–13. [Google Scholar]
- Xu, W.A. Effect of Environmentally Relevant Emerging per- and Polyfluoroalkyl Substances on the Growth and Antioxidant Response of Marine Green Algae and Dinoflagellate. Master’s Thesis, Tianjin University, Tianjin, China, 2019. [Google Scholar]
- Rodea-Palomares, I.; Leganés, F.; Rosal, R.; Fernández-Piñas, F. Toxicological interactions of perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) with selected pollutants. J. Hazard. Mater. 2012, 201–202, 209–218. [Google Scholar] [CrossRef]
- Matsubara, E.; Harada, K.; Inoue, K.; Koizumi, A. Effects of perfluorinated amphiphiles on backward swimming in Paramecium caudatum. Biochem. Biophys. Res. Commun. 2006, 339, 554–561. [Google Scholar] [CrossRef] [PubMed]
- Mulkiewicz, E.; Jastorff, B.; Składanowski, A.C.; Kleszczyński, K.; Stepnowski, P. Evaluation of the acute toxicity of perfluorinated carboxylic acids using eukaryotic cell lines, bacteria and enzymatic assays. Environ. Toxicol. Pharmacol. 2007, 23, 279–285. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.-Y.; Qin, G.-J.; Mo, L.-Y.; Yi, Z.-S.; Li, Z.-Y.; Zhang, F. Evaluation of aquatic toxicity for PFOA and PFOS to Vibrio qinghaiensis sp. J. Guilin Univ. Technol. 2015, 35, 121–125. [Google Scholar]
- Fitzgerald, N.J.M.; Simcik, M.F.; Novak, P.J. Perfluoroalkyl substances increase the membrane permeability and quorum sensing response in Aliivibrio fischeri. Environ. Sci. Technol. Lett. 2018, 5, 26–31. [Google Scholar] [CrossRef]
- Fitzgerald, N.J.M.; Wargenau, A.; Sorenson, C.; Pedersen, J.; Tufenkji, N.; Novak, P.J.; Simcik, M.F. Partitioning and accumulation of perfluoroalkyl substances in model lipid bilayers and bacteria. Environ. Sci. Technol. 2018, 52, 10433–10440. [Google Scholar] [CrossRef]
- Chen, W.; Yuan, D.; Shan, M.; Yang, Z.; Liu, C. Single and combined effects of amino polystyrene and perfluorooctane sulfonate on hydrogen-producing thermophilic bacteria and the interaction mechanisms. Sci. Total Environ. 2020, 703, 135015. [Google Scholar] [CrossRef]
- Kannan, K.; Tao, L.; Sinclair, E.; Pastva, S.D.; Jude, D.J.; Giesy, J.P. Perfluorinated compounds in aquatic organisms at various trophic levels in a Great Lakes food chain. Arch. Environ. Contam. Toxicol. 2005, 48, 559–566. [Google Scholar] [CrossRef]
- Van Rijn, J.P.; Van Straalen, N.M.; Willems, J. Handboek Bestrijdingsmiddelen, Gebruik en Milieu-Effecten; VU Uitgeverij: Amsterdam, The Netherlands, 1995. [Google Scholar]
- Hekster, F.M.; Laane, R.W.P.M.; de Voogt, P. Environmental and toxicity effects of perfluoroalkylated substances. Rev. Environ. Contam. Toxicol. 2003, 179, 99–121. [Google Scholar]
- Pablos, M.V.; García-Hortigüela, P.; Fernández, C. Acute and chronic toxicity of emerging contaminants, alone or in combination, in Chlorella vulgaris and Daphnia magna. Environ. Sci. Pollut. Res. Int. 2015, 22, 5417–5424. [Google Scholar] [CrossRef]
- Sun, M.; Arevalo, E.; Strynar, M.; Lindstrom, A.; Richardson, M.; Kearns, B.; Pickett, A.; Smith, C.; Knappe, D.R.U. Legacy and emerging perfluoroalkyl substances are important drinking water contaminants in the Cape Fear River Watershed of North Carolina. Environ. Sci. Technol. Lett. 2016, 3, 415–419. [Google Scholar] [CrossRef]
- Gao, Y.F.; Na, G.S.; Gao, H.; Li, R.J.; Lu, Z.H.; Zu, G.R.; Wang, J.H. Research progress on enrichment and toxicity of PFOS and PFOA in aquatic animals. J. Environ. Health. 2015, 32, 930–934. [Google Scholar]
- Jarvis, A.L.; Justice, J.R.; Elias, M.C.; Schnitker, B.; Gallagher, K. Perfluorooctane sulfonate in US ambient surface waters: A review of occurrence in aquatic environments and comparison to global concentrations. Environ. Toxicol. Chem. 2021, 40, 2425–2442. [Google Scholar] [CrossRef] [PubMed]
- Kurwadkar, S.; Dane, J.; Kanel, S.R.; Nadagouda, M.N.; Cawdrey, R.W.; Ambade, B.; Struckhoff, G.C.; Wilkin, R. Per- and polyfluoroalkyl substances in water and wastewater: A critical review of their global occurrence and distribution. Sci. Total Environ. 2022, 809, 151003. [Google Scholar] [CrossRef] [PubMed]
- Ji, K.; Kim, Y.; Oh, S.; Ahn, B.; Jo, H.; Choi, K. Toxicity of perfluorooctane sulfonic acid and perfluorooctanoic acid on freshwater macroinvertebrates (Daphnia magna and Moina Macrocopa) and fish (Oryzias latipes). Environ. Toxicol. Chem. 2008, 27, 2159–2168. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, R.J.; Myers, A.L.; Mabury, S.A.; Solomon, K.R.; Sibley, P.K. Toxicity of fluorotelomer carboxylic acids to the algae Pseudokirchneriella subcapitata and Chlorella vulgaris, and the amphipod Hyalella azteca. Ecotoxicol. Environ. Saf. 2011, 74, 2260–2267. [Google Scholar] [CrossRef]
- Albert, K.; Hsieh, P.Y.; Chen, T.H.; Hou, C.H.; Hsu, H.Y. Diatom-assisted biomicroreactor targeting the complete removal of perfluorinated compounds. J. Hazard. Mater. 2020, 384, 121491. [Google Scholar] [CrossRef]
- Lu, D.; Sha, S.; Luo, J.; Huang, Z.; Zhang Jackie, X. Treatment train approaches for the remediation of per- and polyfluoroalkyl substances (PFAS): A critical review. J. Hazard. Mater. 2020, 386, 121963. [Google Scholar] [CrossRef]
- Meegoda, J.N.; Kewalramani, J.A.; Li, B.; Marsh, R.W. A Review of the applications, environmental release, and remediation technologies of per- and polyfluoroalkyl substances. Int. J. Environ. Res. Public Health 2020, 17, 8117. [Google Scholar] [CrossRef]
Classification | Damage/Effect | Impact Detail | PFOS | PFOA |
---|---|---|---|---|
Developmental toxicity | Growth | Body weight | Dm [56] | |
Body size/length | Dm [48,55,58] | Dm [48] Bc [60] | ||
Reproductive toxicity | Population | Survival rate | Dm [45,46,55,58] | |
Growth rate abnormal | Bc [61] | Bc [61] | ||
Life history variability | Bc [60,62] | |||
Average lifetime | Bc [62] | |||
Total number per brood | Dm [45,46,48,55,58] | Dm [48] | ||
Time of first brood | Dm [45,46,48,55,56,58] | Dm [48] | ||
Number of first brood | Dm [45,46,55,58] | |||
Innate rate | Dm [55,56] | |||
Density | Bc [60] | Bc [60] | ||
Egg laying amount | Bc [62] | |||
Offspring | Survival rate | Dm [55,56] Dc [63] | ||
Total number per brood | Dm [55] Dc [63] | Dc [63] | ||
Time of first brood | Dm [55] Dc [63] | Dc [63] | ||
Number of first brood | Dm [55] Dc [63] | Dc [63] | ||
Innate rate | Dm [55] | |||
Mictic ratio increase | Bc [60,61] | Bc [60,61] | ||
Sex ratio | Bc [62] | |||
Hatching rate abnormal | Bc [61] | Bc [61] | ||
Hatching percentage abnormal | Bc [61] | Bc [61] | ||
Hormone | Ecdysone receptor | Dm [48] | Dm [48] | |
Oxidative toxicity | Whole body | GST, CAT, SOD, GSH | Dm [46,48,54,56,58] | Dm [48] |
Genetic toxicity | DNA damage | Comet tailing | Dc [63] | |
Organ toxicity | Heart | Heart rate increase | Dm [46,54] | |
Behavioral toxicity | Swimming | Activity (light) | Dm [57] | Dm [57] |
Activity (dark) | Dm [57] | |||
Distance | Dm [57] | |||
Speed | Dm [57] | |||
Feeding | Ingestion rate | Dm [57] | ||
Neurology toxicity | Enzyme | AChE | Dm [46,48,54,56,58] |
Classification | Damage/Effect | Impact Detail | PFOS | PFOA |
---|---|---|---|---|
Developmental toxicity | Growth | Chlorophyll content | Ch [45,74] Cp [75] Sc [45] Mb [76] Mp [76] | So [69] Ps [77] Cp [78] Sc [78] Mb [79] Mp [79] |
Carotenoid content | Mb [76] Mp [76] | Mb [79] Mp [79] | ||
Chloroplast structure | Ch [73] | |||
Growth rate inhibition | So [71,72,73] Ps [80] Ch [45,81] Cp [75] Sc [45] Mb [76] Mp [76] | Ps [80] Ch [79] Cp [78] Sc [78] Sm [82] Ga [82] Ds [83] Pt [83] Mb [79] Mp [79] | ||
Oxidative toxicity | Whole body | CAT, SOD, POD, BCA | So [72] Ch [73] Cp [75] | So [69] Cp [78] Sc [78] |
Lipid peroxidation | MDA | Ch [73] | So [69] | |
Cytotoxicity | Apoptosis | Cell membrane permeability | So [71] Ch [73] | So [71] Cp [78] Sc [78] |
Mitochondrial membrane potential | So [71] | So [71] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, T.; Ye, C.; Wang, T.; Li, X.; Luo, Y. Toxicity of Per- and Polyfluoroalkyl Substances to Aquatic Invertebrates, Planktons, and Microorganisms. Int. J. Environ. Res. Public Health 2022, 19, 16729. https://doi.org/10.3390/ijerph192416729
Ma T, Ye C, Wang T, Li X, Luo Y. Toxicity of Per- and Polyfluoroalkyl Substances to Aquatic Invertebrates, Planktons, and Microorganisms. International Journal of Environmental Research and Public Health. 2022; 19(24):16729. https://doi.org/10.3390/ijerph192416729
Chicago/Turabian StyleMa, Tingting, Chaoran Ye, Tiantian Wang, Xiuhua Li, and Yongming Luo. 2022. "Toxicity of Per- and Polyfluoroalkyl Substances to Aquatic Invertebrates, Planktons, and Microorganisms" International Journal of Environmental Research and Public Health 19, no. 24: 16729. https://doi.org/10.3390/ijerph192416729
APA StyleMa, T., Ye, C., Wang, T., Li, X., & Luo, Y. (2022). Toxicity of Per- and Polyfluoroalkyl Substances to Aquatic Invertebrates, Planktons, and Microorganisms. International Journal of Environmental Research and Public Health, 19(24), 16729. https://doi.org/10.3390/ijerph192416729