Bayesian Analysis of the HR–VO2 Relationship during Cycling and Running in Males and Females
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Measurement of Resting and Exercise HR and VO2
2.3. Statistical Analysis
3. Results
4. Discussion
4.1. HR–VO2 Relationship
4.2. Sex Differences in the HR-VO2 Relationship
4.3. Implications for Exercise Prescription
4.4. Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- US Department of Health and Human Services. Physical Activity Guidelines for Americans, 2nd ed.; Department of Health and Human Services: Washington, DC, USA, 2018.
- Powell, K.E.; King, D.E.; Buchner, D.M.; Campbell, W.W.; DiPietro, L.; Erickson, K.I.; Hillman, C.H.; Jakicic, J.M.; Janz, K.F.; Katzmarzyk, P.T.; et al. The scientific foundation for the Physical Activity Guidelines for Americans, 2nd Edition. J. Phys. Act. Health 2019, 16, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Garber, C.E.; Blissmer, B.; Deschenes, M.R.; Franklin, B.A.; Lamonte, M.J.; Lee, I.M.; Nieman, D.C.; Swain, D.P. American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: Guidance for prescribing exercise. Med. Sci. Sports Exerc. 2011, 43, 1334–1359. [Google Scholar] [CrossRef]
- Piercy, K.L.; Troiano, R.P.; Ballard, R.M.; Carlson, S.A.; Fulton, J.E.; Galuska, D.A.; George, S.M.; Olson, R.D. The physical activity guidelines for Americans. J. Am. Med. Assoc. 2018, 320, 2020–2028. [Google Scholar] [CrossRef]
- Haskell, W.L.; Lee, I.M.; Pate, R.R.; Powell, K.E.; Blair, S.N.; Franklin, B.A.; Macera, C.A.; Heath, G.W.; Thompson, P.D.; Bauman, A. Physical activity and public health: Updated recommendations for adults from the American College of Sports Medicine and the American Heart Association. Circulation 2007, 116, 1081–1093. [Google Scholar] [CrossRef] [Green Version]
- Karvonen, M.J.; Kentala, E.; Mustala, O. The effects of training in heart rate: A longitudinal study. Ann. Med. Exp. Et Biol. Fenn. 1957, 35, 307–315. [Google Scholar]
- American College of Sports Medicine. ACSM’s Guidelines for Exercise Testing and Prescription, 10th ed.; Wolters Kluwer: Philadephia, PA, USA, 2018. [Google Scholar]
- Wilmore, J.H.; Haskell, W.L. Use of heart rate-energy expenditure relationship in the individualized prescription of exercise. Am. J. Clin. Nutr. 1971, 24, 1186–1192. [Google Scholar] [CrossRef]
- Davis, J.A.; Convertino, V.A. A comparison of heart rate methods for predicting endurance training intensity. Med. Sci. Sports 1975, 7, 295–298. [Google Scholar] [CrossRef]
- Swain, D.P.; Franklin, B.A. VO2 reserve and the minimal intensity for improving cardiorespiratory fitness. Med. Sci. Sports Exerc. 2002, 34, 152–157. [Google Scholar] [CrossRef] [Green Version]
- Swain, D.P.; Leutholtz, B.C. Heart rate reserve is equivalent to %VO2reserve, not to %VO2max. Med. Sci. Sports Exerc. 1997, 29, 410–414. [Google Scholar] [CrossRef]
- Swain, D.P.; Abernathy, K.S.; Smith, C.S.; Lee, S.J.; Bunn, S.A. Target heart rates for the development of cardiorespiratory fitness. Med. Sci. Sports Exerc. 1994, 26, 112–116. [Google Scholar] [CrossRef]
- American College of Sports Medicine. ACSM’s Guidelines for Exercise Testing and Prescription, 5th ed.; Williams & Wilkins: Baltimore, MD, USA, 1995. [Google Scholar]
- American College of Sports Medicine. The recommended quantity and quality of exercise for developing and maintaining cardiorespiratory and muscular fitness in healthy adults. Med. Sci. Sports Exerc. 1990, 22, 265–274. [Google Scholar]
- Byrne, N.M.; Hills, A.P. Relationship between HR and VO2 in the obese. Med. Sci. Sports Exerc. 2002, 34, 1419–1427. [Google Scholar] [CrossRef]
- Lounana, J.; Campion, F.; Noakes, T.D.; Medelli, J. Relationship between %HRmax, %HR reserve, %VO2max, and %VO2 reserve in elite cyclists. Med. Sci. Sports Exerc. 2007, 39, 350–357. [Google Scholar] [CrossRef]
- Scharff-Olson, M.; Williford, H.N.; Smith, F.H. The heart rate VO2 relationship of aerobic dance: A comparison of target heart rate methods. J. Sports Med. Phys. Fit. 1992, 32, 372–377. [Google Scholar]
- Swain, D.P.; Leutholtz, B.C.; King, D.E.; Haas, L.A.; Branch, J.D. Relationship between % heart rate reserve and % VO2reserve in treadmill exercise. Med. Sci. Sports Exerc. 1998, 30, 318–321. [Google Scholar] [CrossRef]
- Brawner, C.A.; Keteyian, S.J.; Ehrman, J.K. The relationship of heart rate reserve to VO2 reserve in patients with heart disease. Med. Sci. Sports Exerc. 2002, 34, 418–422. [Google Scholar] [CrossRef]
- Gaskill, S.E.; Bouchard, C.; Rankinen, T.; Rao, D.C.; Wilmore, J.H.; Leon, A.S.; Skinner, J.S. %Heart rate reserve is better related to %VO2max than to %VO2reserve: The Heritage Family Study. Med. Sci. Sports Exerc. 2004, 36, S3. [Google Scholar]
- Pollock, M.L.; Gaesser, G.A.; Butcher, J.D.; Despres, J.-P.; Dishman, R.K.; Franklin, B.A.; Garber, C.E. The recommended quantity and quality of exercise for developing and maintaining cardiorespiratory and muscular ftness, and fexibility in adults. Med. Sci. Sports Exerc. 1998, 30, 975–991. [Google Scholar]
- Rotstein, A.; Meckel, Y. Estimation of %VO2 reserve from heart rate during arm exercise and running. Eur. J. Appl. Physiol. 2000, 83, 545–550. [Google Scholar] [CrossRef]
- Roecker, K.; Striegel, H.; Dickhuth, H.H. Heart-rate recommendations: Transfer between running and cycling exercise? Int. J. Sports Med. 2003, 24, 173–178. [Google Scholar] [CrossRef]
- Franklin, B.A.; Hodgson, J.; Buskirk, E.R. Relationship between maximal O2 uptake and percent maximal heart rate in women. Res. Q. Exerc. Sport 1980, 51, 616–624. [Google Scholar] [CrossRef]
- Fairbarn, M.S.; Blackie, S.P.; McElvaney, N.G.; Wiggs, B.R.; Pare, P.D.; Pardy, R.L. Prediction of heart rate and oxygen uptake during incremental maximal exercise in healthy adults. Chest 1994, 105, 1365–1369. [Google Scholar] [CrossRef]
- Cunha, F.A.; Farinatti, P.T.V.; Midgley, A.W. Methodological and practical application issues in exercise prescription using the heart rate reserve and oxygen uptake reserve methods. J. Sci. Med. Sport. 2011, 14, 46–57. [Google Scholar] [CrossRef]
- Cunha, F.A.; Midgley, A.W.; Monteiro, W.D.; Farinatti, P.T.V. Influence of cardiopulmonary exercise testing protocol and resting VO2 assessment on %HRmax, %HRR, and VO2R relationships. Int. J. Sports Med. 2010, 31, 319–326. [Google Scholar] [CrossRef] [Green Version]
- Meyer, T.; Gabriel, H.H.; Kindermann, W. Is determination of exercise intensities as percentages of VO2max or HRmax adequate? Med. Sci. Sports Exerc. 1999, 31, 1342–1345. [Google Scholar] [CrossRef]
- Skinner, J.S.; Gaskill, S.E.; Rankinen, T.; Leon, A.S.; Rao, D.C.; WIllmore, J.H.; Bouchard, C. Heart rate versus %VO2max: Age, sex, race, initial fitness, and training response-Heritage. Med. Sci. Sports Exerc. 2003, 35, 1908–1913. [Google Scholar] [CrossRef]
- Noble, B.J.; Borg, G.A.V.; Jacobs, I.A. category-ratio perceived exertion scale: Relationship to blood and muscle lactates and heart rate. Med. Sci. Sports Exerc. 1983, 15, 523–528. [Google Scholar] [CrossRef]
- George, J.D. Alternative approach to maximal exercise testing and VO2max prediction in college students. Res. Q. Exerc. Sport. 1996, 67, 452–457. [Google Scholar] [CrossRef]
- Larsen, G.E.; George, J.D.; Alexander, J.L.; Fellingham, G.W.; Aldana, S.G.; Parcell, A.C. Prediction of maximum oxygen consumption from walking, jogging, or running. Res. Q. Exerc. Sport 2002, 73, 66–72. [Google Scholar] [CrossRef]
- Vehrs, P.R.; Fellingham, G.W. Heart rate and VO2 responses to cycle ergometry in Caucasian and African American men. Meas. Phys. Educ. Exerc. Sci. 2006, 10, 109–118. [Google Scholar] [CrossRef]
- Vehrs, P.R.; George, J.D.; Fellingham, G.W. Prediction of VO2max before, during, and after 16 weeks of endurance training. Res. Q. Exerc. Sport 1998, 69, 297–303. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environments for Statistical Computing. Available online: https://www.r-project.org/ (accessed on 13 August 2021).
- Plummer, M.; Stukalov, A.; Denwood, M. Rjags: Bayesian Graphical Models Using MCMC. Available online: https://CRAN.R-project.org/package=rjags (accessed on 29 July 2022).
- Gelman, A.; Rubin, D.B. Inferences from iterative simulation using multiple sequences. Stat. Sci. 1992, 7, 457–511. [Google Scholar] [CrossRef]
- Lewis, S.; Raftery, A.E. One long run with diagnostics: Implementation strategies for Markov Chain Monte Carlo. Stat. Sci. 1992, 7, 493–497. [Google Scholar]
- Plummer, M.; Best, K.; Cowles, K.; Vines, K. CODA: Convergence Diagnostics and Output Analysis for MCMC. R News 2006, 6, 7–11. [Google Scholar]
- Marini, C.F.; Sisti, D.; Leon, A.S.; Skinner, J.S.; Sarzynski, M.A.; Bouchard, C.; Rocchi, M.B.L.; Piccoli, G.; Stocchi, V.; Federici, A.; et al. HRR and VO2R fractions are not equivalent: Is it time to rethink aerobic exercise prescription methods? Med. Sci. Sports Exerc. 2021, 53, 174–182. [Google Scholar] [CrossRef]
- De Lucas, R.D.; De Mattos, B.K.; Tremel, A.D.C.; Pianezzer, L.; De Souza, K.M. A novel treadmill protocol for uphill running assessment: The incline incremental running test (IIRT). Res. Sports Med. 2021, 30, 554–565. [Google Scholar] [CrossRef]
Male (n = 21) | Female (n = 20) | |
---|---|---|
Age | 25.2 ± 5.4 | 22.0 ± 5.2 |
Body Mass (kg) a | 72.9 ± 10.8 | 58.8 ± 6.8 |
Height (cm) a | 180.6 ± 9.5 | 163.8 ± 5.7 |
BMI (kg/m2) | 22.3 ± 2.4 | 21.9 ± 2.3 |
Male (n = 21) | Female (n = 20) | |
---|---|---|
Resting | ||
Resting HR (bpm) a | 53.9 ± 6.3 | 59.1 ± 7.7 |
Resting VO2 (mL/kg/min) a | 3.7 ± 0.35 | 3.4 ± 0.37 |
Treadmill maximal exercise test | ||
Maximal RER a | 1.20 ± 0.09 | 1.14 ± 0.08 |
Maximal HR (bpm) | 183.0 ± 11.9 | 188.6 ± 12.4 |
Maximal VO2 (mL/kg/min) a | 57.3 ± 7.1 | 45.7 ± 3.3 |
Heart rate reserve (bpm) | 129.1 ± 13.0 | 129.5 ± 13.9 |
VO2 reserve (mL/kg/min) a | 53.6 ± 7.0 | 42.3 ± 3.0 |
Cycling maximal exercise test | ||
Maximal RER | 1.20 ± 0.06 | 1.18 ± 0.05 |
Maximal HR (bpm) | 180.0 ± 11.5 | 182.7 ± 12.1 |
Peak VO2 (mL/kg/min) a | 54.5 ± 7.1 | 43.7 ± 5.8 |
Heart rate reserve (bpm) | 126.1 ± 12.6 | 123.6 ± 13.5 |
VO2 reserve (mL/kg/min) a | 50.7 ± 7.0 | 40.3 ± 5.6 |
Treadmill Running | Cycling | |||
---|---|---|---|---|
Males | Females | Males | Females | |
%HRR vs. %VO2max | ||||
Intercept | 12.42 ± 2.24 | 8.44 ± 2.27 | 9.99 ± 1.87 | 10.78 ± 2.02 |
Credible interval | (8.00, 16.88) | (3.98, 12.96) | (6.29, 13.64) | (6.78, 14.80) |
Slope | 0.876 ± 0.023 * | 0.943 ± 0.024 * | 0.912 ± 0.018 | 0.931 ± 0.021 |
Credible interval | (0.831, 0.921) | (0.895, 0.990) | (0.876, 0.947) | (0.890, 0.973) |
%HRR vs. %VO2Res | ||||
Intercept | 18.26 ± 2.09 | 15.38 ± 2.11 | 16.38 ± 1.83 | 18.06 ± 1.9 |
Credible interval | (14.02, 22.4) | (11.2, 19.54) | (12.78, 20.0) | (14.19, 21.92) |
Slope | 0.818 ± 0.021 * | 0.873 ± 0.023 * | 0.849 ± 0.017 | 0.858 ± 0.019 |
Credible interval | (0.777, 0.858) | (0.828, 0.918) | (0.815, 0.884) | (0.821, 0.896) |
Percent VO2max or VO2R | |||||
---|---|---|---|---|---|
45% | 55% | 65% | 75% | 85% | |
%HRR vs. %VO2max—MEN | |||||
Treadmill running | 52% * | 61% * | 69% | 78% | 87% |
(47.1, 56.7) | (55.7, 65.6) | (64.3, 74.6) | (72.8, 83.6) | (81.3, 92.7) | |
Cycling | 51% * | 60% * | 69% | 78% | 87% |
(47.1, 55.0) | (56.1, 64.3) | (65.0, 73.6) | (73.9, 82.8) | (82.8, 92.2) | |
%HRR vs. %VO2max—WOMEN | |||||
Treadmill running | 51% * | 60% * | 70% | 79% | 89% |
(46.0, 55.7) | (55.2, 65.3) | (64.4, 74.9) | (73.6, 84.6) | (82.7, 94.3) | |
Cycling | 53% * | 62% * | 71% * | 81% * | 90% |
(48.4, 57.0) | (57.5, 66.4) | (66.6, 75.9) | (75.7, 85.5) | (84.8, 95.1) | |
%HRR vs. %VO2R—MEN | |||||
Treadmill running | 55% * | 63% * | 71% * | 80% * | 88% |
(50.6, 59.5) | (58.6, 67.8) | (66.5, 76.2) | (74.6, 84.6) | (82.5, 93.1) | |
Cycling | 55% * | 63% * | 71% * | 80% * | 88% |
(50.7, 58.4) | (59.1, 67.0) | (67.5, 75.7) | (75.7, 84.4) | (84.1, 93.1) | |
%HRR vs. %VO2R—WOMEN | |||||
Treadmill running | 55% * | 63% * | 72% * | 81% * | 90% |
(50.2, 59.2) | (58.8, 68.1) | (67.3, 77.1) | (75.7, 86.1) | (84.2, 95.1) | |
Cycling | 57% * | 65% * | 74% * | 82% * | 91% * |
(52.7, 60.8) | (61.1, 69.5) | (69.5, 78.3) | (77.9, 87.1) | (86.2, 95.9) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vehrs, P.R.; Tafuna’i, N.D.; Fellingham, G.W. Bayesian Analysis of the HR–VO2 Relationship during Cycling and Running in Males and Females. Int. J. Environ. Res. Public Health 2022, 19, 16914. https://doi.org/10.3390/ijerph192416914
Vehrs PR, Tafuna’i ND, Fellingham GW. Bayesian Analysis of the HR–VO2 Relationship during Cycling and Running in Males and Females. International Journal of Environmental Research and Public Health. 2022; 19(24):16914. https://doi.org/10.3390/ijerph192416914
Chicago/Turabian StyleVehrs, Pat R., Nicole D. Tafuna’i, and Gilbert W. Fellingham. 2022. "Bayesian Analysis of the HR–VO2 Relationship during Cycling and Running in Males and Females" International Journal of Environmental Research and Public Health 19, no. 24: 16914. https://doi.org/10.3390/ijerph192416914
APA StyleVehrs, P. R., Tafuna’i, N. D., & Fellingham, G. W. (2022). Bayesian Analysis of the HR–VO2 Relationship during Cycling and Running in Males and Females. International Journal of Environmental Research and Public Health, 19(24), 16914. https://doi.org/10.3390/ijerph192416914