RGB-Depth Camera-Based Assessment of Motor Capacity: Normative Data for Six Standardized Motor Tasks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Instrumental Motion Analysis
2.3. Data Analysis
3. Results
3.1. Normative Values
3.2. Associations with Age, Sex, Height, and Weight
3.3. Usage of Normative Values
4. Discussion
4.1. Short Comfortable and Maximum Speed Walk (SCSW and SMSW)
4.2. Short Line Walk (SLW)
4.3. Stepping in Place (SIP)
4.4. Standing up and Sitting down (SAS)
4.5. Postural Control (POCO)
4.6. Z-Score Transformation and Visualization
4.7. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Christopher, A.; Kraft, E.; Olenick, H.; Kiesling, R.; Doty, A. The reliability and validity of the Timed Up and Go as a clinical tool in individuals with and without disabilities across a lifespan: A systematic review. Disabil. Rehabil. 2021, 43, 1799–1813. [Google Scholar] [CrossRef] [PubMed]
- Motl, R.W.; Cohen, J.A.; Benedict, R.; Phillips, G.; LaRocca, N.; Hudson, L.D.; Rudick, R. Validity of the timed 25-foot walk as an ambulatory performance outcome measure for multiple sclerosis. Mult. Scler. 2017, 23, 704–710. [Google Scholar] [CrossRef] [PubMed]
- Bohannon, R.W.; Wang, Y.C. Four-Meter Gait Speed: Normative Values and Reliability Determined for Adults Participating in the NIH Toolbox Study. Arch. Phys. Med. Rehabil. 2019, 100, 509–513. [Google Scholar] [CrossRef] [PubMed]
- Bohannon, R.W.; Andrews, A.W. Normal walking speed: A descriptive meta-analysis. Physiotherapy 2011, 97, 182–189. [Google Scholar] [CrossRef]
- Latorre, J.; Colomer, C.; Alcañiz, M.; Llorens, R. Gait analysis with the Kinect v2: Normative study with healthy individuals and comprehensive study of its sensitivity, validity, and reliability in individuals with stroke. J. Neuroeng. Rehabil. 2019, 16, 97. [Google Scholar] [CrossRef] [Green Version]
- Mirelman, A.; Bernad-Elazari, H.; Nobel, T.; Thaler, A.; Peruzzi, A.; Plotnik, M.; Giladi, N.; Hausdorff, J.M. Effects of Aging on Arm Swing during Gait: The Role of Gait Speed and Dual Tasking. PLoS ONE 2015, 10, e0136043. [Google Scholar] [CrossRef] [Green Version]
- Plate, A.; Sedunko, D.; Pelykh, O.; Schlick, C.; Ilmberger, J.R.; Bötzel, K. Normative data for arm swing asymmetry: How (a)symmetrical are we? Gait Posture 2015, 41, 13–18. [Google Scholar] [CrossRef]
- Ganz, N.; Gazit, E.; Giladi, N.; Dawe, R.J.; Mirelman, A.; Buchman, A.S.; Hausdorff, J.M. Automatic Quantification of Tandem Walking Using a Wearable Device: New Insights Into Dynamic Balance and Mobility in Older Adults. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2021, 76, 101–107. [Google Scholar] [CrossRef]
- Goble, D.J.; Baweja, H.S. Normative Data for the BTrackS Balance Test of Postural Sway: Results from 16,357 Community-Dwelling Individuals Who Were 5 to 100 Years Old. Phys. Ther. 2018, 98, 779–785. [Google Scholar] [CrossRef] [Green Version]
- Patti, A.; Bianco, A.; Şahin, N.; Sekulic, D.; Paoli, A.; Iovane, A.; Messina, G.; Gagey, P.M.; Palma, A. Postural control and balance in a cohort of healthy people living in Europe: An observational study. Medicine 2018, 97, e13835. [Google Scholar] [CrossRef]
- Clark, R.A.; Pua, Y.H.; Oliviera, C.C.; Bower, K.J.; Thilarajah, S.; McGaw, R.; Hasanki, K.; Mentiplay, B. Reliability and concurrent validity of the Microsoft Xbox One Kinect for assessment of standing balance and postural control. Gait Posture 2015, 42, 210–213. [Google Scholar] [CrossRef]
- Mancini, M.; Salarian, A.; Carlson-Kuhta, P.; Zampieri, C.; King, L.; Chiari, L.; Horak, F.B. ISway: A sensitive, valid and reliable measure of postural control. J. Neuroeng. Rehabil. 2012, 9, 59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dalton, C.; Sciadas, R.; Nantel, J. Executive function is necessary for the regulation of the stepping activity when stepping in place in older adults. Aging Clin. Exp. Res. 2016, 28, 909–915. [Google Scholar] [CrossRef] [Green Version]
- Garcia, R.K.; Nelson, A.J.; Ling, W.; Van Olden, C. Comparing stepping-in-place and gait ability in adults with and without hemiplegia. Arch. Phys. Med. Rehabil. 2001, 82, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Nantel, J.; de Solages, C.; Bronte-Stewart, H. Repetitive stepping in place identifies and measures freezing episodes in subjects. Gait Posture 2011, 34, 329–333. [Google Scholar] [CrossRef] [PubMed]
- Van Lummel, R.C.; Ainsworth, E.; Lindemann, U.; Zijlstra, W.; Chiari, L.; Van Campen, P.; Hausdorff, J.M. Automated approach for quantifying the repeated sit-to-stand using one body fixed sensor in young and older adults. Gait Posture 2013, 38, 153–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weiss, A.; Herman, T.; Plotnik, M.; Brozgol, M.; Giladi, N.; Hausdorff, J.M. An instrumented timed up and go: The added value of an accelerometer for identifying fall risk in idiopathic fallers. Physiol. Meas. 2011, 32, 2003–2018. [Google Scholar] [CrossRef]
- Weiss, A.; Herman, T.; Plotnik, M.; Brozgol, M.; Maidan, I.; Giladi, N.; Gurevich, T.; Hausdorff, J.M. Can an accelerometer enhance the utility of the Timed Up & Go Test when evaluating patients with Parkinson’s disease? Med. Eng. Phys. 2010, 32, 119–125. [Google Scholar]
- Kralj, A.; Jaeger, R.J.; Munih, M. Analysis of standing up and sitting down in humans: Definitions and normative data presentation. J. Biomech. 1990, 23, 1123–1138. [Google Scholar] [CrossRef]
- Mourey, F.; Pozzo, T.; Rouhier-Marcer, I.; Didier, J.P. A kinematic comparison between elderly and young subjects standing up from and sitting down in a chair. Age Ageing 1998, 27, 137–146. [Google Scholar] [CrossRef] [Green Version]
- Grinberg, Y.; Berkowitz, S.; Hershkovitz, L.; Malcay, O.; Kalron, A. The ability of the instrumented tandem walking tests to discriminate fully ambulatory people with MS from healthy adults. Gait Posture 2019, 70, 90–94. [Google Scholar] [CrossRef] [PubMed]
- Otte, K.; Kayser, B.; Mansow-Model, S.; Verrel, J.; Paul, F.; Brandt, A.U.; Schmitz-Hübsch, T. Accuracy and Reliability of the Kinect Version 2 for Clinical Measurement of Motor Function. PLoS ONE 2016, 11, e0166532. [Google Scholar] [CrossRef] [Green Version]
- Otte, K.; Ellermeyer, T.; Vater, T.S.; Voigt, M.; Kroneberg, D.; Rasche, L.; Krüger, T.; Röhling, H.M.; Kayser, B.; Mansow-Model, S.; et al. Instrumental Assessment of Stepping in Place Captures Clinically Relevant Motor Symptoms of Parkinson’s Disease. Sensors 2020, 20, 5465. [Google Scholar] [CrossRef] [PubMed]
- Morrison, C.; D’Souza, M.; Huckvale, K.; Dorn, J.F.; Burggraaff, J.; Kamm, C.P.; Steinheimer, S.M.; Kontschieder, P.; Criminisi, A.; Uitdehaag, B.; et al. Usability and Acceptability of ASSESS MS: Assessment of Motor Dysfunction in Multiple Sclerosis Using Depth-Sensing Computer Vision. JMIR Hum. Factors 2015, 2, e11. [Google Scholar] [CrossRef] [Green Version]
- Otte, K.; Ellermeyer, T.; Suzuki, M.; Röhling, H.M.; Kuroiwa, R.; Cooper, G.; Mansow-Model, S.; Mori, M.; Zimmermann, H.; Brandt, A.U.; et al. Cultural bias in motor function patterns: Potential relevance for predictive, preventive, and personalized medicine. EPMA J. 2021, 12, 91–101. [Google Scholar] [CrossRef] [PubMed]
- Behrens, J.R.; Mertens, S.; Krüger, T.; Grobelny, A.; Otte, K.; Mansow-Model, S.; Gusho, E.; Paul, F.; Brandt, A.U.; Schmitz-Hübsch, T. Validity of visual perceptive computing for static posturography in patients with multiple sclerosis. Mult. Scler. 2016, 22, 1596–1606. [Google Scholar] [CrossRef] [PubMed]
- Behrens, J.; Pfüller, C.; Mansow-Model, S.; Otte, K.; Paul, F.; Brandt, A.U. Using perceptive computing in multiple sclerosis—The Short Maximum Speed Walk test. J. Neuroeng. Rehabil. 2014, 11, 89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grobelny, A.; Behrens, J.R.; Mertens, S.; Otte, K.; Mansow-Model, S.; Krüger, T.; Gusho, E.; Bellmann-Strobl, J.; Paul, F.; Brandt, A.U.; et al. Maximum walking speed in multiple sclerosis assessed with visual perceptive computing. PLoS ONE 2017, 12, e0189281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, A.B.; Otte, K.; Baskow, I.; Ehlen, F.; Maslahati, T.; Mansow-Model, S.; Schmitz-Hübsch, T.; Behnia, B.; Roepke, S. Motor signature of autism spectrum disorder in adults without intellectual impairment. Sci. Rep. 2022, 12, 7670. [Google Scholar] [CrossRef]
- APDM Mobility Lab User Guide, V2R Version 3. Available online: https://share.apdm.com/documentation/MobilityLabUserGuide.pdf (accessed on 10 September 2022).
- Holmstrom, L. Normative Data Used in Mobility Lab v2. Available online: https://support.apdm.com/hc/en-us/articles/214504686-Normative-Data-Used-in-Mobility-Lab-v2 (accessed on 10 September 2022).
- Alves, S.A.; Ehrig, R.M.; Raffalt, P.C.; Bender, A.; Duda, G.N.; Agres, A.N. Quantifying Asymmetry in Gait: The Weighted Universal Symmetry Index to Evaluate 3D Ground Reaction Forces. Front. Bioeng. Biotechnol. 2020, 8, 579511. [Google Scholar] [CrossRef]
- Röhling, H.M.; Althoff, P.; Arsenova, R.; Drebinger, D.; Gigengack, N.; Chorschew, A.; Kroneberg, D.; Rönnefarth, M.; Ellermeyer, T.; Rosenkranz, S.C.; et al. Proposal for Post Hoc Quality Control in Instrumented Motion Analysis Using Markerless Motion Capture: Development and Usability Study. JMIR Hum. Factors 2022, 9, e26825. [Google Scholar] [CrossRef] [PubMed]
- Zijlstra, W.; Prokop, T.; Berger, W. Adaptability of leg movements during normal treadmill walking and split-belt walking in children. Gait Posture 1996, 4, 212–221. [Google Scholar] [CrossRef]
- Schwesig, R.; Leuchte, S.; Fischer, D.; Ullmann, R.; Kluttig, A. Inertial sensor based reference gait data for healthy subjects. Gait Posture 2011, 33, 673–678. [Google Scholar] [CrossRef] [PubMed]
- Schneiders, A.G.; Sullivan, S.J.; Gray, A.R.; Hammond-Tooke, G.D.; McCrory, P.R. Normative values for three clinical measures of motor performance used in the neurological assessment of sports concussion. J. Sci. Med. Sport 2010, 13, 196–201. [Google Scholar] [CrossRef]
- Velázquez-Pérez, L.; Rodriguez-Labrada, R.; González-Garcés, Y.; Arrufat-Pie, E.; Torres-Vega, R.; Medrano-Montero, J.; Ramirez-Bautista, B.; Vazquez-Mojena, Y.; Auburger, G.; Horak, F.; et al. Prodromal Spinocerebellar Ataxia Type 2 Subjects Have Quantifiable Gait and Postural Sway Deficits. Mov. Disord. 2021, 36, 471–480. [Google Scholar] [CrossRef]
- St-Hilaire, A.; Parent, C.; Potvin, O.; Bherer, L.; Gagnon, J.F.; Joubert, S.; Belleville, S.; Wilson, M.A.; Koski, L.; Rouleau, I.; et al. Trail Making Tests A and B: Regression-based normative data for Quebec French-speaking mid and older aged adults. Clin. Neuropsychol. 2018, 32 (Suppl. 1), 77–90. [Google Scholar] [CrossRef]
- Plouvier, S.; Carton, M.; Cyr, D.; Sabia, S.; Leclerc, A.; Zins, M.; Descatha, A. Socioeconomic disparities in gait speed and associated characteristics in early old age. BMC Musculoskelet. Disord. 2016, 17, 178. [Google Scholar] [CrossRef] [Green Version]
- Al-Obaidi, S.; Wall, J.C.; Al-Yaqoub, A.; Al-Ghanim, M. Basic gait parameters: A comparison of reference data for normal subjects 20 to 29 years of age from Kuwait and Scandinavia. J. Rehabil. Res. Dev. 2003, 40, 361–366. [Google Scholar] [CrossRef]
Study | Sample Size (% Female) | Age Mean (SD; Range) [Years] | Height Mean (SD; Range) [cm] | Weight Mean (SD; Range) [kg] | BMI Mean (SD; Range) [kg/m2] |
---|---|---|---|---|---|
All | 133 (56%) | 36.83 (10.44; 20–60) | 172.89 (9.34; 153–194) | 71.80 (13.86; 46–115) | 23.94 (3.79; 17.75–34.33) |
ASD | 41 (51%) | 33.88 (7.99; 20–49) | 174.17 (9.65; 155–194) | 73.85 (16.06; 46–115) | 24.24 (4.41; 17.75–33.90) |
VIMS | 57 (63%) | 34.14 (9.06; 20–60) | 172.16 (9.66; 153–193) | 70.86 (13.69; 47–110) | 23.83 (3.79; 18.29–34.33) |
Valkinect | 35 (51%) | 44.69 (11.23; 22–60) | 172.60 (8.52; 157–190) | 70.91 (11.24; 53–97) | 23.76 (3.01; 18.93–32.04) |
Task Description | Movement Signal and Spatiotemporal Parameter Description | Parameter Names |
---|---|---|
Short comfortable speed walk (SCSW) | ||
The participant stands just outside the sensor range and walks towards the sensor at comfortable speed in response to an auditory cue | Mean speed derived from pelvic center landmark movement in walk direction | Gait speed [m/s] |
Mean step length, mean step width, and mean step duration over all (left and right) detected steps derived from left and right ankle landmark movement in walk direction | Step length [cm]; Step width [cm]; Step duration [s] | |
Mean gait cadence extrapolated from detected steps and recording length | Gait cadence [steps/min] | |
Mean angular arm swing amplitude (averaged over left and right averages) and absolute symmetry angle [32] (between left and right mean angular arm swing amplitude) derived from left and right wrist landmarks relative to manubrium landmark movement in anterior-posterior direction | Arm angular amplitude [°]; Arm symmetry angle [n.u.] | |
Short maximum speed walk (SMSW) | ||
The participant stands just outside the sensor range and walks towards the sensor at maximum speed in response to an auditory cue | Mean speed derived from pelvic center landmark movement in walk direction | Gait speed [m/s] |
Short line walk (SLW) | ||
The participant stands just outside the sensor area and, in response to an auditory cue, walks towards the sensor in tandem gait, i.e., walks on an imaginary line with the heels touching the toes at each step | Mean and coefficient of variation of progression speed derived from pelvic center landmark movement in walk direction | Progression speed [°/s]; Relative progression variability [%] |
Angular standard deviation and speed of upper body sway starting from pelvic center landmark | Roll sway variability [°]; Roll sway speed [°/s] | |
Line walk cadence derived from recording length and peaks of left and right ankle landmark movement relative to respective hip landmarks | Line walk cadence [steps/min] | |
Angular standard deviation and speed of arm movement angle (averaged over left and right) derived from elbow landmarks relative to respective shoulder landmarks movement in 3D | Arm variability [°]; Arm speed [°/s] | |
Stepping in place (SIP) | ||
The participant walks on the spot at comfortable pace for 40 s | Mean knee amplitude, mean step duration, and mean stance duration (averaged over left and right averages) derived from knee landmark movement in anterior-posterior direction | Knee amplitude [m]; Step duration [s]; Stance duration [s] |
Mean stepping cadence extrapolated from detected steps and recording length | Stepping cadence [steps/min] | |
Absolute symmetry angle [32] (between left and right mean knee amplitudes) | Knee symmetry angle [n.u.] | |
Mean coefficient of variation of left and right “stride times” measured as time between knee amplitude peaks (i.e., slightly adapted from [23]) | Arrhythmicity [%] | |
Standing up and sitting down (SAS) | ||
The participant sits on an armless chair, arms hanging to the side, stands up after an auditory cue and sits down again after a second auditory cue | Speed of manubrium landmark movement in vertical and anterior-posterior direction | Transition time (up) [s]; Transition time (down) [s] |
Range of manubrium landmark movement in anterior-posterior direction | AP deflection range (up) [m]; AP deflection range (down) [m] | |
Postural control (POCO) | ||
The participant stands with closed feet and open eyes facing the sensor for 20 s; after an auditory cue subject closes eyes and remains in this position for another 20 s | Angular range and mean speed of the body sway vector between mean ankle landmark position and pelvic center landmark during eyes closed and eyes open measurement conditions in pitch, roll, and 3D direction | Pitch/Roll/3D sway range (open eyes) [°]; Pitch/Roll/3D sway speed (open eyes) [°/s]; Pitch/Roll/3D sway range (closed eyes) [°]; Pitch/Roll/3D sway speed (closed eyes) [°/s] |
Romberg ratio of sway range and sway speed in pitch, roll, and 3D direction—i.e., value for closed eyes condition divided by respective value for open eyes condition | RR of pitch/roll/3D sway range [n.u.]; RR of pitch/roll/3D sway speed [n.u.] |
Spatiotemporal Parameter | Mean | SD | CoV | Q1 | Q3 | Mean for Repeated (100×) 5-Fold CV |
---|---|---|---|---|---|---|
Short comfortable speed walk (SCSW); n = 126 | ||||||
Gait speed [m/s] | 1.16 | 0.17 | 0.15 | 1.06 | 1.28 | −0.05 |
Step length [cm] | 69.35 | 7.69 | 0.11 | 64.85 | 74.38 | 0.14 |
Step width [cm] | 10.19 | 2.72 | 0.27 | 8.24 | 11.77 | 0.13 |
Step duration [s] | 0.52 | 0.05 | 0.10 | 0.48 | 0.56 | −0.03 |
Gait cadence [steps/min] | 112.07 | 10.55 | 0.09 | 103.97 | 120.04 | −0.04 |
Arm angular amplitude [°] | 26.48 | 10.81 | 0.41 | 18.19 | 32.45 | −0.14 |
Arm symmetry angle [n.u.] | 0.23 | 0.16 | 0.72 | 0.11 | 0.30 | −0.10 |
Short maximum speed walk (SMSW); n = 90 | ||||||
Gait speed [m/s] | 1.66 | 0.18 | 0.11 | 1.53 | 1.77 | −0.08 |
Short line walk (SLW); n = 128 | ||||||
Progression speed [m/s] | 0.35 | 0.10 | 0.28 | 0.29 | 0.39 | −0.07 |
Relative progression variability [%] | 0.33 | 0.08 | 0.24 | 0.27 | 0.38 | −0.09 |
Roll sway variability [°] | 1.80 | 0.76 | 0.42 | 1.21 | 2.16 | −0.12 |
Roll sway speed [°/s] | 5.58 | 1.90 | 0.34 | 4.37 | 6.47 | −0.14 |
Line walk cadence [steps/min] | 71.78 | 16.35 | 0.23 | 60.50 | 81.39 | −0.07 |
Arm variability [°] | 5.32 | 3.27 | 0.62 | 2.94 | 6.47 | −0.12 |
Arm speed [°/s] | 18.20 | 7.54 | 0.41 | 13.24 | 20.74 | −0.06 |
Stepping in place (SIP); n = 121 | ||||||
Knee amplitude [m] | 0.18 | 0.06 | 0.31 | 0.15 | 0.23 | −0.15 |
Step duration [s] | 0.83 | 0.11 | 0.13 | 0.74 | 0.88 | −0.11 |
Stance duration [s] | 0.39 | 0.15 | 0.38 | 0.28 | 0.47 | 0.01 |
Stepping cadence [steps/min] | 98.29 | 16.13 | 0.16 | 87.07 | 111.00 | −0.06 |
Knee symmetry angle [n.u.] | 0.06 | 0.05 | 0.87 | 0.02 | 0.09 | −0.14 |
Arrhythmicity [%] | 6.00 | 0.84 | 0.14 | 5.37 | 6.50 | −0.08 |
Standing up and sitting down (SAS); n = 90 | ||||||
Transition time (up) [s] | 1.53 | 0.19 | 0.12 | 1.39 | 1.63 | −0.16 |
Transition time (down) [s] | 1.66 | 0.22 | 0.13 | 1.48 | 1.80 | −0.09 |
AP deflection range (up) [m] | 0.37 | 0.07 | 0.19 | 0.32 | 0.41 | −0.11 |
AP deflection range (down) [m] | 0.40 | 0.08 | 0.20 | 0.34 | 0.46 | −0.11 |
Postural control (POCO); n = 113 | ||||||
Pitch sway range (open eyes) [°] | 0.91 | 0.43 | 0.48 | 0.59 | 1.15 | −0.13 |
Roll sway range (open eyes) [°] | 0.89 | 0.37 | 0.42 | 0.64 | 1.09 | −0.11 |
3D sway range (open eyes) [°] | 0.92 | 0.41 | 0.44 | 0.67 | 1.10 | −0.14 |
Pitch sway speed (open eyes) [°/s] | 0.14 | 0.05 | 0.39 | 0.10 | 0.16 | −0.10 |
Roll sway speed (open eyes) [°/s] | 0.15 | 0.06 | 0.37 | 0.10 | 0.18 | −0.11 |
3D sway speed (open eyes) [°/s] | 0.22 | 0.07 | 0.34 | 0.17 | 0.26 | −0.10 |
Pitch sway range (closed eyes) [°] | 1.12 | 0.50 | 0.45 | 0.74 | 1.40 | −0.16 |
Roll sway range (closed eyes) [°] | 1.03 | 0.43 | 0.41 | 0.73 | 1.27 | −0.10 |
3D sway range (closed eyes) [°] | 1.09 | 0.50 | 0.46 | 0.71 | 1.41 | −0.15 |
Pitch sway speed (closed eyes) [°/s] | 0.18 | 0.06 | 0.36 | 0.14 | 0.22 | −0.08 |
Roll sway speed (closed eyes) [°/s] | 0.20 | 0.08 | 0.39 | 0.14 | 0.25 | −0.07 |
3D sway speed (closed eyes) [°/s] | 0.30 | 0.10 | 0.33 | 0.21 | 0.34 | −0.06 |
RR of pitch sway range [n.u.] | 1.42 | 0.75 | 0.53 | 0.94 | 1.75 | −0.13 |
RR of roll sway range [n.u.] | 1.29 | 0.62 | 0.49 | 0.84 | 1.64 | −0.13 |
RR of 3D sway range [n.u.] | 1.33 | 0.69 | 0.52 | 0.87 | 1.65 | −0.14 |
RR of pitch sway speed [n.u.] | 1.46 | 0.62 | 0.43 | 1.03 | 1.77 | −0.14 |
RR of roll sway speed [n.u.] | 1.43 | 0.62 | 0.43 | 0.90 | 1.89 | −0.15 |
RR of 3D sway speed [n.u.] | 1.41 | 0.51 | 0.36 | 0.99 | 1.64 | −0.13 |
Spatiotemporal Parameter | β0 | β0 p-Value; 95% CI | βAge | βAge p-Value; 95% CI | βSex | βSex p-Value; 95% CI | βHeight | βHeight p-Value; 95% CI | βWeight | βWeight p-Value; 95% CI | sϵ |
---|---|---|---|---|---|---|---|---|---|---|---|
SCSW step length [cm] | −2.176 | 0.882; [−31.187, 26.835] | −0.073 | 0.234; [−0.193, 0.048] | −0.913 | 0.567; [−4.062, 2.236] | 0.510 | <0.001; [0.331, 0.689] | −0.181 | <0.001; [−0.281, −0.080] | 6.005 |
SCSW step width [cm] | 6.164 | 0.274; [−4.953, 17.281] | 0.038 | 0.107; [−0.008, 0.084] | 1.301 | <0.05; [0.094, 2.507] | −0.020 | 0.561; [−0.089, 0.048] | 0.076 | <0.001; [0.038, 0.115] | 2.301 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Röhling, H.M.; Otte, K.; Rekers, S.; Finke, C.; Rust, R.; Dorsch, E.-M.; Behnia, B.; Paul, F.; Schmitz-Hübsch, T. RGB-Depth Camera-Based Assessment of Motor Capacity: Normative Data for Six Standardized Motor Tasks. Int. J. Environ. Res. Public Health 2022, 19, 16989. https://doi.org/10.3390/ijerph192416989
Röhling HM, Otte K, Rekers S, Finke C, Rust R, Dorsch E-M, Behnia B, Paul F, Schmitz-Hübsch T. RGB-Depth Camera-Based Assessment of Motor Capacity: Normative Data for Six Standardized Motor Tasks. International Journal of Environmental Research and Public Health. 2022; 19(24):16989. https://doi.org/10.3390/ijerph192416989
Chicago/Turabian StyleRöhling, Hanna Marie, Karen Otte, Sophia Rekers, Carsten Finke, Rebekka Rust, Eva-Maria Dorsch, Behnoush Behnia, Friedemann Paul, and Tanja Schmitz-Hübsch. 2022. "RGB-Depth Camera-Based Assessment of Motor Capacity: Normative Data for Six Standardized Motor Tasks" International Journal of Environmental Research and Public Health 19, no. 24: 16989. https://doi.org/10.3390/ijerph192416989
APA StyleRöhling, H. M., Otte, K., Rekers, S., Finke, C., Rust, R., Dorsch, E. -M., Behnia, B., Paul, F., & Schmitz-Hübsch, T. (2022). RGB-Depth Camera-Based Assessment of Motor Capacity: Normative Data for Six Standardized Motor Tasks. International Journal of Environmental Research and Public Health, 19(24), 16989. https://doi.org/10.3390/ijerph192416989