Influences of Climate Change and Land Use Change on the Habitat Suitability of Bharal in the Sanjiangyuan District, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.2.1. Species Occurrence Point
2.2.2. Environmental Factors
2.3. CA–Markov Model
2.4. Coupled Maximum Entropy Model and Minimum Cumulative Resistance Model (MaxEnt-MCR Model)
2.5. Landscape Pattern Index
3. Results
3.1. Revealing Main Factors
3.2. Current Habitat Analysis of Bharal
3.3. Future Evolution of Suitable Habitat and Changes in Landscape Patterns
3.3.1. Land Use and Land Cover Changes in Different Scenarios
3.3.2. Spatial–Temporal Dynamics of Suitable Habitat
3.4. Evolution of Landscape Pattern Index
4. Discussion
4.1. Transition of the Suitable Habitat Distribution for Bharal
4.2. Ecological Corridor and Habitat Optimization Recommendations
4.3. Innovations, Limitations, and Prospects
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Loarie, S.R.; Duffy, P.B.; Hamilton, H.; Asner, G.P.; Field, C.B.; Ackerly, D.D. The velocity of climate change. Nature 2009, 462, 1052–1055. [Google Scholar] [CrossRef] [PubMed]
- Kraemer, B.M.; Pilla, R.M.; Woolway, R.I.; Anneville, O.; Ban, S.; Colom-Montero, W.; Devlin, S.P.; Dokulil, M.T.; Gaiser, E.E.; Hambright, K.D.; et al. Climate change drives widespread shifts in lake thermal habitat. Nat. Clim. Chang. 2021, 11, 521–529. [Google Scholar] [CrossRef]
- Grinnell, J. Field Tests of Theories Concerning Distributional Control. Am. Nat. 1917, 51, 115–128. [Google Scholar] [CrossRef]
- Walther, G.R.; Post, E.; Convey, P.; Menzel, A.; Parmesan, C.; Beebee, T.J.; Fromentin, J.M.; Hoegh-Guldberg, O.; Bairlein, F. Ecological responses to recent climate change. Nature 2002, 416, 389–395. [Google Scholar] [CrossRef] [PubMed]
- Wake, D.B. Climate change implicated in amphibian and lizard declines. Proc. Natl. Acad. Sci. USA 2007, 104, 8201–8202. [Google Scholar] [CrossRef] [Green Version]
- Chen, I.C.; Hill, J.K.; Ohlemuller, R.; Roy, D.B.; Thomas, C.D. Rapid range shifts of species associated with high levels of climate warming. Science 2011, 333, 1024–1026. [Google Scholar] [CrossRef]
- Liu, D.; Cao, C.; Dubovyk, O.; Tian, R.; Chen, W.; Zhuang, Q.; Zhao, Y.; Menz, G. Using fuzzy analytic hierarchy process for spatio-temporal analysis of eco-environmental vulnerability change during 1990–2010 in Sanjiangyuan region, China. Ecol. Indic. 2017, 73, 612–625. [Google Scholar] [CrossRef]
- Zhai, X.; Liang, X.; Yan, C.; Xing, X.; Jia, H.; Wei, X.; Feng, K. Vegetation Dynamic Changes and Their Response to Ecological Engineering in the Sanjiangyuan Region of China. Remote Sens. 2020, 12, 4035. [Google Scholar] [CrossRef]
- Zhai, X.; Yan, C.; Xing, X.; Jia, H.; Wei, X.; Feng, K. Spatial-temporal changes and driving forces of aeolian desertification of grassland in the Sanjiangyuan region from 1975 to 2015 based on the analysis of Landsat images. Environ. Monit. Assess 2020, 193, 2. [Google Scholar] [CrossRef]
- Li, X.L.; Perry, G.L.W.; Brierley, G.; Sun, H.Q.; Li, C.H.; Lu, G.X. Quantitative assessment of degradation classifications for degraded alpine meadows (Heitutan), Sanjiangyuan, Western China. Land Degrad. Dev. 2014, 25, 417–427. [Google Scholar] [CrossRef]
- Zhang, J.; Jiang, F.; Li, G.; Qin, W.; Li, S.; Gao, H.; Cai, Z.; Lin, G.; Zhang, T. Maxent modeling for predicting the spatial distribution of three raptors in the Sanjiangyuan National Park, China. Ecol. Evol. 2019, 9, 6643–6654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harris, R.B. Pseudois Nayaur. The IUCN Red List of Threatened Species 2014: E.T61513537A64313015. Available online: https://www.iucnredlist.org/search?query=Pseudois%20nayaur&searchType=species (accessed on 3 August 2022).
- Liu, Z.; Wang, X.; Li, Z.; Zhai, H.; Hu, T. Distribution and Abundance of Blue Sheep in Helan Mountains, China. Chin. J. Zool. 2007, 42, 1–8. [Google Scholar]
- Aryal, A.; Shrestha, U.B.; Ji, W.; Ale, S.B.; Shrestha, S.; Ingty, T.; Maraseni, T.; Cockfield, G.; Raubenheimer, D. Predicting the distributions of predator (snow leopard) and prey (blue sheep) under climate change in the Himalaya. Ecol. Evol. 2016, 6, 4065–4075. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, X.; Dong, S.; Liu, S.; Su, X.; Han, Y.; Shi, J.; Zhang, Y.; Zhao, Z.; Sha, W.; Zhang, X.; et al. Predicting the shift of threatened ungulates’ habitats with climate change in Altun Mountain National Nature Reserve of the Northwestern Qinghai-Tibetan Plateau. Clim. Chang. 2017, 142, 331–344. [Google Scholar] [CrossRef]
- Cazalis, V.; Barnes, M.D.; Johnston, A.; Watson, J.E.M.; Sekercioglu, C.H.; Rodrigues, A.S.L. Mismatch between bird species sensitivity and the protection of intact habitats across the Americas. Ecol. Lett. 2021, 24, 2394–2405. [Google Scholar] [CrossRef]
- Chase, J.M.; Blowes, S.A.; Knight, T.M.; Gerstner, K.; May, F. Ecosystem decay exacerbates biodiversity loss with habitat loss. Nature 2020, 584, 238–243. [Google Scholar] [CrossRef]
- Mantyka-Pringle, C.S.; Visconti, P.; Di Marco, M.; Martin, T.G.; Rondinini, C.; Rhodes, J.R. Climate change modifies risk of global biodiversity loss due to land-cover change. Biol. Conserv. 2015, 187, 103–111. [Google Scholar] [CrossRef] [Green Version]
- Pounds, J.A.; Fogden, M.P.L.; Campbell, J.H. Biological response to climate change on a tropical mountain. Nature 1999, 398, 611–615. [Google Scholar] [CrossRef]
- Bezeng, B.S.; Tesfamichael, S.G.; Dayananda, B. Predicting the effect of climate change on a range-restricted lizard in southeastern Australia. Curr. Zool. 2018, 64, 165–171. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Ma, Z.; Teng, L.; Liu, Z. Advance of the Population and Ecology of Pseudois nayaur. J. Econ. Anim. 2017, 21, 181–183. [Google Scholar]
- Xie, J.; Meng, D.; Li, Z.; Zhang, Z.; Liu, Z.; Li, W. Population size and structure of blue sheep in Helan mountains National Nature Reserves, Ningxia. Acta Ecol. Sin. 2022, 42, 4189–4196. [Google Scholar]
- Rahim, M. Comparisons of Line Transect and Point Count Survey Methods by Estimating Density of Grey Squirrel Sciurus Carolinensis. J. Environ. Ecol. 2016, 7, 9287. [Google Scholar] [CrossRef]
- Paul, S.; Sarkar, D.; Patil, A.; Ghosh, T.; Talukdar, G.; Kumar, M.; Habib, B.; Nigam, P.; Mohan, D.; Pandav, B.; et al. Assessment of endemic northern swamp deer (Rucervus duvaucelii duvaucelii) distribution and identification of priority conservation areas through modeling and field surveys across north India. Glob. Ecol. Conserv. 2020, 24, e01263. [Google Scholar] [CrossRef]
- Guo, X.; Shao, Q.; Li, Y.; Wang, Y.; Wang, D.; Liu, J.; Fan, J.; Yang, F. Application of UAV Remote Sensing for a Population Census of Large Wild Herbivores—Taking the Headwater Region of the Yellow River as an Example. Remote Sens. 2018, 10, 1041. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Zhang, C.; Xu, B.; Ji, Y.; Ren, Y.; Xue, Y. Impacts of trophic interactions on the prediction of spatio-temporal distribution of mid-trophic level fishes. Ecol. Indic. 2022, 138, 108826. [Google Scholar] [CrossRef]
- Abdulwahab, U.A.; Hammill, E.; Hawkins, C.P. Choice of climate data affects the performance and interpretation of species distribution models. Ecol. Model. 2022, 471, 110042. [Google Scholar] [CrossRef]
- Sutton, G.F.; Martin, G.D. Testing MaxEnt model performance in a novel geographic region using an intentionally introduced insect. Ecol. Model. 2022, 473, 110139. [Google Scholar] [CrossRef]
- Barker, J.R.; MacIsaac, H.J. Species distribution models applied to mosquitoes: Use, quality assessment, and recommendations for best practice. Ecol. Model. 2022, 472, 110073. [Google Scholar] [CrossRef]
- Liu, Z.; Gao, H.; Teng, L.; Su, Y.; Wang, X.; Kong, F. Habitat suitability assessment of blue sheep in Helan Mountain based on MAXENT modeling. Acta Ecol. Sin. 2013, 33, 7243–7249. [Google Scholar] [CrossRef] [Green Version]
- Cincotta, R.P.; Wisnewski, J.; Engelman, R. Human population in the biodiversity hotspots. Nature 2000, 404, 990–992. [Google Scholar] [CrossRef]
- Martin, A.K.; Root, K.V. Challenges and Opportunities for Terrapene carolina carolina Under Different Climate Scenarios. Remote Sens. 2020, 12, 836. [Google Scholar] [CrossRef] [Green Version]
- Brun, P.; Thuiller, W.; Chauvier, Y.; Pellissier, L.; Wüest, R.O.; Wang, Z.; Zimmermann, N.E. Model complexity affects species distribution projections under climate change. J. Biogeogr. 2019, 47, 130–142. [Google Scholar] [CrossRef]
- Frishkoff, L.O.; Karp, D.S.; Flanders, J.R.; Zook, J.; Hadly, E.A.; Daily, G.C.; M’Gonigle, L.K. Climate change and habitat conversion favour the same species. Ecol. Lett. 2016, 19, 1081–1090. [Google Scholar] [CrossRef]
- Alizadeh, M.R.; Adamowski, J.; Inam, A. Integrated assessment of localized SSP-RCP narratives for climate change adaptation in coupled human-water systems. Sci. Total Environ. 2022, 823, 153660. [Google Scholar] [CrossRef] [PubMed]
- Yao, L.; Zhou, H.; Yan, Y.; Su, Y. Projection of suitability for the typical agro-ecological types in Central Asia under four SSP-RCP scenarios. Eur. J. Agron. 2022, 140, 126599. [Google Scholar] [CrossRef]
- Bao, S.; Yang, F. Spatio-Temporal Dynamic of the Land Use/Cover Change and Scenario Simulation in the Southeast Coastal Shelterbelt System Construction Project Region of China. Sustainability 2022, 14, 8952. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef] [Green Version]
- Phillips, S.J. A maximum entropy approach to species distribution modeling. In Proceedings of the Twenty-First International Conference on Machine Learning, Banff, AL, Canada, 4–8 July 2004; pp. 655–662. [Google Scholar] [CrossRef] [Green Version]
- Guidance Note for Lead Authors of the IPCC Fifth Assessment Report on Consistent Treatment of Uncertainties. In Proceedings of the IPCC Cross-Working Group Meeting on Consistent Treatment of Uncertainties, Jasper Ridge, CA, USA, 6–7 July 2010; IPCC: Geneva, Switzerland, 2010.
- Xu, W.; Wang, J.; Zhang, M.; Li, S. Construction of landscape ecological network based on landscape ecological risk assessment in a large-scale opencast coal mine area. J. Clean. Prod. 2021, 286, 125523. [Google Scholar] [CrossRef]
- Huang, C.; Hou, X.; Li, H. An improved minimum cumulative resistance model for risk assessment of agricultural non-point source pollution in the coastal zone. Env. Pollut. 2022, 312, 120036. [Google Scholar] [CrossRef]
- McGarigal, K.; Marks, B.J. FRAGSTATS:Spatial Pattern Analysis Program for Quantifying Landscape Structure. Available online: https://www.fs.usda.gov/research/treesearch/3064 (accessed on 27 October 2022).
- Huang, L.; Timmermann, A.; Lee, S.-S.; Rodgers, K.B.; Yamaguchi, R.; Chung, E.-S. Emerging unprecedented lake ice loss in climate change projections. Nat. Commun. 2022, 13, 5798. [Google Scholar] [CrossRef]
- Bouyer, Y.; San Martin, G.; Poncin, P.; Beudels-Jamar, R.C.; Odden, J.; Linnell, J.D.C. Eurasian lynx habitat selection in human-modified landscape in Norway: Effects of different human habitat modifications and behavioral states. Biol. Conserv. 2015, 191, 291–299. [Google Scholar] [CrossRef]
- Nations, U. The Paris Agreement. Available online: https://www.un.org/zh/climatechange/paris-agreement (accessed on 8 August 2022).
- Echeverría-Caro, A.; Feldman, R.E.; Bahn, V.; Hurlbert, A. Geographic context is a key driver of spatial variation of bird species richness during migration. Glob. Ecol. Biogeogr. 2022, 31, 1303–1312. [Google Scholar] [CrossRef]
- Rotenberry, J.T.; Balasubramaniam, P. Connecting species’ geographical distributions to environmental variables: Range maps versus observed points of occurrence. Ecography 2020, 43, 897–913. [Google Scholar] [CrossRef] [Green Version]
- Hodgson. Pseudois Nayaur. Available online: https://www.gbif.org/species/2441008 (accessed on 15 December 2022).
- Xia, W.; Zhang, C.; Zhuang, H.; Ren, B.; Zhou, J.; Shen, J.; Krzton, A.; Luan, X.; Li, D. The potential distribution and disappearing of Yunnan snub-nosed monkey: Influences of habitat fragmentation. Glob. Ecol. Conserv. 2020, 21, e00835. [Google Scholar] [CrossRef]
- Li, M.L.; Ding, J.L.; Chen, Q.Q.; Wang, M.Y.; Yang, W.K.; Zhang, C.; Luo, G.P.; Lin, Y.C. Assessment of habitat suitability of Ovis ammon polii based on MaxEnt modeling in Taxkorgan Wildlife Nature Reserve. Chin. J. Ecol. 2019, 38, 594–603. [Google Scholar] [CrossRef]
- Guo, Y.L.; Zhao, Z.F.; Qiao, H.J. Challenges and development trend of species distribution model. Adv. Earth Sci. 2020, 35, 1292–1305. [Google Scholar]
- Lisovski, S.; Gosbell, K.; Minton, C.; Klaassen, M. Migration strategy as an indicator of resilience to change in two shorebird species with contrasting population trajectories. J. Anim. Ecol. 2021, 90, 2005–2014. [Google Scholar] [CrossRef]
- Mateo-Sánchez, M.C.; Balkenhol, N.; Cushman, S.; Pérez, T.; Domínguez, A.; Saura, S. Estimating effective landscape distances and movement corridors: Comparison of habitat and genetic data. Ecosphere 2015, 6, 1–16. [Google Scholar] [CrossRef]
- Guo, X.; Shao, Q.; Yang, F.; Li, Y.; Wang, C.; Wang, D. Using UAV remote sensing for a population census of blue sheep (Pseudois nayaur) in Maduo county, source region of the Yellow River. J. Nat. Resour. 2019, 34, 1054–1065. [Google Scholar] [CrossRef]
- Oli, M.K. Seasonal patterns in habitat use of blue sheep Pseudois nayaur (Artiodactyla, Bovidae) in Nepal. Mammalia 1996, 60, 187. [Google Scholar] [CrossRef]
- Salmona, J.; Heller, R.; Quemere, E.; Chikhi, L. Climate change and human colonization triggered habitat loss and fragmentation in Madagascar. Mol. Ecol. 2017, 26, 5203–5222. [Google Scholar] [CrossRef] [PubMed]
- Shao, Q.; Liu, J.; Huang, L.; Fan, J.; Xu, X.; Wang, J. Ecological protection of Sanjiangyuan Nature Reserve from 2005 to 2009 and comprehensive evaluation of the ecological effectiveness of construction projects. Geogr. Res. 2013, 32, 9007. [Google Scholar] [CrossRef]
- Yang, F.; Shao, Q.; Guo, X.; Li, Y.; Wang, D.; Zhang, Y.; Wang, C.; Liu, J.; Fan, J. Effects of wild large herbivore populations on the grassland-livestock balance in Maduo County. Acta Prataculturae Sinica 2018, 27, 1–13. [Google Scholar] [CrossRef]
- Pascoe, S.; Doshi, A.; Kovac, M.; Austin, A. Estimating coastal and marine habitat values by combining multi-criteria methods with choice experiments. Ecosyst. Serv. 2019, 38, 100951. [Google Scholar] [CrossRef]
- Bridger, M.C.; Johnson, C.J.; Gillingham, M.P. Assessing cumulative impacts of forest development on the distribution of furbearers using expert-based habitat modeling. Ecol. Appl. 2016, 26, 499–514. [Google Scholar] [CrossRef] [PubMed]
Parameters | Electric Fixed-Wing UAV | F1000 Electric Fixed-Wing UAV |
---|---|---|
Wingspan | 1.6 m | 1.6 m |
Payload | 0.5 kg | 1 kg |
Maximum take-off weight | 3 kg | 3 kg |
Engine | Electric | Electric |
Endurance time | 90 min | 60 min |
Flight speed | 72 km/h | 60 km/h |
Camera model | ILCE-5100 | ILCE-5100 |
Number of integrated cameras | 2 | 1 |
Focal length | 30 mm | 30 mm |
Pixel size | 6000 × 4000 | 6000 × 4000 |
Resistance Factors | Resistance Value | Weight | ||||
---|---|---|---|---|---|---|
10 | 20 | 30 | 40 | 50 | ||
LUCC | High coverage of grassland | Low coverage of grassland | Cropland, forest, middle coverage of grassland, bareland | Water area | Construction land | 32.4 |
Bio1 | [−16, −6] | (−6, −4] | (−4, 2] | (−2, 1] | (1, 8] | 21.4 |
Bio3 | [−25, 32] | (32, 35] | (35, 37] | (37, 39] | (39, 45] | 13.1 |
Bo7 | [36, 38] | (34, 36] | (38, 40] | (30, 34] | (40, 43] | 12.7 |
Bio15 | [80, 95] | (95, 100] | (100, 105] | (105, 110] | (110, 130] | 10.9 |
Bio16 | [110, 180] | (180, 220] | (220, 235] | (235, 250] | (250, 408] | 5.6 |
Bio19 | [2, 8] | (8, 12] | (12, 16] | (16, 21] | (21, 36] | 2.6 |
DW | [0, 5000] | (5000, 10,000] | (10,000, 15,000] | (15,000, 20,000] | (20,000, 50,000] | 0.5 |
DH | [0, 5000] | (5000, 10,000] | (10,000, 15,000] | (15,000, 20,000] | (20,000, 50,000] | 0.4 |
DR | [0, 5000] | (5000, 10,000] | (10,000, 15,000] | (15,000, 20,000] | (20,000, 70,000] | 0.2 |
SLO | [0, 3] | (3, 9] | (9, 15] | (15, 21] | (21, 26] | 0.2 |
NPP | [0, 80] | (80, 170] | (170, 280] | (280, 528] | (528, 615] | 0.1 |
DEM | [4500, 5000] | (4000, 4500] | (3500, 4000] | (5000, 6430] | (2000, 3500] | 0.1 |
Category (km2) | Present (2020) | 2030 | 2050 | ||
---|---|---|---|---|---|
SSP-245 | SSP-585 | SSP-245 | SSP-585 | ||
Marginally suitable habitat area | 2668 | 2059 | 1555 | 1883 | 1428 |
Moderately suitable habitat area | 764 | 558 | 450 | 467 | 450 |
Most suitable habitat area | 1237 | 853 | 581 | 1035 | 529 |
Total area of suitable habitat | 4669 | 3470 | 2586 | 3385 | 2407 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bao, S.; Yang, F. Influences of Climate Change and Land Use Change on the Habitat Suitability of Bharal in the Sanjiangyuan District, China. Int. J. Environ. Res. Public Health 2022, 19, 17082. https://doi.org/10.3390/ijerph192417082
Bao S, Yang F. Influences of Climate Change and Land Use Change on the Habitat Suitability of Bharal in the Sanjiangyuan District, China. International Journal of Environmental Research and Public Health. 2022; 19(24):17082. https://doi.org/10.3390/ijerph192417082
Chicago/Turabian StyleBao, Shengwang, and Fan Yang. 2022. "Influences of Climate Change and Land Use Change on the Habitat Suitability of Bharal in the Sanjiangyuan District, China" International Journal of Environmental Research and Public Health 19, no. 24: 17082. https://doi.org/10.3390/ijerph192417082
APA StyleBao, S., & Yang, F. (2022). Influences of Climate Change and Land Use Change on the Habitat Suitability of Bharal in the Sanjiangyuan District, China. International Journal of Environmental Research and Public Health, 19(24), 17082. https://doi.org/10.3390/ijerph192417082