Effects of Six Weeks of Flywheel Single-Leg Romanian Deadlift Training on Speed, Jumping and Change of Direction Performance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Procedures
2.3. Field Tests
2.4. Laboratory Test
2.5. Flywheel Resistance Exercise Training
2.6. Statistical Analysis
3. Results
3.1. Effects of Flywheel Training from Pre- to Post-1 Conditions
3.2. Effects of Flywheel Training from Post-1 to Post-2 Conditions
3.3. Effects of Flywheel Training from Pre- to Post-2 Conditions
4. Discussion
4.1. Effects of the Flywheel Training from Pre- to Post-1 Condition
4.2. Effects of the Flywheel Training from Post-1 to Post-2 Condition
4.3. Effects of the Flywheel Training from Pre- to Post-2 Condition
5. Conclusions
Practical Applications and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Petré, H.; Wernstål, F.; Mattsson, C.M. Effects of Flywheel Training on Strength-Related Variables: A Meta-analysis. Sports Med. Open 2018, 4, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Newton, R.U.; Kraemer, W.J. Developing ExPLoSive Muscular Power: Implications for a Mixed Methods Training Strategy. Strength Cond. J. 1994, 16, 20–31. [Google Scholar] [CrossRef]
- Cormie, P.; Mccaulley, G.O.; Triplett, N.T.; Mcbride, J.M. Optimal Loading for Maximal Power Output during Lower-Body Resistance Exercises. Med. Sci. Sports Exerc. 2007, 39, 340–349. [Google Scholar] [CrossRef]
- De Hoyo, M.; Pozzo, M.; Sañudo, B.; Carrasco, L.; Gonzalo-Skok, O.; Domínguez-Cobo, S.; Morán-Camacho, E. Effects of a 10-Week In-Season Eccentric-Overload Training Program on Muscle-Injury Prevention and Performance in Junior Elite Soccer Players. Int. J. Sports Physiol. Perform. 2015, 10, 46–52. [Google Scholar] [CrossRef] [Green Version]
- Norrbrand, L.; Fluckey, J.D.; Pozzo, M.; Tesch, P.A. Resistance training using eccentric overload induces early adaptations in skeletal muscle size. Eur. J. Appl. Physiol. 2008, 102, 271–281. [Google Scholar] [CrossRef]
- Gual, G.; Fort-Vanmeerhaeghe, A.; Romero-Rodríguez, D.; Tesch, P.A. Effects of In-Season Inertial Resistance Training With Eccentric Overload in a Sports Population at Risk for Patellar Tendinopathy. J. Strength Cond. Res. 2016, 30, 1834–1842. [Google Scholar] [CrossRef]
- Tous-Fajardo, J.; Gonzalo-Skok, O.; Arjol-Serrano, J.L.; Tesch, P. Enhancing Change-of-Direction Speed in Soccer Players by Functional Inertial Eccentric Overload and Vibration Training. Int. J. Sports Physiol. Perform. 2016, 11, 66–73. [Google Scholar] [CrossRef] [PubMed]
- de Hoyo, M.; Sañudo, B.; Carrasco, L.; Domínguez-Cobo, S.; Mateo-Cortes, J.; Cadenas-Sánchez, M.M.; Nimphius, S. Effects of Traditional Versus Horizontal Inertial Flywheel Power Training on Common Sport-Related Tasks. J. Hum. Kinet. 2015, 47, 155–167. [Google Scholar] [CrossRef] [Green Version]
- Gonzalo-Skok, O.; Tous-Fajardo, J.; Valero-Campo, C.; Berzosa, C.; Bataller, A.V.; Arjol, J.L.; Moras, G.; Mendez-Villanueva, A. Eccentric-Overload Training in Team-Sport Functional Performance: Constant Bilateral Vertical Versus Variable Unilateral Multidirectional Movements. Int. J. Sports Physiol. Perform. 2017, 12, 951–958. [Google Scholar] [CrossRef] [PubMed]
- . Raya-González, J.; Castillo, D.; Domínguez-Díez, M.; Hernández-Davó, J.L. Eccentric-Overload Production during the Flywheel Squat Exercise in Young Soccer Players: Implications for Injury Prevention. Int. J. Environ. Res. Public Health 2020, 17, 3671. [Google Scholar] [CrossRef]
- Askling, C.M.; Karlsson, J.; Thorstensson, A. Hamstring injury occurrence in elite soccer players after preseason strength training with eccentric overload. Scand. J. Med. Sci. Sports 2003, 13, 244–250. [Google Scholar] [CrossRef] [PubMed]
- Raya-González, J.; Castillo, D.; Beato, M. The Flywheel Paradigm in Team Sports: A Soccer Approach. Strength Cond. J. 2021, 43, 12–22. [Google Scholar] [CrossRef]
- Beato, M.; Iacono, A.D. Implementing Flywheel (Isoinertial) Exercise in Strength Training: Current Evidence, Practical Recommendations, and Future Directions. Front. Physiol. 2020, 11, 569. [Google Scholar] [CrossRef] [PubMed]
- Núñez, F.J.; Santalla, A.; Carrasquila, I.; Asian, J.A.; Reina, J.I.; Suarez-Arrones, L.J. The effects of unilateral and bilateral eccentric overload training on hypertrophy, muscle power and COD performance, and its determinants, in team sport players. PLoS ONE 2018, 13, e0193841. [Google Scholar] [CrossRef]
- Hernández-Davó, J.L.; Jiménez, P.M.; Solana, R.S. Comparison of Six Weeks Eccentric Overload Training between Bilateral and Unilateral Squat in Basketball Players. Eur. J. Hum. Mov. 2018, 40, 111–121. Available online: http://eurjhm.com/index.php/eurjhm/article/view/446 (accessed on 3 January 2022).
- Arner, J.W.; McClincy, M.P.; Bradley, J.P. Hamstring Injuries in Athletes. J. Am. Acad. Orthop. Surg. 2019, 27, 868–877. [Google Scholar] [CrossRef]
- Emorin, J.-B.; Egimenez, P.; Eedouard, P.; Earnal, P.; Reyes, P.J.; Esamozino, P.; Ebrughelli, M.; Emendiguchia, J. Sprint Acceleration Mechanics: The Major Role of Hamstrings in Horizontal Force Production. Front. Physiol. 2015, 6, 404. [Google Scholar] [CrossRef]
- Weaver, A.N.; Kerksick, C.M. Implementing Landmine Single-Leg Romanian Deadlift into an Athlete’s Training Program. Strength Cond. J. 2017, 39, 85–90. [Google Scholar] [CrossRef]
- McNeill, C.; Beaven, C.M.; McMaster, D.T.; Gill, N. Eccentric Training Interventions and Team Sport Athletes. J. Funct. Morphol. Kinesiology 2019, 4, 67. [Google Scholar] [CrossRef] [Green Version]
- Maroto-Izquierdo, S.; García-López, D.; Fernandez-Gonzalo, R.; Moreira, O.C.; González-Gallego, J.; de Paz, J.A. Skeletal muscle functional and structural adaptations after eccentric overload flywheel resistance training: A systematic review and meta-analysis. J. Sci. Med. Sport 2017, 20, 943–951. [Google Scholar] [CrossRef]
- Haugen, T.A.; Breitschädel, F.; Seiler, S. Sprint mechanical variables in elite athletes: Are force-velocity profiles sport specific or individual? PLoS ONE 2019, 14, e0215551. [Google Scholar] [CrossRef] [PubMed]
- Raya-González, J.; Castillo, D.; de Keijzer, K.L.; Beato, M. The effect of a weekly flywheel resistance training session on elite U-16 soccer players’ physical performance during the competitive season. A randomized controlled trial. Res. Sports Med. 2021, 29, 571–585. [Google Scholar] [CrossRef] [PubMed]
- Sabido, R.; Hernández-Davó, J.L.; Botella, J.; Navarro, A.; Tous-Fajardo, J. Effects of adding a weekly eccentric-overload training session on strength and athletic performance in team-handball players. Eur. J. Sport Sci. 2017, 17, 530–538. [Google Scholar] [CrossRef] [PubMed]
- Beato, M.; de Keijzer, K.L.; Fleming, A.; Coates, A.; La Spina, O.; Coratella, G.; McErlain-Naylor, S.A. Post flywheel squat vs. flywheel deadlift potentiation of lower limb isokinetic peak torques in male athletes. Sports Biomech. 2020, 1–14. [Google Scholar] [CrossRef]
- Weakley, J.; Fernández-Valdés, B.; Thomas, L.; Ramirez-Lopez, C.; Jones, B. Criterion Validity of Force and Power Outputs for a Commonly Used Flywheel Resistance Training Device and Bluetooth App. J. Strength Cond. Res. 2019, 33, 1180–1184. [Google Scholar] [CrossRef]
- Piqueras-Sanchiz, F.; Martín-Rodríguez, S.; Martínez-Aranda, L.M.; Lopes, T.; Raya-González, J.; García-García, Ó.; Nakamura, F.Y. Effects of moderate vs. high iso-inertial loads on power, velocity, work and hamstring contractile function after flywheel resistance exercise. PLoS ONE 2019, 14, e0211700. [Google Scholar] [CrossRef]
- Hopkins, W.G. A Spreadsheet for Analysis of Straightforward Controlled Trials. Sportscience 2003, 7. Available online: http://www.sportsci.org/jour/03/wghtrials.htm (accessed on 3 January 2022).
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive Statistics for Studies in Sports Medicine and Exercise Science. Med. Sci. Sports Exerc. 2009, 41, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Maroto-Izquierdo, S.; Fernandez-Gonzalo, R.; Magdi, H.R.; Manzano-Rodriguez, S.; González-Gallego, J.; De Paz, J.A. Comparison of the musculoskeletal effects of different iso-inertial resistance training modalities: Flywheel vs. electric-motor. Eur. J. Sport Sci. 2019, 19, 1184–1194. [Google Scholar] [CrossRef]
- Suarez-Arrones, L.; De Villarreal, E.S.; Núñez, F.J.; Di Salvo, V.; Petri, C.; Buccolini, A.; Maldonado, R.A.; Torreno, N.; Mendez-Villanueva, A. In-season eccentric-overload training in elite soccer players: Effects on body composition, strength and sprint performance. PLoS ONE 2018, 13, e0205332. [Google Scholar] [CrossRef]
- Stasinaki, A.-N.; Zaras, N.; Methenitis, S.; Bogdanis, G.; Terzis, G. Rate of Force Development and Muscle Architecture after Fast and Slow Velocity Eccentric Training. Sports 2019, 7, 41. [Google Scholar] [CrossRef] [Green Version]
- Carroll, K.M.; Wagle, J.P.; Sato, K.; Taber, C.B.; Yoshida, N.; Bingham, G.E.; Stone, M.H. Characterising overload in inertial flywheel devices for use in exercise training. Sports Biomech. 2019, 18, 390–401. [Google Scholar] [CrossRef] [PubMed]
- Chaabene, H.; Prieske, O.; Negra, Y.; Granacher, U. Change of Direction Speed: Toward a Strength Training Approach with Accentuated Eccentric Muscle Actions. Sports Med. 2018, 48, 1773–1779. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Sanchez, J.; Gonzalo-Skok, O.; Carretero, M.; Pineda, A.; Ramirez-Campillo, R.; Nakamura, F.Y. Effects of concurrent eccentric overload and high-intensity interval training on team sports players’ performance. Kinesiology 2019, 51, 119–126. [Google Scholar] [CrossRef]
- Falch, H.N.; Rædergård, H.G.; Tillaar, R.V.D. Effect of Different Physical Training Forms on Change of Direction Ability: A Systematic Review and Meta-analysis. Sports Med.-Open 2019, 5, 1–37. [Google Scholar] [CrossRef] [Green Version]
- Naczk, M.; Naczk, A.; Brzenczek-Owczarzak, W.; Arlet, J.; Adach, Z. Impact of Inertial Training on Strength and Power Performance in Young Active Men. J. Strength Cond. Res. 2016, 30, 2107–2113. [Google Scholar] [CrossRef]
- Sabido, R.; Hernández-Davó, J.L.; Pereyra-Gerber, G.T. Influence of Different Inertial Loads on Basic Training Variables During the Flywheel Squat Exercise. Int. J. Sports Physiol. Perform. 2018, 13, 482–489. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, F.J.N.; de Villarreal, E.S. Does Flywheel Paradigm Training Improve Muscle Volume and Force? A Meta-Analysis. J. Strength Cond. Res. 2017, 31, 3177–3186. [Google Scholar] [CrossRef]
- Bollinger, L.M.; Brantley, J.T.; Tarlton, J.K.; Baker, P.A.; Seay, R.F.; Abel, M.G. Construct Validity, Test-Retest Reliability, and Repeatability of Performance Variables Using a Flywheel Resistance Training Device. J. Strength Cond. Res. 2020, 34, 3149–3156. [Google Scholar] [CrossRef]
- Jiménez-Reyes, P.; Samozino, P.; García-Ramos, A.; Cuadrado-Peñafiel, V.; Brughelli, M.; Morin, J.-B. Relationship between vertical and horizontal force-velocity-power profiles in various sports and levels of practice. PeerJ 2018, 6, e5937. [Google Scholar] [CrossRef]
- Timmins, R.; Shield, A.; Williams, M.D.; Lorenzen, C.; Opar, D. Architectural adaptations of muscle to training and injury: A narrative review outlining the contributions by fascicle length, pennation angle and muscle thickness. Br. J. Sports Med. 2016, 50, 1467–1472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variables. Field Test | Pre Mean ± SD | Post-1 Mean ± SD | % Difference (90% CL) | Standardized Difference (90% CL) | Chances of Best/Trivial/Worse Effect | Qualitative Magnitude |
---|---|---|---|---|---|---|
CMJ (cm) | 40.08 ± 5.84 | 42.89 ± 5.36 | 7.3 (4.7; 9.9) | 0.46 (0.30; 0.62) | 99/01/00 | Very Likely |
10 m (s) | 1.81 ± 0.07 | 1.78 ± 0.08 | −1.6 (−3.5; 0.4) | −0.42 (−0.94; 0.52) | 03/21/77 | Likely |
20 m (s) | 1.25 ± 0.05 | 1.25 ± 0.06 | −0.6 (−2.0; 0.8) | −0.15 (−0.49; 0.20) | 05/56/39 | Unclear |
30 m (s) | 1.20 ± 0.08 | 1.18 ± 0.08 | −0.6 (−2.0; −0.8) | −0.30 (−0.48; 0.12) | 00/18/82 | Likely |
TT 30 m (s) | 4.27 ± 0.17 | 4.21 ± 0.18 | −1.4 (−2.4; −0.4) | −0.35 (−0.59; 0.10) | 00/15/84 | Likely |
COD-90-d (s) | 2.68 ± 0.11 | 2.59 ± 0.09 | −3.5 (−5.5; −1.5) | −0.81 (−1.29;0.34) | 00/02/98 | Very Likely |
COD-90-nd (s) | 2.69 ± 0.09 | 2.63 ± 0.12 | −2.0 (−3.6; −0.4) | −0.55 (−1.00;0.10) | 01/09/90 | Likely |
COD-90-dnd | 2.68 ± 0.09 | 2.61 ± 0.09 | −2.7 (−4.2; −1.3) | −0.76 (−1.16;0.36) | 00/01/99 | Very Likely |
COD-180-d (s) | 2.70 ± 0.29 | 2.65 ± 0.14 | −1.2 (−5.5; 3.2) | −0.10 (−0.46; 0.26) | 08/60/31 | Unclear |
COD-180-nd (s) | 2.70 ± 0.28 | 2.65 ± 0.12 | −3.2 (−7.4; 1.1) | −0.27 (−0.63; 0.09) | 02/35/61 | Unclear |
COD-180-dnd | 2.70 ± 0.25 | 2.63 ± 0.13 | −2.4 (−5.7; 1.1) | −0.24 (−0.59; 0.11) | 02/40/58 | Possibly |
DEC-COD-90-d (%) | 48.11 ± 6.72 | 45.20 ± 5.10 | −5.8 (−12.0; 0.9) | −0.42 (−0.90; 0.07) | 02/20/78 | Likely |
DEC-COD-90-nd (%) | 48.33 ± 4.52 | 47.74 ± 6.38 | −1.7 (−6.3; 3.3) | −0.18 (−0.69; 0.34) | 11/42/47 | Possibly |
DEC-COD-90-dnd (%) | 48.22 ± 5.16 | 46.47 ± 4.96 | −3.6 (−8.0; 1.0) | −0.34 (−0.77; 0.09) | 02/27/71 | Possibly |
DEC-COD-180-d (%) | 48.81 ± 14.78 | 48.73 ± 6.53 | 8.9 (−13.0; 36.3) | 0.15 (−0.24; 0.53) | 41/53/07 | Possibly |
DEC-COD-180-nd (%) | 49.14 ± 13.50 | 46.10 ± 6.04 | 1.6 (−19.1; 27.7) | 0.03 (−0.36; 0.42) | 23/61/16 | Possibly |
DEC-COD-180-dnd (%) | 48.97 ± 11.85 | 47.41 ± 6.01 | −0.3 (−11.8; 12.6) | −0.01 (−0.40; 0.38) | 18/62/20 | Possibly |
Laboratory test | ||||||
Power dnd (w/kg) | 4.18 ± 0.98 | 5.82 ± 1.11 | 40.0 (28.7; 52.2) | 1.47 (1.10; 1.83) | 100/00/00 | Most Likely |
Power d (w/kg) | 4.30 ± 1.04 | 5.92 ± 1.29 | 38.2 (25.3; 52.4) | 1.34 (0.93; 1.74) | 100/00/00 | Most Likely |
Power nd (w/kg) | 4.06 ± 1.02 | 5.72 ± 1.02 | 42.3 (30.2; 55.6) | 1.46 (1.09; 1.83) | 100/00/00 | Most Likely |
Power d-con (w/kg) | 4.98 ± 1.10 | 7.53 ± 2.31 | 48.4 (31.8; 67.0) | 1.75 (1.22; 2.27) | 100/00/00 | Most Likely |
Power d-ecc (w/kg) | 3.51 ± 1.19 | 4.26 ± 1.18 | 24.0 (6.6; 44.3) | 0.57 (0.17; 0.97) | 94/06/00 | Likely |
Power nd-con (w/kg) | 4.77 ± 1.24 | 6.93 ± 1.75 | 44.8 (26.3; 66.1) | 1.46 (0.92; 2) | 100/00/00 | Most Likely |
Power nd-ecc (w/kg) | 3.29 ± 1.03 | 4.48 ± 1.18 | 37.7 (20.7; 57.0) | 1.04 (0.61; 1.47) | 100/00/00 | Most Likely |
Variables. Field Test | Post-1, Mean ± SD | Post-2, Mean ± SD | % Difference (90% CL) | Standardized Difference (90% CL) | Chances of Best/Trivial/Worse Effect | Qualitative Magnitude |
---|---|---|---|---|---|---|
CMJ (cm) | 42.89 ± 5.36 | 42.22 ± 4.98 | −0.3 (−2.8; 2.2) | −0.02 (−0.18; 0.14) | 02/95/04 | Unclear |
10 m (s) | 1.78 ± 0.08 | 1.81 ± 0.0.08 | 1.3 (−0.2; 2.8) | 0.34 (−0.04; 0.73) | 74/25/01 | Unclear |
20 m (s) | 1.25 ± 0.06 | 1.27 ± 0.0.05 | 1.1 (−0.3; 2.4) | 0.26 (−0.06; 0.58) | 62/36/01 | Unclear |
30 m (s) | 1.18 ± 0.08 | 1.18 ± 0.09 | −0.8 (−2.6; 1.1) | −0.11 (−0.38; 0.16) | 03/69/28 | Unclear |
TT 30 m (s) | 4.21 ± 0.18 | 4.25 ± 0.18 | 0.7 (−0.2; 1.5) | 0.16 (−0.05; 0.37) | 37/63/00 | Unclear |
COD-90-d (s) | 2.59 ± 0.09 | 2.64 ± 0.12 | 1.7 (0.1; 3.3) | 0.39 (−0.92; 0.08) | 81/19/01 | Likely |
COD-90-nd (s) | 2.63 ± 0.12 | 2.67 ± 0.12 | 1 (−1.7; 3.8) | 0.27 (−0.47; 1.02) | 57/29/14 | Unclear |
COD-90-dnd | 2.61 ± 0.09 | 2.66 ± 0.10 | 1.4 (−0.4; 3.1) | 0.37 (−0.10; 0.84) | 73/24/03 | Possibly |
COD-180-d (s) | 2.65 ± 0.14 | 2.72 ± 0.12 | 2.1 (0.6; 3.6) | 0.17 (0.05; 0.28) | 31/69/00 | Unclear |
COD-180-nd (s) | 2.65 ± 0.12 | 2.72 ± 0.13 | 4.0 (2.5; 5.5) | 0.32 (0.22; 0.44) | 95/05/00 | Very Likely |
COD-180-dnd | 2.63 ± 0.13 | 2.72 ± 0.12 | 3.0 (1.8; 4.2) | 0.30 (0.18; 0.41) | 91/09/00 | Likely |
DEC-COD-90-d (%) | 45.20 ± 5.10 | 46.01 ± 5.51 | 1.1 (−4.8; 7.4) | 0.08 (−0.34; 0.50) | 31/56/13 | Possibly |
DEC-COD-90-nd (%) | 47.74 ± 6.38 | 47.47 ± 6.98 | −1.0 (−7.5; 5.9) | −0.11 (−0.83; 0.61) | 23/36/41 | Possibly |
DEC-COD-90-dnd (%) | 46.47 ± 4.96 | 46.74 ± 5.01 | 0.2 (−4.1; 4.7) | 0.02 (−0.39; 0.42) | 22/60/18 | Possibly |
DEC-COD-180-d (%) | 48.73 ± 6.53 | 50.39 ± 5.92 | 2.3 (−1.8; 6.6) | 0.04 (−0.3; 0.11) | 00/100/00 | Most Likely |
DEC-COD-180-nd (%) | 46.10 ± 6.04 | 50.24 ± 6.23 | 8.4 (4.6; 12.4) | 0.14 (0.08; 0.20) | 05/95/00 | Very Likely |
DEC-COD-180-dnd (%) | 47.41 ± 6.01 | 50.31 ± 5.68 | 5.3 (2.2; 8.5) | 0.16 (0.07; 0.26) | 25/75/00 | Possibly |
Laboratory test | ||||||
Power dnd (w/kg) | 5.82 ± 1.11 | 5.81 ± 1.88 | 9.6 (0.9; 19.0) | 0.40 (0.04; 0.76) | 83/17/01 | Likely |
Power d (w/kg) | 5.92 ± 1.29 | 6.24 ± 2.33 | 14.0 (1.8; 27.7) | 0.54 (0.07; 1.01) | 89/10/01 | Likely |
Power nd (w/kg) | 5.72 ± 1.02 | 5.40 ± 1.66 | 4.3 (−4.0; 13.2) | 0.17 (−0.17; 0.51) | 45/52/04 | Possibly |
Power d-con (w/kg) | 7.53 ± 2.31 | 7.87 ± 3.68 | 11.0 (−2.7; 6.7) | 0.46 (−0.12; 1.05) | 78/19/03 | Likely |
Power d-ecc (w/kg) | 4.26 ± 1.18 | 4.58 ± 1.69 | 18.9 (3.2; 37.0) | 0.46 (0.08; 0.84) | 88/12/00 | Likely |
Power nd-con (w/kg) | 6.93 ± 1.75 | 6.70 ± 2.33 | 7.0 (−5.9; 21.7) | 0.27 (−0.24; 0.77) | 59/35/06 | Possibly |
Power nd-ecc (w/kg) | 4.48 ± 1.18 | 4.05 ± 1.65 | −0.8 (−12.8; 12.8) | −0.03 (−0.44; 0.39) | 18/58/24 | Possibly |
Variables. Field Test | Pre, Mean ± SD | Post-2, Mean ± SD | % Difference (90% CL) | Standardized Difference (90% CL) | Chances of Best/Trivial/Worse Effect | Qualitative Magnitude |
---|---|---|---|---|---|---|
CMJ (cm) | 40.08 ± 5.84 | 42.22 ± 4.98 | 7.1 (3.3; 1.1) | 0.45 (0.21; 0.69) | 96/04/00 | Very Likely |
10 m (s) | 1.81 ± 0.07 | 1.81 ± 0.08 | −0.5 (−2.5; 1.5) | −0.14 (−0.67; 0.40) | 14/44/42 | Unclear |
20 m (s) | 1.25 ± 0.05 | 1.27 ± 0.05 | 0.5 (−0.9; 2.0) | 0.13 (−0.22; 0.48) | 37/57/06 | Unclear |
30 m (s) | 1.20 ± 0.08 | 1.18 ± 0.09 | −2.8 (−4.5; −1.1) | −0.41 (−0.66; −0.15) | 00/09/91 | Likely |
TT 30 m (s) | 4.27 ± 0.17 | 4.25 ± 0.18 | −0.9 (−1.9; 0.2) | −0.21 (−0.46; −0.05) | 01/48/51 | Unclear |
COD-90-d (s) | 2.68 ± 0.11 | 2.64 ± 0.12 | −1.8 (−4.0; 0.4) | −0.42 (−0.92; 0.08) | 02/20/77 | Likely |
COD-90-nd (s) | 2.69 ± 0.09 | 2.67 ± 0.12 | −1.3 (−2.9; 0.4) | −0.35 (−0.79; 0.10) | 02/26/71 | Unclear |
COD-90-dnd | 2.68 ± 0.09 | 2.66 ± 0.10 | −1.5 (−3.0; 0.0) | −0.42 (−0.84; 0.00) | 01/18/81 | Likely |
COD-180-d (s) | 2.70 ± 0.29 | 2.72 ± 0.12 | 1.0 (−3.7; 6.1) | 0.08 (−0.31; 0.48) | 31/58/11 | Unclear |
COD-180-nd (s) | 2.70 ± 0.28 | 2.72 ± 0.13 | 0.6 (−3.9; 5.3) | 0.05 (−0.33; 0.43) | 25/62/13 | Unclear |
COD-180-dnd | 2.70 ± 0.25 | 2.72 ± 0.12 | 0.7 (−3.0; 4.4) | 0.7 (−0.30; 0.43) | 27/62/11 | Possibly |
DEC-COD-90-d (%) | 48.11 ± 6.72 | 46.01 ± 5.51 | −3.98 (−10.3; 2.9) | −0.28 (−0.76; 0.20) | 05/34/61 | Possibly |
DEC-COD-90-nd (%) | 48.33 ± 4.52 | 47.47 ± 6.98 | −2.8 (−8.5; 3.2) | −0.30 (−0.93; 0.33) | 09/30/61 | Possibly |
DEC-COD-90-dnd (%) | 48.22 ± 5.16 | 46.74 ± 5.01 | −3.1 (−7.9; 1.9) | −0.29 (−0.76; 0.17) | 04/32/63 | Possibly |
DEC-COD-180-d (%) | 48.81 ± 14.78 | 50.39 ± 5.92 | 13.5 (−11.5; 45.5) | 0.22 (−0.21; 0.64) | 53/42/05 | Possibly |
DEC-COD-180-nd (%) | 49.14 ± 13.50 | 50.24 ± 6.23 | 11.5 (−11.5; 40.5) | 0.19 (−0.21; 0.58) | 48/47/05 | Possibly |
DEC-COD-180-dnd (%) | 48.97 ± 11.85 | 50.31 ± 5.68 | 6.2 (−6.6; 20.6) | 0.19 (−0.22; 0.60) | 48/46/06 | Possibly |
Laboratory test | ||||||
Power dnd (w/kg) | 4.18 ± 0.98 | 5.81 ± 1.88 | 53.4 (39.1; 69.2) | 1.87 (1.44; 2.30) | 100/00/00 | Most Likely |
Power d (w/kg) | 4.30 ± 1.04 | 6.24 ± 2.33 | 58.9 (38.3; 82.6) | 1.91 (1.34; 2.49) | 100/00/00 | Most Likely |
Power nd (w/kg) | 4.06 ± 1.02 | 5.40 ± 1.66 | 47.1 (34.3; 61.2) | 1.60 (1.22; 1.97) | 100/00/00 | Most Likely |
Power d-con (w/kg) | 4.98 ± 1.10 | 7.87 ± 3.68 | 66.8 (38.3; 101.2) | 2.26 (1.44; 3.09) | 100/00/00 | Most Likely |
Power d-ecc (w/kg) | 3.51 ± 1.19 | 4.58 ± 1.69 | 48.4 (27.3; 73.0) | 1.05 (0.64; 1.45) | 100/00/00 | Most Likely |
Power nd-con (w/kg) | 4.77 ± 1.24 | 6.70 ± 2.33 | 53.9 (34.3; 76.5) | 1.70 (1.16; 2.23) | 100/00/00 | Most Likely |
Power nd-ecc (w/kg) | 3.29 ± 1.03 | 4.05 ± 1.65 | 34.8 (14.8; 58.4) | 0.97 (0.45; 1.49) | 99/01/00 | Very Likely |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morencos, E.; González-Frutos, P.; Rivera, C.; Veiga, S. Effects of Six Weeks of Flywheel Single-Leg Romanian Deadlift Training on Speed, Jumping and Change of Direction Performance. Int. J. Environ. Res. Public Health 2022, 19, 1200. https://doi.org/10.3390/ijerph19031200
Morencos E, González-Frutos P, Rivera C, Veiga S. Effects of Six Weeks of Flywheel Single-Leg Romanian Deadlift Training on Speed, Jumping and Change of Direction Performance. International Journal of Environmental Research and Public Health. 2022; 19(3):1200. https://doi.org/10.3390/ijerph19031200
Chicago/Turabian StyleMorencos, Esther, Pablo González-Frutos, Carlos Rivera, and Santiago Veiga. 2022. "Effects of Six Weeks of Flywheel Single-Leg Romanian Deadlift Training on Speed, Jumping and Change of Direction Performance" International Journal of Environmental Research and Public Health 19, no. 3: 1200. https://doi.org/10.3390/ijerph19031200
APA StyleMorencos, E., González-Frutos, P., Rivera, C., & Veiga, S. (2022). Effects of Six Weeks of Flywheel Single-Leg Romanian Deadlift Training on Speed, Jumping and Change of Direction Performance. International Journal of Environmental Research and Public Health, 19(3), 1200. https://doi.org/10.3390/ijerph19031200