Prevalence of Female Athlete Triad Risk Factors among Female International Volunteers and College Age-Matched Controls
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Participant Characteristics
3.2. Factors Related to Energy Availability
3.2.1. Dietary Energy Intake
3.2.2. Eating Disorders
3.2.3. Physical Activity
3.2.4. Food Insecurity
3.2.5. Weight Loss Methods, Weight Satisfaction, and Changes in Weight
3.3. Factors Related to Menstruation
3.3.1. Participant Menstrual Regularity
3.3.2. Actions Taken by Volunteers Who Experienced SA
3.3.3. Impact of Various Factors on Odds for SA
3.3.4. Perceived Stress
3.4. Factors Related to Bone Mineral Density
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nattiv, A.; Loucks, A.B.; Manore, M.M.; Sanborn, C.F.; Sundgot-Borgen, J.; Warren, M.P.; American College of Sports Medicine. American College of Sports Medicine position stand. The female athlete triad. Med. Sci. Sports Exerc. 2007, 39, 1867–1882. [Google Scholar] [CrossRef]
- Loucks, A.B.; Thuma, J.R. Luteinizing hormone pulsatility is disrupted at a threshold of energy availability in regularly menstruating women. J. Clin. Endocrinol. Metab. 2003, 88, 297–311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hosmer, W.D.; Genant, H.K.; Browner, W.S. Fractures before menopause: A red flag for physicians. Osteoporos. Int. 2002, 13, 337–341. [Google Scholar] [CrossRef]
- Keen, A.D.; Drinkwater, B.L. Irreversible bone loss in former amenorrheic athletes. Osteoporos. Int. 1997, 7, 311–315. [Google Scholar] [CrossRef] [PubMed]
- Rauh, M.J.; Nichols, J.R.; Barrack, M.T. Relationships among injury and disordered eating, menstrual dysfunction, and low bone mineral density in high school athletes: A prospective study. J. Athl. Train. 2010, 45, 243–252. [Google Scholar] [CrossRef] [Green Version]
- Hoch, A.Z.; Pajewski, N.M.; Moraski, L.; Carrera, G.F.; Wilson, C.R.; Hoffman, R.G.; Schimke, J.E.; Gutterman, D.D. Prevalence of the female athlete triad in high school athletes and sedentary students. Clin. J. Sport Med. 2009, 19, 421–428. [Google Scholar] [CrossRef] [Green Version]
- Torstveit, M.K.; Sundgot-Borgen, J. The female athlete triad: Are elite athletes at increased risk? Med. Sci. Sports Exerc. 2005, 37, 184–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reed, J.L.; De Souza, M.J.; Williams, N.I. Changes in energy availability across the season in Division I female soccer players. J. Sports Sci. 2013, 31, 314–324. [Google Scholar] [CrossRef] [PubMed]
- Magee, M.K.; Lockard, B.L.; Zabriskie, H.A.; Schaefer, A.Q.; Luedke, J.A.; Erickson, J.L.; Jones, M.T.; Jagim, A.R. Prevalence of low energy availability in collegiate women soccer athletes. J. Funct. Morphol. Kinesiol. 2020, 5, 96. [Google Scholar] [CrossRef]
- Beals, K.A.; Hill, A.K. The prevalence of disordered eating, menstrual dysfunction, and low bone mineral density among US collegiate athletes. Int J. Sport Nutr. Exerc. Metab. 2006, 16, 1–23. [Google Scholar] [CrossRef]
- Beals, K.A.; Manore, M.M. Disorders of the female athlete triad among collegiate athletes. Int. J. Sport Nutr. Exerc. Metab. 2002, 12, 281–293. [Google Scholar] [CrossRef]
- Cheng, J.; Santiago, K.A.; Abutalib, Z.; Temme, K.E.; Hulme, A.; Goolsby, M.A.; Esopenko, C.L.; Casey, E.K. Menstrual irregularity, hormonal contraceptive use, and bone stress injuries in collegiate female athletes in the United States. PMR 2021, 13, 1207–1215. [Google Scholar] [CrossRef]
- Thompson, S.H. Characteristics of the female athlete triad in collegiate cross-country runners. J. Am. Coll. Health 2007, 56, 129–136. [Google Scholar] [CrossRef]
- Tenforde, A.S.; Carlson, J.L.; Sainani, K.L.; Chang, A.O.; Kim, J.H.; Golden, N.H.; Fredericson, M. Sport and triad risk factors influence bone mineral density in collegiate athletes. Med. Sci. Sports Exerc. 2018, 51, 2536–2543. [Google Scholar] [CrossRef] [PubMed]
- Leutscher, P.D.; Bagley, S.W. Health-related challenges in United States Peace Corps Volunteers serving for two years in Madagascar. J. Travel Med. 2003, 10, 263–267. [Google Scholar] [CrossRef] [Green Version]
- Wilson, O.W.A.; Bopp, C.M.; Papalia, Z.; Duffey, M.; Bopp, M. Freshman physical activity constraints are related to the current health behaviors and outcomes of college upperclassmen. J. Am. Coll. Health 2020, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Diet History Questionnaire III (DHQ III). Available online: https://epi.grants.cancer.gov/dhq3/ (accessed on 9 July 2021).
- Ainsworth, B.E.; Haskell, W.L.; Whitt, M.C.; Irwin, M.L.; Swartz, A.M.; Strath, S.J.; O’Brien, W.L.; Basset, D.R., Jr.; Schmitz, K.H.; Emplaincourt, P.E.; et al. Compendium of physical activities: An update of activity codes and MET intensities. Med. Sci. Sports Exerc. 2000, 32, S498–S504. [Google Scholar] [CrossRef] [Green Version]
- Rohan, T.E.; Potter, J.D. Retrospective assessment of dietary intake. Am. J. Epidemiol. 1984, 120, 876–887. [Google Scholar] [CrossRef]
- Blumberg, S.J.; Bialostosky, K.; Hamilton, W.L.; Briefel, R.R. The effectiveness of a short form of the Household Food Security Scale. Am. J. Public Health 1999, 89, 1231–1234. [Google Scholar] [CrossRef] [Green Version]
- Melin, A.; Tornber, A.B.; Skouby, S.; Faber, J.; Ritz, C.; Sjödin, A.; Sundgto-Borgen, J. The LEAF questionnaire: A screening tool for the identification of female athletes at risk for the female athlete triad. Br. J. Sports Med. 2014, 48, 540–545. [Google Scholar] [CrossRef]
- Cohen, S.; Kamarck, T.; Mermelstein, R. A global measure of perceived stress. J. Health Soc. Behav. 1983, 24, 385–396. [Google Scholar] [CrossRef] [PubMed]
- Bone Density Exam/Testing. Available online: https://www.nof.org/patients/diagnosis-information/bone-density-examtesting/ (accessed on 9 July 2021).
- Food and Nutrition Board Institute of Medicine. Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids; The National Academies Press: Washington, DC, USA, 2000. [Google Scholar]
- Food and Nutrition Board Institute of Medicine. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc; The National Academies Press: Washington, DC, USA, 2001. [Google Scholar]
- Food and Nutrition Board Institute of Medicine. Dietary Reference Intakes for Calcium, Phosphorus, Magnesium, Vitamin D, and Fluoride; The National Academies Press: Washington, DC, USA, 1997. [Google Scholar]
- Nichols, D.L.; Sanborn, C.F.; Essery, E.V. Bone density and young athletic women. An update. Sports Med. 2007, 37, 1001–1014. [Google Scholar] [CrossRef] [PubMed]
- U.S. Department of Agriculture (USDA); US Department of Health and Human Services. Dietary Guidelines for Americans, 2020–2025, 9th ed.; US Government Printing Office: Washington, DC, USA, 2020.
- American College Health Association. National College Health Assessment Reference Group Data Report Spring 2019; American College Health Association: Silver Spring, MD, USA, 2019. [Google Scholar]
- Kucik, J.C.; Martin, G.L.; Sortor, B.V. Common intestinal parasites. Am. Fam. Physician 2004, 69, 1161–1169. [Google Scholar]
- Willbond, S.M.; Laviolette, M.A.; Duval, K.; Doucet, K.D. Normal weight men and women overestimate exercise energy expenditure. J. Sports Med. Phys. Fitness 2010, 50, 377–384. [Google Scholar]
- O’Dougherty, M.; Hearst, M.O.; Arikawa, A.Y.; Stovitz, S.D.; Kurzer, M.S.; Schitz, K.H. Young women’s physical activity from one year to the next: What changes? What stays the same? Transl. Behav. Med. 2012, 2, 129–136. [Google Scholar] [CrossRef]
- Ekelund, U.; Steene-Johannessen, J.; Brown, W.J.; Fagerland, M.W.; Owen, N.; Powell, K.E.; Buaman, A.; Lee, I.; Lancet Physical Activity Series 2 Executive Committee; Lancet Sedentary Behaviour Working Group. Does physical activity attenuate, or even eliminate, the detrimental association of sitting time with mortality? A harmonised meta-analysis of data from more than 1 million men and women. Lancet 2016, 388, 1302–1310. [Google Scholar] [CrossRef] [Green Version]
- Garber, C.E.; Blissmer, B.; Deschenes, M.R.; Franlkin, B.A.; Lamonte, M.J.; Lee, I.; Neiman, D.C.; Swain, D.P.; American College of Sports Medicine. American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: Guidance for prescribing exercise. Med. Sci. Sports Exerc. 2011, 43, 1334–1359. [Google Scholar] [CrossRef]
- Rencken, M.L.; Chesnut, C.H.; Drinkwater, B.L. Bone density at multiple skeletal sites in amenorrheic athletes. JAMA 1996, 276, 238–240. [Google Scholar] [CrossRef]
- Russell, M.; Stark, J.; Nayak, S.; Shriddha, N.; Miller, K.K.; Herzog, D.B.; Klibanski, A.; Misra, M. Peptide YY in adolescent athletes with amenorrhea, eumenorrheic athletes and non-athletic controls. Bone 2009, 45, 104–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tenforde, A.S.; Carlson, J.L.; Chang, A.; Sainani, K.L.; Schultz, R.; Kim, J.H.; Cutti, P.; Golden, N.H.; Fredericson, M. Association of the Female Athlete Triad Risk Assessment Stratification to the Development of Bone Stress Injuries in Collegiate Athletes. Am. J. Sports Med. 2017, 45, 302–310. [Google Scholar] [CrossRef] [PubMed]
- Bennell, K.L.; Malcolm, S.A.; Thomas, S.A.; Reid, S.J.; Brukner, P.D.; Ebeling, P.R.; Wark, J.D. Risk factors for stress fractures in track and field athletes. A twelve-month prospective study. Am. J. Sports Med. 1996, 24, 810–818. [Google Scholar] [CrossRef] [PubMed]
- Denovan, A.; Dagnall, N.; Dhingra, K.; Grogan, S. Evaluating the Perceived Stress Scale among UK university students: Implications for stress measurement and management. Stud. High. Educ. 2019, 44, 120–133. [Google Scholar] [CrossRef]
- Nikolaus, C.J.; An, R.; Ellison, B.; Nickols-Richardson, S.M. Food insecurity among college students in the United States: A scoping review. Adv. Nutr. 2020, 11, 327–348. [Google Scholar] [CrossRef] [PubMed]
All 1 | Volunteer 2 | Non-Volunteer 3 | Others 4 | |||||
---|---|---|---|---|---|---|---|---|
n | Mean ± SD n (%) | n | Mean ± SD n (%) | n | Mean ± SD n (%) | n | Mean ± SD n (%) | |
Age | 3534 | 23.3 ± 1.4 | 2081 | 23.6 ± 1.3 | 1105 | 22.8 ± 1.4 * | 348 | 23.1 ± 1.6 * |
Height (in) | 3509 | 65.5 ± 2.8 | 2076 | 65.5 ± 2.8 | 1100 | 65.4 ± 2.8 | 333 | 65.5 ± 2.7 |
Height (m) | 1.66 ± 0.07 | 1.66 ± 0.07 | 1.66 ± 0.07 | 1.66 ± 0.07 | ||||
Weight (lb) | 3506 | 146.6 ± 30.9 | 2069 | 147.1 ± 30.8 | 1103 | 144.7 ± 31.1 | 334 | 149.5 ± 31.4 |
Weight (kg) | 66.6 ± 14.0 | 66.9 ± 14 | 65.8 ± 14.1 | 68 ± 14.3 | ||||
BMI (kg/m2) | 3500 | 24.0 ± 4.7 | 2067 | 24.1 ± 4.7 | 1100 | 23.7 ± 4.5 | 333 | 24.5 ± 4.8 |
%LBM | 638 | 65 ± 6.6 | 305 | 64.8 ± 6.8 | 199 | 63.6 ± 6.4 | 13 | 62.5 ± 5.2 |
Ethnicity | 3683 | 2164 | 1159 | 360 | ||||
White/Caucasian | 3339 (90.7) | 1987 (91.8) | 1043 (90.0) | 309 (85.8) * | ||||
Hispanic/Latina | 242 (6.6) | 132 (6.1) | 77 (6.6) | 33 (9.2) | ||||
Asian | 132 (3.6) | 69 (3.2) | 41 (3.5) | 22 (6.1) | ||||
African American | 26 (0.7) | 11 (0.5) | 10 (0.9) | 5 (1.4) | ||||
Pacific Islander | 33 (0.9) | 19 (0.9) | 11 (1.0) | 3 (0.8) | ||||
Native American/ Alaska Native | 49 (1.3) | 31 (1.4) | 16 (1.4) | 2 (0.6) | ||||
Other | 8 (0.2) | 3 (0.1) | 3 (0.3) | 2 (0.6) | ||||
University Attendance | 3680 | 2163 | 1157 | 360 | ||||
BYU | 2116 (57.5) | 1429 (66.1) | 677 (58.5) | 10 (2.8) | ||||
BYU-Idaho | 434 (11.8) | 258 (11.9) | 175 (15.1) | 1 (0.3) | ||||
Utah Valley University | 668 (18.2) | 349 (16.1) | 207 (17.9) | 112 (31.1) | ||||
Utah State University | 141 (3.8) | 79 (3.7) | 44 (3.8) | 18 (5.0) | ||||
Weber State University | 105 (2.9) | 40 (1.9) | 37 (3.2) | 28 (7.8) | ||||
University of Idaho | 206 (5.6) | 4 (0.2) | 12 (1.0) | 190 (52.8) | ||||
Other | 10 (0.3) | 4 (0.2) | 5 (0.4) | 1 (0.3) |
All 1 | Volunteer 2 | Non-Volunteer 3 | Others 4 | p-Value | |||||
---|---|---|---|---|---|---|---|---|---|
n | Mean ± SD n (%) | n | Mean ± SD n (%) | n | Mean ± SD n (%) | n | Mean ± SD n (%) | ||
Lifetime | |||||||||
Clinically-Diagnosed Anorexia | 3682 | 118 (3.2) | 2163 | 45 (2.1) | 1159 | 56 (4.8) | 360 | 17 (4.7) | <0.0001 |
Clinically-Diagnosed Bulimia | 3678 | 68 (1.9) | 2160 | 25 (1.2) | 1158 | 30 (2.6) | 360 | 13 (3.6) | 0.0005 |
Study Period | |||||||||
Clinically-Diagnosed Anorexia | 3484 | 38 (1.1) | 2135 | 11 (0.5) | 1046 | 18 (1.7) | 303 | 9 (3.0) | <0.0001 |
Self-Diagnosed Anorexia | 3884 | 212 (6.1) | 2135 | 102 (4.8) | 1046 | 81 (7.7) | 303 | 29 (9.6) | 0.0001 |
Clinically- Diagnosed Bulimia | 3484 | 27 (0.8) | 2134 | 9 (0.4) | 1047 | 12 (1.2) | 303 | 6 (2.0) | 0.004 |
Self-Diagnosed Bulimia | 3484 | 98 (2.8) | 2134 | 50 (2.3) | 1048 | 35 (3.3) | 302 | 13 (4.3) | 0.0726 |
Changes in Food Consumption | 3313 | 2059 | 982 | 272 | <0.0001 | ||||
Ate less | 800 (24.2) | 331 (16.1) | 377 (38.3) | 92 (33.8) | |||||
Ate more | 1581 (47.7) | 1256 (61.0) | 247 (25.2) | 78 (28.7) | |||||
No Changes | 862 (26.0) | 422 (20.5) | 343 (34.9) | 97 (35.7) | |||||
Don’t know | 70 (2.1) | 50 (2.4) | 15 (1.5) | 5 (1.8) |
All 1 | Volunteer 2 | Non-Volunteer 3 | Others 4 | |||||
---|---|---|---|---|---|---|---|---|
n | Mean ± SD n (%) | n | Mean ± SD n (%) | n | Mean ± SD n (%) | n | Mean ± SD n (%) | |
Total MET Hours/Week | 3256 | 93.8 ± 80.9 | 1972 | 108.8 ± 81.4 | 1003 | 65.2 ± 65.0 * | 281 | 90.6 ± 98.4 *** |
Physical Activity by Category (hours/week) | ||||||||
Moderate Intensity | 3328 | 11.3 ± 9.3 | 2010 | 14.3 ± 9.7 | 1025 | 6.5 ± 5.6 * | 293 | 7.7 ± 7.5 * |
Vigorous Intensity | 3402 | 3.4 ± 4.1 | 2090 | 3.7 ± 4.2 | 1018 | 2.8 ± 3.5 * | 294 | 3.8 ± 5.0 ** |
Very Vigorous Intensity | 3383 | 1.0 ± 2.1 | 2081 | 1.0 ± 2.14 | 1012 | 0.8 ± 1.7 | 290 | 1.4 ± 2.9 ** |
Extremely Vigorous Intensity | 3379 | 0.3 ± 1.1 | 2077 | 0.2 ± 1.01 | 1014 | 0.3 ± 0.9 | 288 | 0.5 ± 1.7 *** |
Physical Activity Changes **** | 3311 | n (%) | 2058 | n (%) | 981 | n (%) | 272 | |
Exercised more | 1262 (38.1) | 857 (41.6) | 311 (31.7) | 94 (34.6) | ||||
Exercised less | 1410 (42.6) | 863 (41.9) | 432 (44.0) | 115 (42.3) | ||||
No Change | 596 (18.0) | 306 (14.9) | 228 (23.2) | 62 (22.8) | ||||
Don’t know | 43 (1.3) | 32 (1.6) | 10 (1.0) | 1 (0.4) | ||||
Most Common Modes of Transportation **** | 3611 | 2156 | 1122 | 333 | ||||
Driving a Car | 1461 (40.5) | 989 (45.9) | 310 (27.6) | 162 (48.7) | ||||
Walking | 1609 (44.6) | 760 (35.3) | 716 (63.8) | 133 (40.0) | ||||
Public Transportation | 281 (7.8) | 193 (8.95) | 60 (5.4) | 28 (8.4) | ||||
Biking | 236 (6.5) | 206 (9.6) | 26 (3.3) | 4 (1.2) | ||||
Other | 24 (0.7) | 8 (0.37) | 10 (0.9) | 6 (1.8) |
All 1 | Volunteer 2 | Non-Volunteer 3 | Others 4 | |||||
---|---|---|---|---|---|---|---|---|
n | Mean ± SD n (%) | n | Mean ± SD n (%) | n | Mean ± SD n (%) | n | Mean ± SD n (%) | |
Total MET Hours/Week | 3256 | 93.8 ± 80.9 | 1972 | 108.8 ± 81.4 | 1003 | 65.2 ± 65.0 * | 281 | 90.6 ± 98.4 *** |
Physical Activity by Category (hours/week) | ||||||||
Moderate Intensity | 3328 | 11.3 ± 9.3 | 2010 | 14.3 ± 9.7 | 1,025 | 6.5 ± 5.6 * | 293 | 7.7 ± 7.5 * |
Vigorous Intensity | 3402 | 3.4 ± 4.1 | 2090 | 3.7 ± 4.2 | 1,018 | 2.8 ± 3.5 * | 294 | 3.8 ± 5.0 ** |
Very Vigorous Intensity | 3383 | 1.0 ± 2.1 | 2081 | 1.0 ± 2.14 | 1,012 | 0.8 ± 1.7 | 290 | 1.4 ± 2.9 ** |
Extremely Vigorous Intensity | 3379 | 0.3 ± 1.1 | 2077 | 0.2 ± 1.01 | 1014 | 0.3 ± 0.9 | 288 | 0.5 ± 1.7 *** |
Physical Activity Changes **** | 3311 | n (%) | 2058 | n (%) | 981 | n (%) | 272 | |
Exercised more | 1262 (38.1) | 857 (41.6) | 311 (31.7) | 94 (34.6) | ||||
Exercised less | 1410 (42.6) | 863 (41.9) | 432 (44.0) | 115 (42.3) | ||||
No Change | 596 (18.0) | 306 (14.9) | 228 (23.2) | 62 (22.8) | ||||
Don’t know | 43 (1.3) | 32 (1.6) | 10 (1.0) | 1 (0.4) | ||||
Most Common Modes of Transportation **** | 3611 | 2156 | 1122 | 333 | ||||
Driving a Car | 1461 (40.5) | 989 (45.9) | 310 (27.6) | 162 (48.7) | ||||
Walking | 1609 (44.6) | 760 (35.3) | 716 (63.8) | 133 (40.0) | ||||
Public Transportation | 281 (7.8) | 193 (8.95) | 60 (5.4) | 28 (8.4) | ||||
Biking | 236 (6.5) | 206 (9.6) | 26 (3.3) | 4 (1.2) | ||||
Other | 24 (0.7) | 8 (0.37) | 10 (0.9) | 6 (1.8) |
All 1 | Volunteer 2 | Non-Volunteer 3 | Others 4 | |||||
---|---|---|---|---|---|---|---|---|
n | Mean ± SD n (%) | n | Mean ± SD n (%) | n | Mean ± SD n (%) | n | Mean ± SD n (%) | |
Spine | ||||||||
L1-L4 BMD (g/cm2) | 638 | 1.22 ± 0.13 | 422 | 1.23 ± 0.12 | 203 | 1.23 ± 0.13 | 13 | 1.16 ± 0.12 |
L1-L4 Z-Score | 638 | 0.29 ± 0.96 | 422 | 0.30 ± 0.94 | 203 | 0.30 ± 0.94 | 13 | −0.18 ± 0.78 |
Femur | ||||||||
Neck BMD (g/cm2) | 640 | 1.07 ± 0.14 | 424 | 1.07 ± 0.12 | 203 | 1.07 ± 0.14 | 13 | 1.09 ± 0.13 |
Neck Mean Z-Score 4 | 632 | 0.16 ± 0.96 | 421 | 0.21 ± 0.94 | 198 | 0.09 ± 0.98 | 13 | −0.34 ± 0.91 |
Troch BMD (g/cm2) | 640 | 0.83 ± 0.12 | 424 | 0.83 ± 0.13 | 203 | 0.83 ± 0.12 | 13 | 0.79 ± 0.12 |
Troch Mean Z-Score | 632 | −0.26 ± 1.02 | 421 | −0.23 ± 1.03 | 198 | −0.13 ± 1.01 | 13 | −0.58 ± 0.97 |
Total Mean BMD | 633 | 1.07 ± 0.13 | 420 | 1.07 ± 0.12 | 100 | 1.02 ± 0.13 | 13 | 1.02 ± 0.13 |
Total Mean Z-Score | 632 | 0.43 ± 0.99 | 421 | 0.47 ± 0.99 | 198 | 0.35 ± 1.00 | 13 | 0.89 ± 1.01 |
Total Body | ||||||||
Total BMD score | 640 | 1.22 ± 0.10 | 424 | 1.23 ± 0.10 | 203 | 1.23 ± 0.09 | 13 | 1.18 ± 0.11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Freire, A.N.; Brown, K.N.; Fleischer, S.H.; Eggett, D.L.; Creer, A.R.; Graf, M.I.; Dyckman, J.; Turley, J.M.; Fullmer, S. Prevalence of Female Athlete Triad Risk Factors among Female International Volunteers and College Age-Matched Controls. Int. J. Environ. Res. Public Health 2022, 19, 1223. https://doi.org/10.3390/ijerph19031223
Freire AN, Brown KN, Fleischer SH, Eggett DL, Creer AR, Graf MI, Dyckman J, Turley JM, Fullmer S. Prevalence of Female Athlete Triad Risk Factors among Female International Volunteers and College Age-Matched Controls. International Journal of Environmental Research and Public Health. 2022; 19(3):1223. https://doi.org/10.3390/ijerph19031223
Chicago/Turabian StyleFreire, Annalisa N., Katie N. Brown, Stacie H. Fleischer, Dennis L. Eggett, Andrew R. Creer, Marlene I. Graf, Jenna Dyckman, Jennifer M. Turley, and Susan Fullmer. 2022. "Prevalence of Female Athlete Triad Risk Factors among Female International Volunteers and College Age-Matched Controls" International Journal of Environmental Research and Public Health 19, no. 3: 1223. https://doi.org/10.3390/ijerph19031223
APA StyleFreire, A. N., Brown, K. N., Fleischer, S. H., Eggett, D. L., Creer, A. R., Graf, M. I., Dyckman, J., Turley, J. M., & Fullmer, S. (2022). Prevalence of Female Athlete Triad Risk Factors among Female International Volunteers and College Age-Matched Controls. International Journal of Environmental Research and Public Health, 19(3), 1223. https://doi.org/10.3390/ijerph19031223