Do Fitter Children Better Assess Their Physical Activity with Questionnaire Than Less Fit Children?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Measurement
2.2.1. Self-Reported PA
2.2.2. Accelerometer Measured PA
2.2.3. Anthropometry
2.2.4. Cardiorespiratory Fitness
2.3. Statistical Analysis
3. Results
4. Discussion
Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Poitras, V.J.; Gray, C.E.; Borghese, M.M.; Carson, V.; Chaput, J.-P.; Janssen, I.; Katzmarzyk, P.T.; Pate, R.R.; Connor Gorber, S.; Kho, M.E. Systematic review of the relationships between objectively measured physical activity and health indicators in school-aged children and youth. Appl. Physiol. Nutr. Metab. 2016, 41, S197–S239. [Google Scholar] [CrossRef] [PubMed]
- Warburton, D.E.R.; Bredin, S.S.D. Health benefits of physical activity: A systematic review of current systematic reviews. Curr. Opin. Cardiol. 2017, 32, 541–556. [Google Scholar] [CrossRef] [PubMed]
- Parikh, T.; Stratton, G. Influence of intensity of physical activity on adiposity and cardiorespiratory fitness in 5–18 year olds. Sports Med. 2011, 41, 477–488. [Google Scholar] [CrossRef] [PubMed]
- Aadland, E.; Kvalheim, O.M.; Anderssen, S.A.; Resaland, G.K.; Andersen, L.B. The multivariate physical activity signature associated with metabolic health in children. Int. J. Behav. Nutr. Phys. Act. 2018, 15, 77. [Google Scholar] [CrossRef]
- World Health Organization. WHO Guidelines on Physical Activity and Sedentary Behaviour; World Health Organization: Geneva, Switzerland, 2020; ISBN 978-92-4-001512-8. [Google Scholar]
- Ruiz, J.R.; Castro-Piñero, J.; Artero, E.G.; Ortega, F.B.; Sjöström, M.; Suni, J.; Castillo, M.J. Predictive validity of health-related fitness in youth: A systematic review. Br. J. Sports Med. 2009, 43, 909–923. [Google Scholar] [CrossRef]
- Council of Europe. Committee of Experts on Sports Research. EUROFIT: Handbook for the EUROFIT Tests of Physical Fitness, 2nd ed.; Sports Division Strasbourg, Council of Europe Publishing and Documentation Service: Strasbourg, France, 1993. [Google Scholar]
- Plowman, S.A.; Sterling, C.L.; Corbin, C.B.; Meredith, M.D.; Welk, G.J.; Morrow, J.R., Jr. The history of FITNESSGRAM®. J. Phys. Act. Health 2006, 3, 5–20. [Google Scholar] [CrossRef]
- President’s Council on Physical Fitness and Sport. President’s Challenge Physical Activity and Fitness Awards Program; President’s Council on Fitness, Sports & Nutrition: Rockville, MD, USA, 2002. [Google Scholar]
- Mood, D.P.; Jackson, A.W.; Morrow Jr, J.R. Measurement of physical fitness and physical activity: Fifty years of change. Meas. Phys. Educ. Exerc. Sci. 2007, 11, 217–227. [Google Scholar] [CrossRef]
- Shingo, N.; Takeo, M. The educational experiments of school health promotion for the youth in Japan: Analysis of the ‘sport test’over the past 34 years. Health Promot. Int. 2002, 17, 147–160. [Google Scholar] [CrossRef] [Green Version]
- Rosandich, T.P. International physical fitness test. Sport J. 1999, 2, 1–4. [Google Scholar]
- Ruiz, J.R.; Castro-Piñero, J.; España-Romero, V.; Artero, E.G.; Ortega, F.B.; Cuenca, M.M.; Jimenez-Pavón, D.; Chillón, P.; Girela-Rejón, M.J.; Mora, J. Field-based fitness assessment in young people: The ALPHA health-related fitness test battery for children and adolescents. Br. J. Sports Med. 2011, 45, 518–524. [Google Scholar] [CrossRef]
- Jurak, G.; Leskošek, B.; Kovač, M.; Sorić, M.; Kramaršič, J.; Sember, V.; Đurić, S.; Meh, K.; Morrison, S.A.; Strel, J. SLOfit surveillance system of somatic and motor development of children and adolescents: Upgrading the Slovenian sports educational chart. Auc Kinanthropologica 2020, 56, 28–40. [Google Scholar] [CrossRef]
- Trost, S.G.; Morgan, A.M.; Saunders, R.; Felton, G.; Ward, D.S.; Pate, R.R. Children’s understanding of the concept of physical activity. Pediatric Exerc. Sci. 2000, 12, 293–299. [Google Scholar] [CrossRef] [Green Version]
- Baranowski, T.; Dworkin, R.J.; Cieslik, C.J.; Hooks, P.; Clearman, D.R.; Ray, L.; Dunn, J.K.; Nader, P.R. Reliability and validity of self report of aerobic activity: Family Health Project. Res. Q. Exerc. Sport 1984, 55, 309–317. [Google Scholar] [CrossRef]
- Yang, X.; Zhai, Y.; Si, X.; Zhao, W.H. Validity and reliability of physical activity questionnaires in children and adolescents: A meta-analysis. Zhonghua Yu Fang Yi Xue Za Zhi 2020, 54, 546–554. [Google Scholar] [CrossRef]
- Leatherdale, S.T.; Manske, S.; Wong, S.L.; Cameron, R. Integrating research, policy, and practice in school-based physical activity prevention programming: The School Health Action, Planning, and Evaluation System (SHAPES) Physical Activity Module. Health Promot. Pract. 2009, 10, 254–261. [Google Scholar] [CrossRef]
- Wang, J.J.; Baranowski, T.; Lau, W.P.; Chen, T.A.; Pitkethly, A.J. Validation of the physical activity questionnaire for older children (PAQ-C) among Chinese children. Biomed. Environ. Sci. 2016, 29, 177–186. [Google Scholar] [CrossRef]
- Verstraeten, R.; Lachat, C.; Ochoa-Avilés, A.; Hagströmer, M.; Huybregts, L.; Andrade, S.; Donoso, S.; Van Camp, J.; Maes, L.; Kolsteren, P. Predictors of validity and reliability of a physical activity record in adolescents. BMC Public Health 2013, 13, 1109. [Google Scholar] [CrossRef] [Green Version]
- Gråstén, A.; Watt, A. A comparison of self-report scales and accelerometer-determined moderate to vigorous physical activity scores of Finnish school students. Meas. Phys. Educ. Exerc. Sci. 2016, 20, 220–229. [Google Scholar] [CrossRef]
- Muthuri, S.K.; Wachira, L.-J.M.; Onywera, V.O.; Tremblay, M.S. Direct and self-reported measures of physical activity and sedentary behaviours by weight status in school-aged children: Results from ISCOLE-Kenya. Ann. Hum. Biol. 2015, 42, 239–247. [Google Scholar] [CrossRef]
- Zovko, V.; Djuric, S.; Sember, V.; Jurak, G. Are Family Physical Activity Habits Passed on to Their Children? Front. Psychol. 2021, 12, 3885. [Google Scholar] [CrossRef]
- Jurak, G.; Kovač, M.; Strel, J. Differences in spending summer holidays of Slovenian children and youth in different periods of schooling. Differ. Spend. Summer Holidays Slov. Child. Youth Differ. Periods Sch. 2002, 39, 34–43. [Google Scholar]
- Wong, S.L.; Leatherdale, S.T.; Manske, S.R. Reliability and validity of a school-based physical activity questionnaire. Med. Sci. Sports Exerc. 2006, 38, 1593–1600. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO STEPS Surveillance Manual: The WHO STEP Wise Approach to Chronic Disease Risk Factor Surveillance; World Health Organization: Geneva, Switzerland, 2005. [Google Scholar]
- Aittasalo, M.; Vähä-Ypyä, H.; Vasankari, T.; Husu, P.; Jussila, A.-M.; Sievänen, H. Mean amplitude deviation calculated from raw acceleration data: A novel method for classifying the intensity of adolescents’ physical activity irrespective of accelerometer brand. BMC Sports Sci. Med. Rehabil. 2015, 7, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vähä-Ypyä, H.; Sievänen, H.; Husu, P.; Tokola, K.; Vasankari, T. Intensity Paradox—Low-Fit People Are Physically Most Active in Terms of Their Fitness. Sensors 2021, 21, 2063. [Google Scholar] [CrossRef] [PubMed]
- Leinonen, A.-M.; Ahola, R.; Kulmala, J.; Hakonen, H.; Vähä-Ypyä, H.; Herzig, K.-H.; Auvinen, J.; Keinänen-Kiukaanniemi, S.; Sievänen, H.; Tammelin, T.H. Measuring physical activity in free-living conditions—comparison of three accelerometry-based methods. Front. Physiol. 2017, 7, 681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cole, T.J.; Lobstein, T. Extended international (IOTF) body mass index cut-offs for thinness, overweight and obesity. Pediatric Obes. 2012, 7, 284–294. [Google Scholar] [CrossRef]
- Jurak, G.; Kovač, M.; Starc, G. 30 years of SLOfit: Its legacy and perspective. In Proceedings of the 20th Anniversary, 8th International Scientific Conference on Kinesiology, Opatija, Croatia, 10–14 May 2017; Milanović, D., Šarabon, N., Eds.; Faculty of Kinesiology, University of Zagreb: Opatija, Croatia, 2017; pp. 191–198. [Google Scholar]
- Shrout, P.E.; Fleiss, J.L. Intraclass correlations: Uses in assessing rater reliability. Psychol. Bull. 1979, 86, 420. [Google Scholar] [CrossRef]
- Evans, J.D. Straightforward Statistics for the Behavioral Sciences; Thomson Brooks/Cole Publishing Co.: Pacific Grove, CA, USA, 1996; ISBN 0534231004. [Google Scholar]
- Rauner, A.; Mess, F.; Woll, A. The relationship between physical activity, physical fitness and overweight in adolescents: A systematic review of studies published in or after 2000. BMC Pediatrics 2013, 13, 19. [Google Scholar] [CrossRef] [Green Version]
- Smith, J.J.; Eather, N.; Morgan, P.J.; Plotnikoff, R.C.; Faigenbaum, A.D.; Lubans, D.R. The Health Benefits of Muscular Fitness for Children and Adolescents: A Systematic Review and Meta-Analysis. Sports Med. 2014, 44, 1209–1223. [Google Scholar] [CrossRef]
- Mintjens, S.; Menting, M.D.; Daams, J.G.; van Poppel, M.N.M.; Roseboom, T.J.; Gemke, R.J.B.J. Cardiorespiratory Fitness in Childhood and Adolescence Affects Future Cardiovascular Risk Factors: A Systematic Review of Longitudinal Studies. Sports Med. 2018, 48, 2577–2605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Warner, E.T.; Wolin, K.Y.; Duncan, D.T.; Heil, D.P.; Askew, S.; Bennett, G.G. Differential accuracy of physical activity self-report by body mass index. Am. J. Health Behav. 2012, 36, 168–178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radman, I.; Sorić, M.; Mišigoj-Duraković, M. Agreement between the SHAPES Questionnaire and a Multiple-Sensor Monitor in Assessing Physical Activity of Adolescents Using Categorial Approach: A Cross-Sectional Study. Sensors 2021, 21, 1986. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Jago, R.; Zhai, Y.; Yang, Z.Y.; Wang, Y.Y.; Xiang, S.I.; Jun, W.; Gao, J.F.; Chen, J.R.; Yu, Y.J. Validity and Reliability of Chinese Physical Activity Questionnaire for Children Aged 10–17 Years. Biomed. Environ. Sci. 2019, 32, 647–658. [Google Scholar] [CrossRef]
- Júdice, P.B.; Silva, A.M.; Berria, J.; Petroski, E.L.; Ekelund, U.; Sardinha, L.B. Sedentary patterns, physical activity and health-related physical fitness in youth: A cross-sectional study. Int. J. Behav. Nutr. Phys. Act. 2017, 14, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adamo, K.B.; Prince, S.A.; Tricco, A.C.; Connor-Gorber, S.; Tremblay, M. A comparison of indirect versus direct measures for assessing physical activity in the pediatric population: A systematic review. Int. J. Pediatric Obes. 2009, 4, 2–27. [Google Scholar] [CrossRef]
- Trost, S.G.; Loprinzi, P.D.; Moore, R.; Pfeiffer, K.A. Comparison of accelerometer cut points for predicting activity intensity in youth. Med. Sci. Sports Exerc. 2011, 43, 1360–1368. [Google Scholar] [CrossRef]
- Anderson, C.B.; Hagströmer, M.; Yngve, A. Validation of the PDPAR as an adolescent diary: Effect of accelerometer cut points. Med. Sci. Sports Exerc. 2005, 37, 1224–1230. [Google Scholar] [CrossRef]
- Rodriguez, G.; Béghin, L.; Michaud, L.; Moreno, L.A.; Turck, D.; Gottrand, F. Comparison of the TriTrac-R3D accelerometer and a self-report activity diary with heart-rate monitoring for the assessment of energy expenditure in children. Br. J. Nutr. 2002, 87, 623–631. [Google Scholar] [CrossRef]
- Charles, M.; Thivel, D.; Verney, J.; Isacco, L.; Husu, P.; Vähä-Ypyä, H.; Vasankari, T.; Tardieu, M.; Fillon, A.; Genin, P. Reliability and validity of the ONAPS physical activity questionnaire in assessing physical activity and sedentary behavior in French adults. Int. J. Environ. Res. Public Health 2021, 18, 5643. [Google Scholar] [CrossRef] [PubMed]
- Ács, P.; Veress, R.; Rocha, P.; Dóczi, T.; Raposa, B.L.; Baumann, P.; Ostojic, S.; Pérmusz, V.; Makai, A. Criterion validity and reliability of the International Physical Activity Questionnaire–Hungarian short form against the RM42 accelerometer. BMC Public Health 2021, 21, 381. [Google Scholar] [CrossRef]
- Vähä-Ypyä, H.; Vasankari, T.; Husu, P.; Mänttäri, A.; Vuorimaa, T.; Suni, J.; Sievänen, H. Validation of cut-points for evaluating the intensity of physical activity with accelerometry-based mean amplitude deviation (MAD). PLoS ONE 2015, 10, e0134813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hendelman, D.; Miller, K.; Baggett, C.; Debold, E.; Freedson, P. Validity of accelerometry for the assessment of moderate intensity physical activity in the field. Med. Sci. Sports Exerc. 2000, 32, S442–S449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Welk, G.J.; Blair, S.N.; Wood, K.; Jones, S.; Thompson, R.W. A comparative evaluation of three accelerometry-based physical activity monitors. Med. Sci. Sports Exerc. 2000, 32, S489–S497. [Google Scholar] [CrossRef] [PubMed]
- Chinapaw, M.J.M.; Mokkink, L.B.; van Poppel, M.N.M.; van Mechelen, W.; Terwee, C.B. Physical activity questionnaires for youth. Sports Med. 2010, 40, 539–563. [Google Scholar] [CrossRef]
- Sirard, J.R.; Pate, R.R. Physical activity assessment in children and adolescents. Sports Med. 2001, 31, 439–454. [Google Scholar] [CrossRef]
- Warren, J.M.; Ekelund, U.; Besson, H.; Mezzani, A.; Geladas, N.; Vanhees, L. Assessment of physical activity–a review of methodologies with reference to epidemiological research: A report of the exercise physiology section of the European Association of Cardiovascular Prevention and Rehabilitation. Eur. J. Cardiovasc. Prev. Rehabil. 2010, 17, 127–139. [Google Scholar] [CrossRef]
- Helmerhorst, H.H.J.F.; Brage, S.; Warren, J.; Besson, H.; Ekelund, U. A systematic review of reliability and objective criterion-related validity of physical activity questionnaires. Int. J. Behav. Nutr. Phys. Act. 2012, 9, 103. [Google Scholar] [CrossRef] [Green Version]
- Morrison, S.A.; Sember, V.; Leskošek, B.; Kovač, M.; Jurak, G.; Starc, G. Assessment of Secular Trends and Health Risk in Pediatric Cardiorespiratory Fitness From the Republic of Slovenia. Front. Physiol. 2021, 12, 270. [Google Scholar] [CrossRef]
- Lang, J.J.; Tremblay, M.S.; Léger, L.; Olds, T.; Tomkinson, G.R. International variability in 20 m shuttle run performance in children and youth: Who are the fittest from a 50-country comparison? A systematic literature review with pooling of aggregate results. Br. J. Sports Med. 2018, 52, 276. [Google Scholar] [CrossRef]
- Finger, J.D.; Gisle, L.; Mimilidis, H.; Santos-Hoevener, C.; Kruusmaa, E.K.; Matsi, A.; Oja, L.; Balarajan, M.; Gray, M.; Kratz, A.L. How well do physical activity questions perform? A European cognitive testing study. Arch. Public Health 2015, 73, 57. [Google Scholar] [CrossRef] [Green Version]
- Hidding, L.M.; Chinapaw, M.J.M.; van Poppel, M.N.M.; Mokkink, L.B.; Altenburg, T.M. An updated systematic review of childhood physical activity questionnaires. Sports Med. 2018, 48, 2797–2842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nigg, C.R.; Fuchs, R.; Gerber, M.; Jekauc, D.; Koch, T.; Krell-Roesch, J.; Lippke, S.; Mnich, C.; Novak, B.; Ju, Q. Assessing physical activity through questionnaires–A consensus of best practices and future directions. Psychol. Sport Exerc. 2020, 50, 101715. [Google Scholar] [CrossRef]
Group | Low Fitness (LF) (N = 27) | Intermediate Fitness (IF) (N = 40) | High Fitness (HF) (N = 41) | Total (N = 108) |
---|---|---|---|---|
Age (years) | 12.6 ± 1.1 | 12.2 ± 1.1 | 12.4 ± 1.2 | 12.4 ± 1.1 |
Girls | 25 (92.6%) | 23 (57.5%) | 12 (29.3%) | 60 (55.6%) |
BMI (total) | 20.7 ± 3.8 | 19.3 ± 2.1 | 19.1 ± 2.1 | 19.6 ± 2.9 |
Underweight (N, % within FG) | 6 (22.2%) | 12 (30%) | 19 (46.3%) | 37 (34.3%) |
Normal weight (N, % within FG) | 17 (63%) | 28 (70%) | 20 (48.8%) | 65 (60.2%) |
Overweight (N, % within FG) | 4 (14.8%) | 0 (0%) | 2 (4.9%) | 6 (5.6%) |
Group | Low Fitness (LF) | Intermediate Fitness (IF) | High Fitness (HF) | Total |
---|---|---|---|---|
Running 600 m (sec) | 181.3 ± 22.3 ac | 148.9 ± 8.4 ac | 122.4 ± 16 bc | 146.9 ± 27.8 |
AC_MPA (min per day) | 73.9 ± 25.7 b | 85.5 ± 26.8 | 97.3 ± 28.7 b | 87.1 ± 28.6 |
Q_MPA (min/per day) | 55.7 ± 43.3 | 55.7 ± 37.3 | 49.4 ± 31.6 | 53.3 ± 36.7 |
MPA_Mean Difference Score (min per day) | −18.2 ± 50 b (24.6%) | −29.8 ± 47.5 (34.9%) | −47.9 ± 35.6 b (49.2%) | −33.8 ± 45.2 (38.8%) |
AC_VPA (min per day) | 4.5 ± 3.9 | 9.4 ± 9.1 | 16 ± 11.7 | 10.7 ± 10.3 |
Q_VPA (min per day) | 49.3 ± 37.9 b | 57.1 ± 32 c | 80.4 ± 30.1 bc | 64 ± 35.2 |
VPA_Mean Difference Score (min per day) | 44.8 ± 37.8 bc (796%) | 47.7 ± 28.6 bc (307%) | 64.5 ± 23.8 bc (203%) | 53.3 ± 30.6 (298%) |
AC_MVPA (min per day) | 78.4 ± 27.5 b | 94.9 ± 32.8 c | 113.3 ± 36.7 bc | 97.8 ± 35.6 |
Q_MVPA (min per day) | 105 ± 65.6 | 112.8 ± 53.2 | 129.9 ± 49.6 | 117.3 ± 55.7 |
MVPA_Mean Difference Score (min per day) | 26.6 ± 67.8 (33.9%) | 17.9 ± 55.3 (18.9%) | 16.6 ± 43.3 (14.7%) | 19.6 ± 54.3 (20.3%) |
AC_MVPA at least 60 min each day (N, %) | 6 (22.2%) | 8 (20%) | 13 (31.7%) | 27 (25%) |
Q_MVPA at least 60 min each day (N, %) | 13 (48.1%) | 15 (37.5%) | 21 (51.2%) | 49 (45.4%) |
Group | Test 1 | Test 2 | ICC (95% CI) | Cronbach’s Alpha | |
---|---|---|---|---|---|
Q_MPA | LF | 48.2 ± 37 | 55.7 ± 43.3 | 0.62 (0.18–0.83) | 0.62 * |
IF | 54.1 ± 39.6 | 55.7 ± 37.3 | 0.69 (0.4–0.84) | 0.68 * | |
HF | 55 ± 35 | 49.4 ± 31.6 | 0.78 (0.58–0.9) | 0.78 * | |
Total | 52.9 ± 36.8 | 53.3 ± 36.7 | 0.69 (0.55–0.79) | 0.69 * | |
Q_VPA | LF | 52.9 ± 34.2 | 49.3 ± 37.9 | 0.83 (0.62–0.92) | 0.82 * |
IF | 58 ± 26.5 | 57.1 ± 32 | 0.41 (0.12–0.7) | 0.41 | |
HF | 77.4 ± 31.4 | 80.4 ± 30.1 | 0.59 (0.23–0.78) | 0.59 * | |
Total | 64.9 ± 32 | 64 ± 35.2 | 0.7 (0.54–0.79) | 0.69 * | |
Q_MVPA | LF | 101.1 ± 56.3 | 105 ± 65.6 | 0.86 (0.69–0.94) | 0.86 * |
IF | 112 ± 49.8 | 112.8 ± 53.2 | 0.61 (0.23–0.8) | 0.61 * | |
HF | 132.4 ± 54.7 | 129.8 ± 49.6 | 0.74 (0.5–0.86) | 0.73 * | |
Total | 117 ± 54.4 | 117.3 ± 55.7 | 0.75 (0.64–0.83) | 0.75 * |
Spearman’s rho (AC vs. Q) | ||||
---|---|---|---|---|
LF | IF | HF | Total | |
MPA | 0.03 | −0.12 | 0.34 * | 0.10 |
VPA | 0.10 | 0.42 | 0.70 * | 0.51 * |
MVPA | 0.14 | 0.20 | 0.50 * | 0.32 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Premelč, J.; Meh, K.; Vähä-Ypyä, H.; Sember, V.; Jurak, G. Do Fitter Children Better Assess Their Physical Activity with Questionnaire Than Less Fit Children? Int. J. Environ. Res. Public Health 2022, 19, 1304. https://doi.org/10.3390/ijerph19031304
Premelč J, Meh K, Vähä-Ypyä H, Sember V, Jurak G. Do Fitter Children Better Assess Their Physical Activity with Questionnaire Than Less Fit Children? International Journal of Environmental Research and Public Health. 2022; 19(3):1304. https://doi.org/10.3390/ijerph19031304
Chicago/Turabian StylePremelč, Jerneja, Kaja Meh, Henri Vähä-Ypyä, Vedrana Sember, and Gregor Jurak. 2022. "Do Fitter Children Better Assess Their Physical Activity with Questionnaire Than Less Fit Children?" International Journal of Environmental Research and Public Health 19, no. 3: 1304. https://doi.org/10.3390/ijerph19031304
APA StylePremelč, J., Meh, K., Vähä-Ypyä, H., Sember, V., & Jurak, G. (2022). Do Fitter Children Better Assess Their Physical Activity with Questionnaire Than Less Fit Children? International Journal of Environmental Research and Public Health, 19(3), 1304. https://doi.org/10.3390/ijerph19031304