Evaluating the Performance of Low-Cost Air Quality Monitors in Dallas, Texas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Low-Cost Sensors and Pollutants Evaluated
2.2. Site Set-Up and Instrumentation
2.3. Linear Calibration
2.4. Data Analysis
2.5. Comparison with the United States Environmental Protection Agency’s Air Quality Index Categories
3. Results
3.1. Descriptive Summary Statistics and Comparison between the AQY1 Monitors and the Reference Monitor
3.1.1. Ozone
3.1.2. Nitrogen Dioxide
3.1.3. Particulate Matter with a Diameter Less Than 2.5 μm
3.1.4. Particulate Matter with a Diameter Less Than 10 μm
3.1.5. Mean Average Percentage Error
3.1.6. Time Series Plots
3.2. Regression Analysis
3.3. Analysis of Covariance
3.3.1. Ozone
3.3.2. Nitrogen Dioxide
3.3.3. Particulate Matter with a Diameter Less Than 2.5 μm
3.3.4. Particulate Matter with a Diameter Less Than 10 μm
3.4. Comparison Based on the Air Quality Index Categories
4. Discussions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
References
- Burnett, R.; Chen, H.; Szyszkowicz, M.; Fann, N.; Hubbell, B.; Pope, C.A., 3rd; Apte, J.S.; Brauer, M.; Cohen, A.; Weichenthal, S.; et al. Global estimates of mortality associated with long-term exposure to outdoor fine particulate matter. Proc. Natl. Acad. Sci. USA 2018, 115, 9592–9597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khreis, H. Traffic, air pollution, and health. In Advances in Transportation and Health; Elsevier: Amsterdam, The Netherlands, 2020; pp. 59–104. [Google Scholar]
- Khreis, H.; Nieuwenhuijsen, M.J.; Zietsman, J.; Ramani, T. Traffic-Related Air Pollution: Emissions, Human Exposures, and Health—An Introduction in Traffic-Related Air Pollution; Khreis, H., Khreis, H., Nieuwenhuijsen, M.J., Zietsman, J., Ramani, T., Eds.; Elseveir: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Fuller, C.H.; Brugge, D. Environmental Justice in Traffic-Related Air Pollution; Khreis, H., Nieuwenhuijsen, M.J., Zietsman, J., Ramani, T., Eds.; Elseveir: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Clark, L.P.; Millet, D.B.; Marshall, J.D. Changes in Transportation-Related Air Pollution Exposures by Race-Ethnicity and Socioeconomic Status: Outdoor Nitrogen Dioxide in the United States in 2000 and 2010. Environ. Health Perspect. 2017, 125, 097012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castell, N.; Dauge, F.R.; Schneider, P.; Vogt, M.; Lerner, U.; Fishbain, B.; Broday, D.; Bartonova, A. Can commercial low-cost sensor platforms contribute to air quality monitoring and exposure estimates? Environ. Int. 2017, 99, 293–302. [Google Scholar] [CrossRef] [PubMed]
- Khreis, H.; Nieuwenhuijsen, M.J. Traffic-Related Air Pollution and Childhood Asthma: Recent Advances and Remaining Gaps in the Exposure Assessment Methods. Int. J. Environ. Res. Public Health 2017, 14, 312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, H.; Reis, S.; Lin, C.; Beverland, I.J.; Heal, M.R. Identifying drivers for the intra-urban spatial variability of airborne particulate matter components and their interrelationships. Atmos. Environ. 2015, 112, 306–316. [Google Scholar] [CrossRef] [Green Version]
- Apte, J.S.; Messier, K.P.; Gani, S.; Brauer, M.; Kirchstetter, T.W.; Lunden, M.M.; Marshall, J.D.; Portier, C.; Vermeulen, R.C.; Hamburg, S.P. High-Resolution Air Pollution Mapping with Google Street View Cars: Exploiting Big Data. Environ. Sci. Technol. 2017, 51, 6999–7008. [Google Scholar] [CrossRef]
- Feenstra, B.; Papapostolou, V.; Hasheminassab, S.; Zhang, H.; Der Boghossian, B.; Cocker, D.; Polidori, A. Performance evaluation of twelve low-cost PM2.5 sensors at an ambient air monitoring site. Atmospheric Environ. 2019, 216, 116946. [Google Scholar] [CrossRef]
- Snyder, E.G.; Watkins, T.H.; Solomon, P.A.; Thoma, E.D.; Williams, R.W.; Hagler, G.S.W.; Shelow, D.; Hindin, D.A.; Kilaru, V.J.; Preuss, P.W. The Changing Paradigm of Air Pollution Monitoring. Environ. Sci. Technol. 2013, 47, 11369–11377. [Google Scholar] [CrossRef]
- Gressent, A.; Malherbe, L.; Colette, A.; Rollin, H.; Scimia, R. Data fusion for air quality mapping using low-cost sensor observations: Feasibility and added-value. Environ. Int. 2020, 143, 105965. [Google Scholar] [CrossRef]
- Schneider, P.; Castell, N.; Vogt, M.; Dauge, F.R.; Lahoz, W.A.; Bartonova, A. Mapping urban air quality in near real-time using observations from low-cost sensors and model information. Environ. Int. 2017, 106, 234–247. [Google Scholar] [CrossRef]
- Hall, E.S.; Kaushik, S.M.; Vanderpool, R.W.; Duvall, R.M.; Beaver, M.R.; Long, R.W.; Solomon, P.A. Solomon, Integrating sensor monitoring technology into the current air pollution regulatory support paradigm: Practical considerations. Am. J. Environ. Eng. 2014, 4, 147–154. [Google Scholar]
- Mukherjee, A.; Stanton, L.G.; Graham, A.R.; Roberts, P.T. Assessing the Utility of Low-Cost Particulate Matter Sensors over a 12-Week Period in the Cuyama Valley of California. Sensors 2017, 17, 1805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holstius, D.M.; Pillarisetti, A.; Smith, K.R.; Seto, E. Field calibrations of a low-cost aerosol sensor at a regulatory monitoring site in California. Atmos. Meas. Tech. 2014, 7, 1121–1131. [Google Scholar] [CrossRef] [Green Version]
- Wesseling, J.; De Ruiter, H.; Blokhuis, C.; Drukker, D.; Weijers, E.; Volten, H.; Vonk, J.; Gast, L.; Voogt, M.; Zandveld, P.; et al. Development and Implementation of a Platform for Public Information on Air Quality, Sensor Measurements, and Citizen Science. Atmosphere 2019, 10, 445. [Google Scholar] [CrossRef] [Green Version]
- Brattich, E.; Bracci, A.; Zappi, A.; Morozzi, P.; Di Sabatino, S.; Porcù, F.; Di Nicola, F.; Tositti, L. How to get the best from low-cost particulate matter sensors: Guidelines and practical recommendations. Sensors 2020, 20, 3073. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.-Y.; Schneider, P.; Haugen, R.; Vogt, M. Performance Assessment of a Low-Cost PM2.5 Sensor for a near Four-Month Period in Oslo, Norway. Atmosphere 2019, 10, 41. [Google Scholar] [CrossRef] [Green Version]
- Bauerová, P.; Šindelářová, A.; Rychlík, Š.; Novák, Z.; Keder, J. Low-Cost Air Quality Sensors: One-Year Field Comparative Measurement of Different Gas Sensors and Particle Counters with Reference Monitors at Tušimice Observatory. Atmosphere 2020, 11, 492. [Google Scholar] [CrossRef]
- Feinberg, S.N.; Williams, R.; Hagler, G.; Low, J.; Smith, L.; Brown, R.; Garver, D.; Davis, M.; Morton, M.; Schaefer, J.; et al. Examining spatiotemporal variability of urban particulate matter and application of high-time resolution data from a network of low-cost air pollution sensors. Atmos. Environ. 2019, 213, 579–584. [Google Scholar] [CrossRef]
- Clements, A.L.; Griswold, W.G.; Abhijit, R.S.; Johnston, J.E.; Herting, M.M.; Thorson, J.; Collier-Oxandale, A.; Hannigan, M. Low-Cost Air Quality Monitoring Tools: From Research to Practice (A Workshop Summary). Sensors 2017, 17, 2478. [Google Scholar] [CrossRef] [Green Version]
- Rai, A.C.; Kumar, P.; Pilla, F.; Skouloudis, A.N.; Di Sabatino, S.; Ratti, C.; Yasar, A.-U.; Rickerby, D. End-user perspective of low-cost sensors for outdoor air pollution monitoring. Sci. Total Environ. 2017, 607–608, 691–705. [Google Scholar] [CrossRef] [Green Version]
- Cheng, W.-L.; Chen, Y.-S.; Zhang, J.; Lyons, T.; Pai, J.-L.; Chang, S.-H. Comparison of the Revised Air Quality Index with the PSI and AQI indices. Sci. Total Environ. 2007, 382, 191–198. [Google Scholar] [CrossRef] [PubMed]
- Mazzeo, A.; Huneeus, N.; Ordoñez, C.; Orfanoz-Cheuquelaf, A.; Menut, L.; Mailler, S.; Valari, M.; van der Gon, H.D.; Gallardo, L.; Muñoz, R.; et al. Impact of residential combustion and transport emissions on air pollution in Santiago during winter. Atmos. Environ. 2018, 190, 195–208. [Google Scholar] [CrossRef]
- WHO. CEPAL, NU Effects of the Quarantines and Activity Restrictions Related to the Coronavirus Disease (COVID-19) on Air Quality in Latin America’s Cities; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Air Quality Index (AQI). 2020. Available online: https://www.airnow.gov/aqi/ (accessed on 14 December 2020).
- Aeroqual. AQY User Guide 2020. 2020. Available online: https://support.aeroqual.com/Document/SPAHibXIfEj2AY4H/AQY+1+user+guide.pdf (accessed on 29 April 2021).
- Texas Commission on Environmental Quality. Dallas Hinton St. C401/C60/AH161 Data by Site by Date (All Parameters). 30 January 2018. Available online: https://www.tceq.texas.gov/cgi-bin/compliance/monops/daily_summary.pl?cams=401 (accessed on 14 September 2019).
- Texas Commission on Environmental Quality. Data by Month by Site by Parameter. 2020. Available online: https://www.tceq.texas.gov/cgi-bin/compliance/monops/monthly_summary.pl (accessed on 14 December 2020).
- Aeroqual: Perform Co-Location Calibration. 2020. Available online: https://support.aeroqual.com/Guide/Perform+co-location+calibration/97 (accessed on 13 September 2021).
- United States Environmental Protection Agency. Technical Assistance Document for the Reporting of Daily Air Quality—The Air Quality Index (AQI). September 2018. Available online: https://www.airnow.gov/sites/default/files/2020-05/aqi-technical-assistance-document-sept2018.pdf (accessed on 16 December 2020).
- Field Evaluation Aeroqual AQY (v0.5). 2018. Available online: http://www.aqmd.gov/docs/default-source/aq-spec/field-evaluations/aeroqual-aqy-v0-5---field-evaluation.pdf?sfvrsn=22 (accessed on 29 March 2021).
- Field Evaluation Aeroqual AQY (v1.0). 2020. Available online: http://www.aqmd.gov/docs/default-source/aq-spec/field-evaluations/aeroqual-aqy-v1-0---field-evaluation.pdf?sfvrsn=21 (accessed on 29 March 2021).
- Field Evaluation Aeroqual AQY (v1.0)—PM10. 2020. Available online: http://www.aqmd.gov/docs/default-source/aq-spec/field-evaluations/aeroqual-aqy-v1-0-(pm10)---field-evaluation.pdf?sfvrsn=14 (accessed on 30 March 2021).
- Spinelle, L.; Gerboles, M.; Villani, M.G.; Aleixandre, M.; Bonavitacola, F. Field calibration of a cluster of low-cost commercially available sensors for air quality monitoring. Part B: NO, CO and CO2. Sens. Actuators B Chem. 2017, 238, 706–715. [Google Scholar] [CrossRef]
- Spinelle, L.; Gerboles, M.; Villani, M.G.; Aleixandre, M.; Bonavitacola, F. Field calibration of a cluster of low-cost available sensors for air quality monitoring. Part A: Ozone and nitrogen dioxide. Sens. Actuators B Chem. 2015, 215, 249–257. [Google Scholar] [CrossRef]
- Gonzalez, A.; Boies, A.; Swason, J.; Kittelson, D. Field calibration of low-cost air pollution sensors. Atmos. Meas. Tech. Discuss. 2019, preprint. [Google Scholar] [CrossRef]
- Sayegh, A.; Tate, J.E.; Ropkins, K. Understanding how roadside concentrations of NOx are influenced by the background levels, traffic density, and meteorological conditions using Boosted Regression Trees. Atmos. Environ. 2016, 127, 163–175. [Google Scholar] [CrossRef]
- Williams, R.; Nash, D.; Hagler, G.; Benedict, K.; MacGregor, I.; Seay, B.; Lawrence, M.; Dye, T. Peer Review and Supporting Literature Review of Air Sensor Technology Performance Targets; US Environmental Protection Agency: Washington, DC, USA, 2018.
- Jayaratne, R.; Liu, X.; Thai, P.; Dunbabin, M.; Morawska, L. The influence of humidity on the performance of a low-cost air particle mass sensor and the effect of atmospheric fog. Atmos. Meas. Tech. 2018, 11, 4883–4890. [Google Scholar] [CrossRef] [Green Version]
- Mei, H.; Han, P.; Wang, Y.; Zeng, N.; Liu, D.; Cai, Q.; Deng, Z.; Wang, Y.; Pan, Y.; Tang, X. Field Evaluation of Low-Cost Particulate Matter Sensors in Beijing. Sensors 2020, 20, 4381. [Google Scholar] [CrossRef]
- Williams, R.; Kilaru, V.; Snyder, E.; Kaufman, A.; Dye, T.; Rutter, A.; Russell, A.; Hafner, H. Air Sensor Guidebook; US Environmental Protection Agency: Washington, DC, USA, 2014.
- AEROQUAL. Aeroqual Case Study. 2018. Available online: https://www.aeroqual.com/wp-content/uploads/Case-Study-LA-Community-Air-Monitoring-Network.pdf (accessed on 29 March 2021).
- Borrego, C.; Costa, A.; Ginja, J.; Amorim, M.; Coutinho, M.; Karatzas, K.; Sioumis, T.; Katsifarakis, N.; Konstantinidis, K.; De Vito, S. Assessment of air quality microsensors versus reference methods: The EuNetAir joint exercise. Atmos. Environ. 2016, 147, 246–263. [Google Scholar] [CrossRef] [Green Version]
- Holder, A.L.; Mebust, A.K.; Maghran, L.A.; McGown, M.R.; Stewart, K.E.; Vallano, D.M.; Elleman, R.A.; Baker, K.R. Field Evaluation of Low-Cost Particulate Matter Sensors for Measuring Wildfire Smoke. Sensors 2020, 20, 4796. [Google Scholar] [CrossRef]
- Khader, A.; Martin, R.S. Use of Low-Cost Ambient Particulate Sensors in Nablus, Palestine with Application to the Assessment of Regional Dust Storms. Atmosphere 2019, 10, 539. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.; Kang, J.; Kim, S.; Im, Y.; Yoo, S.; Lee, D. Long-Term Evaluation and Calibration of Low-Cost Particulate Matter (PM) Sensor. Sensors 2020, 20, 3617. [Google Scholar] [CrossRef] [PubMed]
- Popoola, O.A.; Carruthers, D.; Lad, C.; Bright, V.B.; Mead, M.I.; Stettler, M.E.; Saffell, J.R.; Jones, R.L. Use of networks of low cost air quality sensors to quantify air quality in urban settings. Atmos. Environ. 2018, 194, 58–70. [Google Scholar] [CrossRef]
- Sahu, R.; Dixit, K.K.; Mishra, S.; Kumar, P.; Shukla, A.K.; Sutaria, R.; Tiwari, S.; Tripathi, S.N. Validation of Low-Cost Sensors in Measuring Real-Time PM10 Concentrations at Two Sites in Delhi National Capital Region. Sensors 2020, 20, 1347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, L.; Wong, K.C.; Wei, P.; Ye, S.; Huang, H.; Yang, F.; Westerdahl, D.; Louie, P.K.; Luk, C.W.; Ning, Z. Development and Application of a Next Generation Air Sensor Network for the Hong Kong Marathon 2015 Air Quality Monitoring. Sensors 2016, 16, 211. [Google Scholar] [CrossRef]
AQY1 Units’ Instrumentation 1 | Range | Lower Detectable Limit |
---|---|---|
PM2.5 (Optical Particle Counter using Laser Scattering)—includes a pump for active sampling | 0–1000 µg/m3 | 1 µg/m3 |
PM10 (Optical Particle Counter using Laser Scattering)—includes a pump for active sampling | 0–1000 µg/m3 | 1 µg/m3 |
O3 (Gas Sensitive Semiconductor) | 0–200 ppb | 1 ppb |
NO2 (NO2 is reported as the difference between the Ox and O3 sensors according to the equation [NO2] = [Ox] − 1.1 × [O3]. The Ox sensor is a Gas Sensitive Electrochemical sensor) | 0–500 ppb | 2 ppb |
Reference Monitor Instrumentation | Range | Lower Detectable Limit |
PM2.5 and PM10 (Beta Attenuation Mass Monitor 1020 2)—active sampling | 0–10,000 μg/m3 | Less than 1.0 μg/m3 |
O3 (API Teledyne T400, UV Absorption O3 Analyzer 3)—active sampling | Min: 0–100 ppb full scale Max: 0–10,000 ppb full scale (selectable, dual-range supported) | <0.4 ppb |
NO2 (API Teledyne T200E 4 Chemiluminescence NO/NO2/NOx Analyzer)—active sampling | Min: 0–50 ppb full scale Max: 0–20,000 ppb full scale (selectable, dual-range supported) | <0.2 ppb |
Ozone | |||||||
---|---|---|---|---|---|---|---|
Data Set | O3 Raw AQY1 Data (ppb) | O3 Calibrated AQY1 Data (ppb) | O3 Reference Monitor (Hinton) Data (ppb) | O3 Reference Monitor (Hinton) Data—O3 Raw AQY1 Data (Absolute Difference) | O3 Reference Monitor (Hinton) Data—O3 Raw AQY1 Data (Difference in %) | O3 Reference Monitor (Hinton) Data—O3 Calibrated AQY1 Data (Absolute Difference) | O3 Reference Monitor (Hinton) Data—O3 Calibrated AQY1 Data (Difference in %) |
Number of records | 163,584 | 163,584 | 136,632 | Not Applicable | Not Applicable | Not Applicable | Not Applicable |
Missing records (%) | 31,382 (19.2%) | 74,322 (45%) | 955 (7%) | Not Applicable | Not Applicable | Not Applicable | Not Applicable |
Minimum | 0 | 0 | 0 | 0 | Not Applicable | 0 | Not Applicable |
1st Quartile | 23.5 | 19.6 | 16 | −7.5 | −47% | −3.4 | −21% |
Median | 33.1 | 31.3 | 27 | −6.1 | −23% | −4.3 | −16% |
Mean | 35 | 32.7 | 27.2 | −7.8 | −29% | −5.2 | −19% |
3rd Quartile | 44.6 | 43.9 | 38 | −6.6 | −17% | −5.6 | −15% |
Maximum | 121 | 138.7 | 85 | −36 | −42% | −53.7 | −63% |
Nitrogen Dioxide | |||||||
Data Set | NO2 Raw AQY1 Data (ppb) | NO2 Calibrated AQY1 Data (ppb) | NO2 Reference Monitor (Hinton) Data (ppb) | NO2 Reference Monitor (Hinton) Data—NO2 Raw AQY1 Data (Absolute Difference) | NO2 Reference Monitor (Hinton) Data—NO2 Raw AQY1 Data (Difference in %) | NO2 Reference Monitor (Hinton) Data—NO2 Calibrated AQY1 Data (Absolute Difference) | NO2 Reference Monitor (Hinton) Data—NO2 Calibrated AQY1 Data (Difference in %) |
Number of records | 163,584 | 163,584 | 136,632 | Not Applicable | Not Applicable | Not Applicable | Not Applicable |
Missing records (%) | 31,382 (19.2%) | 67,772 (41%) | 3026 (22%) | Not Applicable | Not Applicable | Not Applicable | Not Applicable |
Minimum | −109.0 | 0.0 | 0.0 | 109 | Not Applicable | 0.0 | 0% |
1st Quartile | −11.0 | 0.0 | 2.8 | 13.8 | 493% | 2.8 | 100% |
Median | −2.4 | 0.0 | 4.8 | 7.2 | 150% | 4.8 | 100% |
Mean | −3.4 | 5.6 | 7.3 | 10.7 | 147% | 1.7 | 23% |
3rd Quartile | 6.6 | 5.5 | 8.8 | 2.2 | 25% | 3.3 | 38% |
Maximum | 208.5 | 110.9 | 45.7 | −162.8 | −356% | −65.2 | −143% |
Particulate Matter with a Diameter Less than 2.5 μm | |||||||
Data Set | PM2.5 Raw AQY1 Data (ug/m3) | PM2.5 Calibrated AQY1 Data (ug/m3) | PM2.5 Reference Monitor (Hinton) Data (ug/m3) | PM2.5 Reference Monitor (Hinton) Data—NO2 Raw AQY1 Data (Absolute Difference) | PM2.5 Reference Monitor (Hinton) Data—NO2 Raw AQY1 Data (Difference in %) | PM2.5 Reference Monitor (Hinton) Data—NO2 Calibrated AQY1 Data (Absolute Difference) | PM2.5 Reference Monitor (Hinton) Data—NO2 Calibrated AQY1 Data (Difference in %) |
Number of records | 163,584 | 163,584 | 136,632 | Not Applicable | Not Applicable | Not Applicable | Not Applicable |
Missing records (%) | 24,677 (15%) | 62,269 (38%) | 241 (0.18%) | Not Applicable | Not Applicable | Not Applicable | Not Applicable |
Minimum | 0 | 0 | 0 | 0 | Not Applicable | 0 | Not Applicable |
1st Quartile | 1.8 | 2.7 | 4.2 | 2.4 | 57% | 1.5 | 36% |
Median | 3.1 | 7.7 | 8 | 4.9 | 61% | 0.3 | 4% |
Mean | 4.3 | 11.2 | 9 | 4.7 | 52% | −2.2 | −24% |
3rd Quartile | 5.3 | 15.6 | 12.2 | 6.9 | 57% | −3.4 | −28% |
Maximum | 866.7 | 156.2 | 77 | −789.7 | −1026% | −79.2 | −103% |
Particulate Matter with a Diameter Less than 10 μm | |||||||
Data Set | PM10 Raw AQY1 Data (ug/m3) | PM10 Calibrated AQY1 Data (ug/m3) | PM10 Reference Monitor (Hinton) Data (ug/m3) | PM10 Reference Monitor (Hinton) Data—NO2 Raw AQY1 Data (Absolute Difference) | PM10 Reference Monitor (Hinton) Data—NO2 Raw AQY1 Data (Difference in %) | PM10 Reference Monitor (Hinton) Data—NO2 Calibrated AQY1 Data (Absolute Difference) | PM10 Reference Monitor (Hinton) Data—NO2 Calibrated AQY1 Data (Difference in %) |
Number of records | 163,584 | 163,584 | 136,632 | Not Applicable | Not Applicable | Not Applicable | Not Applicable |
Missing records (%) | 34,883 (21%) | 68,098 (42%) | 321 (2.4%) | Not Applicable | Not Applicable | Not Applicable | Not Applicable |
Minimum | 0 | 0 | 0 | 0 | Not Applicable | 0 | 0% |
1st Quartile | 3.5 | 7 | 11 | 7.5 | 68% | 4 | 36% |
Median | 5.6 | 17.5 | 18 | 12.4 | 69% | 0.5 | 3% |
Mean | 7.24 | 23.14 | 20.83 | 13.59 | 65% | −2.31 | −11% |
3rd Quartile | 8.7 | 31.9 | 27 | 18.3 | 68% | −4.8 | −18% |
Maximum | 968.7 | 971.7 | 721 | −247.7 | −34% | −250.7 | −35% |
y: Raw O3 Data | y: Calibrated O3 Data | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Device ID | b0 | b1 | R2 | RMSE | n | b0 | b1 | R2 | RMSE | n |
AQY1-BA-479A | 12.03 | 1.00 | 0.82 | 7.18 | 11,653 | 1.89 | 1.05 | 0.92 | 4.67 | 9561 |
AQY1-BA-480A | 9.63 | 1.14 | 0.69 | 11.49 | 10,910 | 4.97 | 1.03 | 0.91 | 4.93 | 8819 |
AQY1-WilburSpare-07 | 6.31 | 0.81 | 0.73 | 7.40 | 9159 | 11.86 | 0.69 | 0.56 | 9.45 | 4341 |
AQY1-WilburSpare-08 | 11.96 | 0.80 | 0.83 | 5.54 | 10,854 | 2.96 | 0.91 | 0.93 | 3.98 | 5433 |
AQY1-WilburSpare-09 | 14.03 | 0.98 | 0.96 | 2.90 | 11,284 | 0.76 | 0.94 | 0.97 | 2.67 | 9914 |
AQY1-WilburSpare-10 | 12.85 | 0.77 | 0.87 | 4.54 | 11,563 | 1.81 | 1.09 | 0.93 | 4.45 | 9471 |
AQY-BA-353 | 2.49 | 1.11 | 0.93 | 4.42 | 9928 | −0.58 | 1.08 | 0.94 | 4.02 | 4868 |
AQY-BA-431 | 9.98 | 0.99 | 0.77 | 8.31 | 11,485 | 5.67 | 1.04 | 0.87 | 6.35 | 9393 |
AQY-BA-432 | 12.57 | 1.13 | 0.64 | 12.92 | 11,312 | 5.78 | 1.00 | 0.89 | 5.35 | 9578 |
AQY-BA-464 | 13.29 | 0.40 | 0.59 | 5.05 | 6591 | 13.62 | 0.92 | 0.36 | 18.64 | 6041 |
AQY-BA-480 | 18.55 | 0.49 | 0.73 | 4.46 | 8835 | 7.71 | 1.57 | 0.86 | 9.13 | 5646 |
AQY-BA-481 | 14.10 | 0.60 | 0.77 | 4.90 | 9559 | 7.15 | 1.54 | 0.89 | 8.07 | 5646 |
y: Raw NO2 Data | y: Calibrated NO2 Data | |||||||||
Device ID | b0 | b1 | R2 | RMSE | n | b0 | b1 | R2 | RMSE | n |
AQY1-BA-479A | −4.72 | 0.76 | 0.25 | 9.71 | 9912 | −0.83 | 1.00 | 0.40 | 7.00 | 7821 |
AQY1-BA-480A | −12.96 | 0.95 | 0.18 | 15.38 | 8770 | −0.99 | 0.72 | 0.43 | 6.80 | 6680 |
AQY1-WilburSpare-07 | −19.69 | 0.45 | 0.02 | 20.30 | 7916 | −0.29 | 0.05 | 0.14 | 1.01 | 4525 |
AQY1-WilburSpare-08 | −7.58 | 0.57 | 0.19 | 7.59 | 8850 | −0.92 | 0.76 | 0.29 | 8.82 | 4891 |
AQY1-WilburSpare-09 | −4.60 | 0.72 | 0.29 | 8.47 | 9161 | 0.73 | 1.08 | 0.35 | 11.49 | 7817 |
AQY1-WilburSpare-10 | −6.26 | 0.80 | 0.22 | 11.02 | 9912 | −2.52 | 1.08 | 0.46 | 9.10 | 7821 |
AQY-BA-353 | 0.01 | 0.56 | 0.08 | 11.20 | 7953 | −0.49 | 0.54 | 0.24 | 6.39 | 4295 |
AQY-BA-431 | −14.64 | 1.02 | 0.19 | 15.80 | 9545 | −1.14 | 0.75 | 0.30 | 9.09 | 7454 |
AQY-BA-432 | −7.31 | 0.69 | 0.18 | 11.04 | 9172 | −1.38 | 0.68 | 0.44 | 6.20 | 7401 |
AQY-BA-464 | −14.28 | 0.66 | 0.02 | 27.48 | 5727 | 8.30 | −0.05 | 0.00 | 12.84 | 5190 |
AQY-BA-480 | −15.12 | 0.81 | 0.06 | 23.48 | 7462 | −4.52 | 0.90 | 0.58 | 6.49 | 4010 |
AQY-BA-481 | −7.02 | 0.47 | 0.02 | 22.47 | 8211 | −3.26 | 0.67 | 0.53 | 5.32 | 4010 |
y: Raw PM2.5 Data | y: Calibrated PM2.5 Data | |||||||||
Device ID | b0 | b1 | R2 | RMSE | n | b0 | b1 | R2 | RMSE | n |
AQY1-BA-479A | 2.52 | 0.33 | 0.25 | 4.01 | 12,328 | 2.88 | 1.28 | 0.25 | 14.13 | 10,161 |
AQY1-BA-480A | 2.15 | 0.30 | 0.28 | 3.37 | 12,685 | 3.36 | 1.33 | 0.30 | 12.88 | 10,518 |
AQY1-WilburSpare-07 | 1.07 | 0.17 | 0.41 | 1.51 | 9614 | 3.08 | 0.64 | 0.29 | 7.24 | 4691 |
AQY1-WilburSpare-08 | 1.63 | 0.24 | 0.32 | 2.46 | 12,642 | 2.61 | 1.08 | 0.30 | 11.28 | 7108 |
AQY1-WilburSpare-09 | 1.44 | 0.18 | 0.22 | 2.27 | 12,683 | 2.81 | 0.88 | 0.20 | 11.30 | 10,514 |
AQY1-WilburSpare-10 | 1.25 | 0.21 | 0.39 | 1.85 | 12,206 | 2.47 | 1.04 | 0.35 | 9.14 | 10,039 |
AQY-BA-353 | 1.32 | 0.23 | 0.34 | 2.20 | 12,663 | 4.14 | 1.20 | 0.36 | 10.78 | 7467 |
AQY-BA-431 | 2.23 | 0.35 | 0.36 | 3.12 | 12,131 | 0.85 | 0.84 | 0.38 | 6.50 | 10,323 |
AQY-BA-432 | 1.84 | 0.27 | 0.33 | 2.66 | 12,661 | 0.86 | 0.73 | 0.31 | 6.96 | 10,853 |
AQY-BA-464 | 2.98 | 0.41 | 0.31 | 4.63 | 6987 | 1.36 | 0.73 | 0.35 | 6.62 | 6435 |
AQY-BA-480 | 1.65 | 0.28 | 0.32 | 2.95 | 10,023 | 0.39 | 1.30 | 0.35 | 10.36 | 5726 |
AQY-BA-481 | 2.66 | 0.35 | 0.00 | 37.59 | 10,023 | −0.44 | 1.08 | 0.39 | 7.86 | 5726 |
y: Raw PM10 Data | y: Calibrated PM10 Data | |||||||||
Device ID | b0 | b1 | R2 | RMSE | n | b0 | b1 | R2 | RMSE | n |
AQY1-BA-479A | 4.07 | 0.35 | 0.42 | 7.47 | 12,269 | 6.36 | 1.11 | 0.40 | 22.58 | 10,122 |
AQY1-BA-480A | 2.13 | 0.25 | 0.49 | 4.47 | 12,596 | 5.99 | 1.03 | 0.40 | 21.09 | 10,469 |
AQY1-WilburSpare-07 | 0.86 | 0.20 | 0.56 | 3.13 | 9558 | 1.23 | 0.73 | 0.54 | 12.45 | 4655 |
AQY1-WilburSpare-08 | 2.23 | 0.23 | 0.50 | 4.18 | 12,573 | 1.95 | 1.08 | 0.53 | 18.78 | 7062 |
AQY1-WilburSpare-09 | 2.17 | 0.20 | 0.44 | 4.13 | 12,614 | 4.87 | 0.93 | 0.36 | 20.80 | 10,465 |
AQY1-WilburSpare-10 | 1.49 | 0.26 | 0.59 | 3.97 | 12,141 | 5.87 | 0.96 | 0.52 | 15.42 | 9994 |
AQY-BA-353 | 1.77 | 0.21 | 0.51 | 3.62 | 12,594 | 7.20 | 1.24 | 0.49 | 23.79 | 7420 |
AQY-BA-431 | 4.21 | 0.19 | 0.49 | 3.41 | 12,063 | −2.21 | 0.87 | 0.38 | 18.62 | 10,274 |
AQY-BA-432 | 1.72 | 0.24 | 0.55 | 3.78 | 12,593 | 0.08 | 0.86 | 0.50 | 14.49 | 10,804 |
AQY-BA-464 | 0.71 | 0.25 | 0.63 | 3.57 | 6957 | −2.23 | 0.92 | 0.54 | 14.18 | 6421 |
AQY-BA-480 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
AQY-BA-481 | 0.85 | 0.35 | 0.02 | 47.05 | 9964 | 7.93 | 0.76 | 0.46 | 10.53 | 5702 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khreis, H.; Johnson, J.; Jack, K.; Dadashova, B.; Park, E.S. Evaluating the Performance of Low-Cost Air Quality Monitors in Dallas, Texas. Int. J. Environ. Res. Public Health 2022, 19, 1647. https://doi.org/10.3390/ijerph19031647
Khreis H, Johnson J, Jack K, Dadashova B, Park ES. Evaluating the Performance of Low-Cost Air Quality Monitors in Dallas, Texas. International Journal of Environmental Research and Public Health. 2022; 19(3):1647. https://doi.org/10.3390/ijerph19031647
Chicago/Turabian StyleKhreis, Haneen, Jeremy Johnson, Katherine Jack, Bahar Dadashova, and Eun Sug Park. 2022. "Evaluating the Performance of Low-Cost Air Quality Monitors in Dallas, Texas" International Journal of Environmental Research and Public Health 19, no. 3: 1647. https://doi.org/10.3390/ijerph19031647
APA StyleKhreis, H., Johnson, J., Jack, K., Dadashova, B., & Park, E. S. (2022). Evaluating the Performance of Low-Cost Air Quality Monitors in Dallas, Texas. International Journal of Environmental Research and Public Health, 19(3), 1647. https://doi.org/10.3390/ijerph19031647