Improving Household Safety via a Dynamic Air Terminal Device in Order to Decrease Carbon Monoxide Migration from a Gas Furnace
Abstract
:1. Introduction
2. Materials and Methods
- Garage door—0.03 m2;
- Door to the house—0.01 m2; and
- Inlet fan:
- ○
- Max: 315 m3/h;
- ○
- Med: 210 m3/h; and
- ○
- Min: 150 m3/h.
- Case 1: the maximum 0.1024 kg/s (315 m3/h) flow was used and the maximum surface area of the ATD, Effective ATD area: 0.030961 m2;
- Case 2: the minimum flow 0.0417 kg/s (150 m3/h) was used and the maximum surface area of the ATD, Effective ATD area: 0.030961 m2;
- Case 3: the medium flow 0.0611 kg/s (220 m3/h) was used and the medium surface area of the ATD, Effective ATD area 0.019745 m2; and
- Case 4: the minimum flow 0.0417 kg/s (150 m3/h) was used and the minimum surface area of the ATD, Effective ATD area 0.007631 m2.
3. Results
3.1. Case 1: Maximum Flow and Maximum Diameter
3.2. Case 2: Minimum Flow and Maximum Diameter
3.3. Case 3 and Case 4
3.4. Contamiant Concentration
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Militello-Hourigan, R.E.; Miller, S.L. The impacts of cooking and an assessment of indoor air quality in Colorado passive and tightly constructed homes. Build. Environ. 2018, 144, 573–582. [Google Scholar] [CrossRef] [Green Version]
- Zhivov, A.; Skistad, H.; Mundt, E.; Posokhin, V.; Ratcliff, M.; Shilkrot, E.; Strongin, A.; Li, X.; Zhang, T.; Zhao, F.; et al. Chapter 7—Principles of air and contaminant movement inside and around buildings. In Industrial Ventilation Design Guidebook, 2nd ed.; Goodfellow, H.D., Kosonen, R., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 245–370. ISBN 978-0-12-816780-9. [Google Scholar]
- Guyot, G.; Sherman, M.H.; Walker, I.S. Smart ventilation energy and indoor air quality performance in residential buildings: A review. Energy Build. 2018, 165, 416–430. [Google Scholar] [CrossRef] [Green Version]
- Hurnik, M.; Specjal, A.; Popiolek, Z. On-site diagnosis of hybrid ventilation system in a renovated single-family house. Energy Build. 2017, 149, 123–132. [Google Scholar] [CrossRef]
- Batterman, S.; Jia, C.; Hatzivasilis, G. Migration of volatile organic compounds from attached garages to residences: A major exposure source. Environ. Res. 2007, 104, 224–240. [Google Scholar] [CrossRef]
- Dodson, R.E.; Levy, J.I.; Spengler, J.D.; Shine, J.P.; Bennett, D.H. Influence of basements, garages, and common hallways on indoor residential volatile organic compound concentrations. Atmos. Environ. 2008, 42, 1569–1581. [Google Scholar] [CrossRef]
- Gładyszewska-Fiedoruk, K.; Nieciecki, M. Indoor Air Quality in a Multi-car Garage. Energy Procedia 2016, 95, 132–139. [Google Scholar] [CrossRef] [Green Version]
- Mallach, G.; St-Jean, M.; MacNeill, M.; Aubin, D.; Wallace, L.; Shin, T.; Van Ryswyk, K.; Kulka, R.; You, H.; Fugler, D.; et al. Exhaust ventilation in attached garages improves residential indoor air quality. Indoor Air 2017, 27, 487–499. [Google Scholar] [CrossRef]
- Zhao, Y.; Song, X.; Wang, Y.; Zhao, J.; Zhu, K. Seasonal patterns of PM10, PM2.5, and PM1.0 concentrations in a naturally ventilated residential underground garage. Build. Environ. 2017, 124, 294–314. [Google Scholar] [CrossRef]
- Debia, M.; Trachy-Bourget, M.-C.; Beaudry, C.; Neesham-Grenon, E.; Perron, S.; Lapointe, C. Characterization of indoor diesel exhaust emissions from the parking garage of a school. Environ. Sci. Pollut. Res. 2017, 24, 4655–4665. [Google Scholar] [CrossRef] [Green Version]
- Fontaras, G.; Zacharof, N.G.; Ciuffo, B. Fuel consumption and CO2 emissions from passenger cars in Europe—Laboratory versus real-world emissions. Prog. Energy Combust. Sci. 2017, 60, 97–131. [Google Scholar] [CrossRef]
- Szczepanik-Ścisło, N.; Ścisło, Ł. Air leakage modelling and its influence on the air quality inside a garage. In Proceedings of the E3S Web of Conferences, Polanica-Zdrój, Poland, 16–18 April 2018; EDP Sciences: Les Ulis, France, 2018; Volume 44. [Google Scholar]
- Badania, C. Badanie pilotażowe parametrów powietrza w garażu. Ciepł. Ogrzew. Went. 2012, 8, 347–350. [Google Scholar]
- Byard, R.W. Carbon monoxide—The silent killer. Forensic Sci. Med. Pathol. 2019, 15, 1–2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Can, G.; Saylll, U.; Aksu Sayman, Ö.; Kuyumcu, Ö.F.; Yllmaz, D.; Esen, E.; Yurtseven, E.; Erginöz, E. Mapping of carbon monoxide related death risk in Turkey: A ten-year analysis based on news agency records. BMC Public Health 2019, 19, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazo, J.; Mukhtar, E.; Mazo, Y.; Nagaraj, A.; Mantello, M.T. Delayed brain injury post carbon monoxide poisoning. Radiol. Case Rep. 2020, 15, 1845–1848. [Google Scholar] [CrossRef]
- Hurley, R.A.; Hopkins, R.O.; Bigler, E.D.; Taber, K.H. Applications of functional imaging to carbon monoxide poisoning. J. Neuropsychiatry Clin. Neurosci. 2001, 13, 157–160. [Google Scholar] [CrossRef]
- Veiraiah, A. Carbon monoxide poisoning. Medicine 2020, 48, 197–198. [Google Scholar] [CrossRef] [Green Version]
- Szczepanik-Scislo, N.; Scislo, L. Comparison of CFD and Multizone Modeling from Contaminant Migration from a Household Gas Furnace. Atmosphere 2021, 12, 79. [Google Scholar] [CrossRef]
- Nada, S.A.; El-Batsh, H.M.; Elattar, H.F.; Ali, N.M. CFD investigation of airflow pattern, temperature distribution and thermal comfort of UFAD system for theater buildings applications. J. Build. Eng. 2016, 6, 274–300. [Google Scholar] [CrossRef]
- Dols, W.S.; Polidoro, B.J. CONTAM User Guide and Program Documentation Version 3.4; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2020. [Google Scholar]
- National Institute of Standards and Technology|NIST. Available online: https://www.nist.gov/ (accessed on 16 November 2020).
- Andrew, K.; Brian, J.; Steven, J. Residential Carbon Monoxide Exposure due to Indoor Generator Operation: Effects of Source Location and Emission Rate; National Institute for Occupational Safety and Health: Washington, DC, USA, 2013. [Google Scholar]
- Barbosa, B.P.P.; Brum, N. de C.L. Validation and assessment of the CFD-0 module of CONTAM software for airborne contaminant transport simulation in laboratory and hospital applications. Build. Environ. 2018, 142, 139–152. [Google Scholar] [CrossRef]
- Liu, W.; Liu, D.; Gao, N. CFD study on gaseous pollutant transmission characteristics under different ventilation strategies in a typical chemical laboratory. Build. Environ. 2017, 126, 238–251. [Google Scholar] [CrossRef]
- Jose, R.S.; Pérez, J.L.; Gonzalez-Barras, R.M. Multizone airflow and pollution simulations of indoor emission sources. Sci. Total Environ. 2021, 766, 142593. [Google Scholar] [CrossRef] [PubMed]
- Argyropoulos, C.D.; Hassan, H.; Kumar, P.; Kakosimos, K.E. Measurements and modelling of particulate matter building ingress during a severe dust storm event. Build. Environ. 2020, 167, 106441. [Google Scholar] [CrossRef]
- Emmerich, S.J.; Zimmerman, S.M.; Nabinger, S.J.; Brookman, M.J. Carbon Monoxide Concentrations and Carboxyhemoglobin Profiles from Portable Generators with a CO Safety Shutoff Operating in a Test House; NIST Technical Note 2049; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2019. [Google Scholar]
- Ng, L.C.; Ojeda Quiles, N.; Dols, W.S.; Emmerich, S.J. Weather correlations to calculate infiltration rates for U.S. commercial building energy models. Build. Environ. 2018, 127, 47–57. [Google Scholar] [CrossRef] [PubMed]
- Fine, J.P.; Gray, J.; Tian, X.; Touchie, M.F. An investigation of alternative methods for determining envelope airtightness from suite-based testing in multi-unit residential buildings. Energy Build. 2020, 214, 109845. [Google Scholar] [CrossRef]
- Lin, W.; Li, L.; Liu, X.; Zhang, T. On-site measurement and numerical investigation of the airflow characteristics in an aquatics center. J. Build. Eng. 2020, 35, 101968. [Google Scholar] [CrossRef]
- Sun, Z.; Wang, S. A CFD-based test method for control of indoor environment and space ventilation. Build. Environ. 2010, 45, 1441–1447. [Google Scholar] [CrossRef]
- Du, Z.; Xu, P.; Jin, X.; Liu, Q. Temperature sensor placement optimization for VAV control using CFD–BES co-simulation strategy. Build. Environ. 2015, 85, 104–113. [Google Scholar] [CrossRef]
- Gangisetti, K.; Claridge, D.E.; Srebric, J.; Paulus, M.T. Influence of reduced VAV flow settings on indoor thermal comfort in an office space. Build. Simul. 2016, 9, 101–111. [Google Scholar] [CrossRef]
- Mu, Y.; Liu, M.; Ma, Z.; Zhang, J. Resistance characteristic analysis based study on a novel damper torque airflow sensor for VAV terminals. Build. Environ. 2020, 175, 106813. [Google Scholar] [CrossRef]
- Hurnik, M. Novel cylindrical induction controller and its application in VAV air conditioning system in an office building. Energy Build. 2016, 130, 341–349. [Google Scholar] [CrossRef]
- Liu, R.; Wen, J.; Waring, M.S. Improving airflow measurement accuracy in VAV terminal units using flow conditioners. Build. Environ. 2014, 71, 81–94. [Google Scholar] [CrossRef]
- Pasut, W.; Bauman, F.; De Carli, M. The use of ducts to improve the control of supply air temperature rise in UFAD systems: CFD and lab study. Appl. Energy 2014, 134, 490–498. [Google Scholar] [CrossRef]
- Methodology for Optimization of Laboratory Hood Containment—Volumes I and II. Available online: https://www.orf.od.nih.gov/TechnicalResources/Bioenvironmental/Pages/labhoodcontainm.aspx (accessed on 19 November 2020).
- Memarzadeh, F. Effect of reducing ventilation rate on indoor air quality and energy cost in laboratories. J. Chem. Health Saf. 2009, 16, 20–26. [Google Scholar] [CrossRef]
- WHO WHO|Environmental Health Criteria 213: Carbon Monoxide; World Health Organization: Geneva, Switzerland, 2013.
- UL Empowering Trust. Available online: https://www.ul.com/ (accessed on 22 January 2022).
- Wang, L. Coupling of Multizone and CFD Programs for Building Airflow and Contaminant Transport Simulations. Ph.D. Thesis, Purdue University, West Lafayette, IN, USA, 2007. [Google Scholar]
- Wang, L.L.; Dols, W.S.; Chen, Q. Using CFD Capabilities of CONTAM 3.0 for Simulating Airflow and Contaminant Transport in and around Buildings. HVAC R Res. 2010, 16, 749–763. [Google Scholar] [CrossRef]
- Brown, C. Furnace Co Emissions under Normal and Compromised Vent Conditions; United States Consumer Product Safety Commission: Washington, DC, USA, 2000; pp. 1–39. [Google Scholar]
- Versteeg, H.K.; Malalasekera, W. An Introduction to Computational Fluid Dynamits, 2nd ed.; Prentice Hall: Essex, UK, 1995. [Google Scholar]
- Geng, L.; Liu, H.; Wei, X. International Journal of Thermal Sciences CFD analysis of the fl ashing fl ow characteristics of subcritical refrigerant R134a through converging-diverging nozzles. Int. J. Therm. Sci. 2019, 137, 438–445. [Google Scholar] [CrossRef]
- Shan, X.; Luo, N.; Sun, K.; Hong, T.; Lee, Y.; Lu, W.; Engineering, C.; Kong, H.; Administrative, S. Coupling CFD and building energy modelling to optimize the operation of a large open office space for occupant comfort. Sustain. Cities Soc. 2020, 60, 102257. [Google Scholar] [CrossRef]
- Szczepanik-Scislo, N.; Schnotale, J. An air terminal device with a changing geometry to improve indoor air quality for VAV ventilation systems. Energies 2020, 13, 4947. [Google Scholar] [CrossRef]
Distance from ATD (m) | Average Air Velocity V (m/s) | Convergence Rate (%) | |
---|---|---|---|
Measured | Numerical | ||
0 | 4.05 | 4.40 | 9 |
2 | 1.98 | 1.77 | 11 |
5 | 0.76 | 0.67 | 12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szczepanik-Scislo, N. Improving Household Safety via a Dynamic Air Terminal Device in Order to Decrease Carbon Monoxide Migration from a Gas Furnace. Int. J. Environ. Res. Public Health 2022, 19, 1676. https://doi.org/10.3390/ijerph19031676
Szczepanik-Scislo N. Improving Household Safety via a Dynamic Air Terminal Device in Order to Decrease Carbon Monoxide Migration from a Gas Furnace. International Journal of Environmental Research and Public Health. 2022; 19(3):1676. https://doi.org/10.3390/ijerph19031676
Chicago/Turabian StyleSzczepanik-Scislo, Nina. 2022. "Improving Household Safety via a Dynamic Air Terminal Device in Order to Decrease Carbon Monoxide Migration from a Gas Furnace" International Journal of Environmental Research and Public Health 19, no. 3: 1676. https://doi.org/10.3390/ijerph19031676
APA StyleSzczepanik-Scislo, N. (2022). Improving Household Safety via a Dynamic Air Terminal Device in Order to Decrease Carbon Monoxide Migration from a Gas Furnace. International Journal of Environmental Research and Public Health, 19(3), 1676. https://doi.org/10.3390/ijerph19031676