Sedentary Time and Cognitive Impairment in Patients Using Long-Term Oxygen Therapy: A Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Patients
2.2. Demographics and Clinical Data
2.3. Measurement
2.4. Statistical Analysis
3. Results
3.1. Characteristics of Patients
3.2. Correlation with Sedentary Time
3.3. Multiple Regression Analysis
4. Discussion
4.1. Cognitive Impairment in Patients on LTOT
4.2. Characteristics of Sedentary Time in Patients on LTOT
4.3. Relationship between Sedentary Time and Cognitive Impairment in Patients on LTOT
4.4. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bousquet, J.; Kaltaev, N. Global Surveillance, Prevention and Control of Chronic Respiratory Diseases: A Comprehensive Approach; Bousquet, J., Khaltaev, N., Eds.; WHO: Geneva, Switzerland, 2007.
- Li, X.; Cao, X.; Guo, M.; Xie, M.; Liu, X. Trends and risk factors of mortality and disability adjusted life years for chronic respiratory diseases from 1990 to 2017: Systematic analysis for the Global Burden of Disease Study. BMJ 2020, 368, m234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waschki, B.; Kirsten, A.; Holz, O.; Müller, K.-C.; Meyer, T.; Watz, H.; Magnussen, H. Physical Activity Is the Strongest Predictor of All-Cause Mortality in Patients with COPD: A prospective cohort study. Chest 2011, 140, 331–342. [Google Scholar] [CrossRef] [PubMed]
- Watz, H.; Waschki, B.; Meyer, T.; Magnussen, H. Physical activity in patients with COPD. Eur. Respir. J. 2008, 33, 262–272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gimeno-Santos, E.; Frei, A.; Steurer-Stey, C.; De Batlle, J.; Rabinovich, R.A.; Raste, Y.; Hopkinson, N.S.; Polkey, M.I.; Van Remoortel, H.; Troosters, T.; et al. Determinants and outcomes of physical activity in patients with COPD: A systematic review. Thorax 2014, 69, 731–739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bahmer, T.; Kirsten, A.-M.; Waschki, B.; Rabe, K.F.; Magnussen, H.; Kirsten, D.; Gramm, M.; Hummler, S.; Brunnemer, E.; Kreuter, M.; et al. Clinical Correlates of Reduced Physical Activity in Idiopathic Pulmonary Fibrosis. Respiration 2016, 91, 497–502. [Google Scholar] [CrossRef] [PubMed]
- Kozu, R.; Jenkins, S.; Senjyu, H. Evaluation of Activity Limitation in Patients with Idiopathic Pulmonary Fibrosis Grouped According to Medical Research Council Dyspnea Grade. Arch. Phys. Med. Rehabil. 2014, 95, 950–955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacobs, S.S.; Krishnan, J.A.; Lederer, D.J.; Ghazipura, M.; Hossain, T.; Tan, A.-Y.M.; Carlin, B.; Drummond, M.B.; Ekström, M.; Garvey, C.; et al. Home Oxygen Therapy for Adults with Chronic Lung Disease. An Official American Thoracic Society Clinical Practice Guideline. Am. J. Respir. Crit. Care Med. 2020, 202, e121–e141. [Google Scholar] [CrossRef] [PubMed]
- Cani, K.; Matte, D.L.; Silva, I.J.C.S.; Gulart, A.A.; Karloh, M.; Mayer, A.F. Impact of Home Oxygen Therapy on the Level of Physical Activities in Daily Life in Subjects With COPD. Respir. Care 2019, 64, 1392–1400. [Google Scholar] [CrossRef] [PubMed]
- Cavaillès, A.; Brinchault-Rabin, G.; Dixmier, A.; Goupil, F.; Gut-Gobert, C.; Marchand-Adam, S.; Meurice, J.-C.; Morel, H.; Person-Tacnet, C.; Leroyer, C.; et al. Comorbidities of COPD. Eur. Respir. Rev. 2013, 22, 454–475. [Google Scholar] [CrossRef] [PubMed]
- Margaritopoulos, G.A.; Antoniou, K.M.; Wells, A.U. Comorbidities in interstitial lung diseases. Eur. Respir. Rev. 2017, 26, 160027. [Google Scholar] [CrossRef]
- Yohannes, A.M.; Chen, W.; Moga, A.M.; Leroi, I.; Connolly, M.J. Cognitive Impairment in Chronic Obstructive Pulmonary Disease and Chronic Heart Failure: A Systematic Review and Meta-analysis of Observational Studies. J. Am. Med Dir. Assoc. 2017, 18, 451.e1–451.e11. [Google Scholar] [CrossRef] [PubMed]
- Bors, M.; Tomic, R.; Perlman, D.; Kim, H.J.; Whelan, T.P. Cognitive function in idiopathic pulmonary fibrosis. Chronic Respir. Dis. 2015, 12, 365–372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cleutjens, F.A.; Franssen, F.M.; Spruit, M.A.; Vanfleteren, L.E.; Gijsen, C.; Dijkstra, J.B.; Ponds, R.W.; Wouters, E.F.; Janssen, D.J. Domain-specific cognitive impairment in patients with COPD and control subjects. Int. J. Chronic Obstr. Pulm. Dis. 2017, 12, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Baird, C.; Lovell, J.; Johnson, M.; Shiell, K.; Ibrahim, J.E. The impact of cognitive impairment on self-management in chronic obstructive pulmonary disease: A systematic review. Respir. Med. 2017, 129, 130–139. [Google Scholar] [CrossRef] [PubMed]
- Dodd, J.W.; Getov, S.V.; Jones, P.W. Cognitive function in COPD. Eur. Respir. J. 2010, 35, 913–922. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Russ, T.C.; Kivimäki, M.; Batty, G.D. Respiratory Disease and Lower Pulmonary Function as Risk Factors for Dementia: A Systematic Review with Meta-analysis. Chest 2020, 157, 1538–1558. [Google Scholar] [CrossRef]
- Hardinge, M.; Suntharalingam, J.; Wilkinson, T. Guideline update: The British Thoracic Society Guidelines on home oxygen use in adults. Thorax 2015, 70, 589–591. [Google Scholar] [CrossRef] [Green Version]
- Çilingir, B.M.; Günbatar, H.; Çilingir, V. Cognitive dysfunction among patients in chronic obstructive pulmonary disease: Effects of exacerbation and long-term oxygen therapy. Clin. Respir. J. 2020, 14, 1137–1143. [Google Scholar] [CrossRef]
- Hamilton, M. A rating scale for depression. J. Neurol. Neurosurg. Psychiatry 1960, 23, 56–62. [Google Scholar] [CrossRef] [Green Version]
- Craig, C.L.; Marshall, A.L.; Sjöström, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.; Yngve, A.; Sallis, J.F.; et al. International Physical Activity Questionnaire: 12-Country Reliability and Validity. Med. Sci. Sports Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef] [Green Version]
- Rosenberg, D.E.; Bull, F.C.; Marshall, A.; Sallis, J.F.; Bauman, A.E. Assessment of Sedentary Behavior with the International Physical Activity Questionnaire. J. Phys. Act. Health 2008, 5, S30–S44. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, S.E.; PrAISED Study Group; Van Der Wardt, V.; Brand, A.; Burgon, C.; Bajwa, R.; Hoare, Z.; Logan, P.L.; Harwood, R.H. Promoting activity, Independence and stability in early dementia (PrAISED): A multisite, randomised controlled, feasibility trial. BMC Geriatr. 2019, 19, 353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andersson, M.; Stridsman, C.; Rönmark, E.; Lindberg, A.; Emtner, M. Physical activity and fatigue in chronic obstructive pulmonary disease – A population based study. Respir. Med. 2015, 109, 1048–1057. [Google Scholar] [CrossRef] [Green Version]
- Hur, S.A.; Guler, S.A.; Khalil, N.; Camp, P.G.; Guenette, J.A.; Swigris, J.J.; Ryerson, C.J. Minimal Important Difference for Physical Activity and Validity of the International Physical Activity Questionnaire in Interstitial Lung Disease. Ann. Am. Thorac. Soc. 2019, 16, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Nasreddine, Z.S.; Phillips, N.A.; Bédirian, V.; Charbonneau, S.; Whitehead, V.; Collin, I.; Cummings, J.L.; Chertkow, H. The Montreal Cognitive Assessment, MoCA: A Brief Screening Tool for Mild Cognitive Impairment. J. Am. Geriatr. Soc. 2005, 53, 695–699, Corrigendum in J. Am. Geriatr. Soc. 2019, 67, 1991. [Google Scholar] [CrossRef]
- Villeneuve, S.; Pepin, V.; Rahayel, S.; Bertrand, J.-A.; De Lorimier, M.; Rizk, A.; Desjardins, C.; Parenteau, S.; Beaucage, F.; Joncas, S.; et al. Mild Cognitive Impairment in Moderate to Severe COPD. Chest 2012, 142, 1516–1523. [Google Scholar] [CrossRef]
- Bestall, J.C.; Paul, E.A.; Garrod, R.; Garnham, R.; Jones, P.W.; Wedzicha, J.A. Usefulness of the Medical Research Council (MRC) dyspnoea scale as a measure of disability in patients with chronic obstructive pulmonary disease. Thorax 1999, 54, 581–586. [Google Scholar] [CrossRef] [Green Version]
- Jones, P.W.; Adamek, L.; Nadeau, G.; Banik, N. Comparisons of health status scores with MRC grades in COPD: Implications for the GOLD 2011 classification. Eur. Respir. J. 2013, 42, 647–654. [Google Scholar] [CrossRef] [Green Version]
- Schure, M.B.; Borson, S.; Nguyen, H.Q.; Trittschuh, E.H.; Thielke, S.M.; Pike, K.C.; Adams, S.G.; Fan, V.S. Associations of cognition with physical functioning and health-related quality of life among COPD patients. Respir. Med. 2016, 114, 46–52. [Google Scholar] [CrossRef] [Green Version]
- Cole, A.J.; Kuchnia, A.J.; Beckman, L.M.; Jahansouz, C.; Mager, J.R.; Sibley, S.D.; Earthman, C.P. Long-Term Body Composition Changes in Women Following Roux-en-Y Gastric Bypass Surgery. J. Parenter. Enter. Nutr. 2016, 41, 583–591. [Google Scholar] [CrossRef] [Green Version]
- Mahoney, F.I.; Barthel, D.W. Functional evaluation: The Barthel index. Md. State Med. J. 1965, 14, 61–65. [Google Scholar]
- De Morton, N.A.; Keating, J.L.; Davidson, M. Rasch Analysis of the Barthel Index in the Assessment of Hospitalized Older Patients After Admission for an Acute Medical Condition. Arch. Phys. Med. Rehabil. 2008, 89, 641–647. [Google Scholar] [CrossRef] [PubMed]
- Ramon, M.A.; Ter Riet, G.; Carsin, A.-E.; Gimeno-Santos, E.; Agustí, A.; Antó, J.M.; Donaire-Gonzalez, D.; Ferrer, J.; Rodríguez, E.; Rodriguez-Roisin, R.; et al. The dyspnoea–inactivity vicious circle in COPD: Development and external validation of a conceptual model. Eur. Respir. J. 2018, 52, 1800079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peduzzi, P.; Concato, J.; Feinstein, A.R.; Holford, T.R. Importance of events per independent variable in proportional hazards regression analysis II. Accuracy and precision of regression estimates. J. Clin. Epidemiol. 1995, 48, 1503–1510. [Google Scholar] [CrossRef] [PubMed]
- Pais, R.; Ruano, L.; Carvalho, O.P.; Barros, H. Global Cognitive Impairment Prevalence and Incidence in Community Dwelling Older Adults—A Systematic Review. Geriatrics 2020, 5, 84. [Google Scholar] [CrossRef]
- Lavoie, K.L.; Sedeno, M.; Hamilton, A.; Li, P.-Z.; De Sousa, D.; Troosters, T.; Maltais, F.; Bourbeau, J. Behavioural interventions targeting physical activity improve psychocognitive outcomes in COPD. ERJ Open Res. 2019, 5, 00013-2019. [Google Scholar] [CrossRef] [Green Version]
- Karamanli, H.; Ilik, F.; Kayhan, F.; Pazarlı, A.C. Assessment of cognitive impairment in long-term oxygen therapy-dependent COPD patients. Int. J. Chronic Obstr. Pulm. Dis. 2015, 10, 2087–2094. [Google Scholar] [CrossRef]
- Incalzi, R.A.; Marra, C.; Giordano, A.; Calcagni, M.L.; Cappa, A.; Basso, S.; Pagliari, G.; Fuso, L. Cognitive impairment in chronic obstructive pulmonary disease. J. Neurol. 2003, 250, 325–332. [Google Scholar] [CrossRef]
- Spilling, C.; Jones, P.W.; Dodd, J.W.; Barrick, T.R. White matter lesions characterise brain involvement in moderate to severe chronic obstructive pulmonary disease, but cerebral atrophy does not. BMC Pulm. Med. 2017, 17, 92. [Google Scholar] [CrossRef]
- Dodd, J.W.; Chung, A.W.; Broek, M.D.V.D.; Barrick, T.; Charlton, R.A.; Jones, P.W. Brain Structure and Function in Chronic Obstructive Pulmonary Disease: A multimodal cranial magnetic resonance imaging study. Am. J. Respir. Crit. Care Med. 2012, 186, 240–245. [Google Scholar] [CrossRef]
- Austin, V.; Crack, P.; Bozinovski, S.; Miller, A.A.; Vlahos, R. COPD and stroke: Are systemic inflammation and oxidative stress the missing links? Clin. Sci. 2016, 130, 1039–1050. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paneroni, M.; Ambrosino, N.; Simonelli, C.; Bertacchini, L.; Venturelli, M.; Vitacca, M. Physical Activity in Patients with Chronic Obstructive Pulmonary Disease on Long-Term Oxygen Therapy: A Cross-Sectional Study. Int. J. Chronic Obstr. Pulm. Dis. 2019, 14, 2815–2823. [Google Scholar] [CrossRef] [Green Version]
- Kitayama, A.; Koohsari, M.J.; Ishii, K.; Shibata, A.; Oka, K. Sedentary time in a nationally representative sample of adults in Japan: Prevalence and sociodemographic correlates. Prev. Med. Rep. 2021, 23, 101439. [Google Scholar] [CrossRef]
- Minakata, Y.; Motegi, T.; Ueki, J.; Gon, Y.; Nakamura, S.; Anzai, T.; Hirata, K.; Ichinose, M. Effect of tiotropium/olodaterol on sedentary and active time in patients with COPD: Post hoc analysis of the VESUTO® study. Int. J. Chronic Obstr. Pulm. Dis. 2019, 14, 1789–1801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cullen, D.; Stiffler, D. Long-term oxygen therapy: Review from the patients’ perspective. Chronic Respir. Dis. 2009, 6, 141–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sánchez, I.T.; Ortiz-Rubio, A.; Cabrera-Martos, I.; Granados-Santiago, M.; López-Torres, I.; Valenza, M.C. Influence of Previous-Year Physical Activity on the Cognition of Older COPD Patients During Exacerbation. J. Phys. Act. Health 2020, 17, 519–524. [Google Scholar] [CrossRef]
- Vancampfort, D.; Stubbs, B.; Lara, E.; Vandenbulcke, M.; Swinnen, N.; Koyanagi, A. Mild cognitive impairment and physical activity in the general population: Findings from six low- and middle-income countries. Exp. Gerontol. 2017, 100, 100–105. [Google Scholar] [CrossRef]
- Violant-Holz, V.; Gallego-Jiménez, M.G.; González-González, C.S.; Muñoz-Violant, S.; Rodríguez, M.J.; Sansano-Nadal, O.; Guerra-Balic, M. Psychological Health and Physical Activity Levels during the COVID-19 Pandemic: A Systematic Review. Int. J. Environ. Res. Public Health 2020, 17, 9419. [Google Scholar] [CrossRef]
Characteristics | Mean (Standard Deviation) or Median (Interquartile Range) or n (%) |
---|---|
Age (year) | 77.3 (6.6) |
Sex (male/female) | 75 (78)/21 (22) |
Education (year) | 12.0 (9.0–12.0) |
Disease | |
Chronic obstructive pulmonary disease | 36 (38) |
Interstitial pneumonia | 40 (42) |
Lung cancer (after surgery) | 9 (9) |
Nontuberculous mycobacteria | 4 (4) |
Tuberculosis (inactive) | 4 (4) |
Other | 3 (3) |
Spirometry | |
Forced expiratory volume in 1 sec (%) | 74.7 (50.4–90.6) |
Vital capacity percentage (%) | 67.5 (57.9–83.7) |
Long-term oxygen therapy | |
Oxygen flow (L) | 3.0 (2.0–4.0) |
Oxygen concentrator/Liquid oxygen | 91 (95)/5 (5) |
Receiving pulmonary rehabilitation | 11 (11) |
Heart failure (Yes/No) | 59 (61)/37 (39) |
Skeletal muscle disorder (Yes/No) | 7 (7)/89 (93) |
Diabetes mellitus (Yes/No) | 10 (10)/86 (90) |
Hypertension (Yes/No) | 29 (30)/67 (70) |
Dyslipidemia (Yes/No) | 10 (10)/86 (90) |
Barthel Index | 100.0 (90.0–100.0) |
modified Medical Research Council scale | 2.0 (1.0–3.0) |
Body mass index (kg/m2) | 21.9 (4.2) |
Hand-grip strength (kg) | 24.8 (9.0) |
Sedentary time (min) | 600.0 (360.0–870.0) |
Montreal Cognitive Assessment | 24.0 (19.3–26.0) |
Mild cognitive impairment (Cut off < 26 points) | 67 (70) |
Domain (Point) | Median (Interquartile Range) |
---|---|
Visuospatial and executive (0–5) | 4.0 (3.0–5.0) |
Naming (0–3) | 3.0 (3.0–3.0) |
Attention (0–6) | 5.0 (4.0–6.0) |
Language (0–3) | 1.0 (1.0–2.0) |
Abstraction (0–2) | 2.0 (2.0–2.0) |
Delayed recall (0–5) | 1.0 (0–2.0) |
Orientation (0–6) | 6.0 (6.0–6.0) |
Sedentary | Age | mMRC | BMI | Hand-grip | MoCA | |
---|---|---|---|---|---|---|
Sedentary | - | - | - | - | - | - |
Age | 0.312 * | - | - | - | - | - |
mMRC | 0.546 * | 0.231 * | - | - | - | - |
BMI | −0.233 * | −0.041 | −0.233 * | - | - | - |
Hand-grip | −0.423 * | −0.511 * | −0.308 * | 0.295 * | - | - |
MoCA | 0.386 * | −0.508 * | −0.274 * | 0.044 | 0.303 * | - |
Independent Variable | B | β | p-Value | 95% CI | VIF | |
---|---|---|---|---|---|---|
Lower | Upper | |||||
Age | 0.782 | 0.019 | 0.851 | −7.463 | 9.028 | 1.592 |
Sex (0: male, 1: female) | 7.760 | 0.012 | 0.913 | −132.376 | 147.895 | 1.753 |
Type of diseases (1: COPD, 2: IP, 3: Other) | −4.094 | 0.011 | 0.900 | −60.645 | 68.833 | 1.246 |
mMRC | 95.210 | 0.397 | <0.001 | 52.395 | 138.024 | 1.236 |
Body mass index | −3.937 | −0.061 | 0.492 | −15.272 | 7.399 | 1.200 |
Hand-grip strength | −5.210 | −0.169 | 0.179 | −12.846 | 2.427 | 2.372 |
MoCA | −14.019 | −0.239 | 0.020 | −25.822 | −2.217 | 1.575 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Annaka, H.; Nomura, T.; Moriyama, H. Sedentary Time and Cognitive Impairment in Patients Using Long-Term Oxygen Therapy: A Cross-Sectional Study. Int. J. Environ. Res. Public Health 2022, 19, 1726. https://doi.org/10.3390/ijerph19031726
Annaka H, Nomura T, Moriyama H. Sedentary Time and Cognitive Impairment in Patients Using Long-Term Oxygen Therapy: A Cross-Sectional Study. International Journal of Environmental Research and Public Health. 2022; 19(3):1726. https://doi.org/10.3390/ijerph19031726
Chicago/Turabian StyleAnnaka, Hiroki, Tomonori Nomura, and Hiroshi Moriyama. 2022. "Sedentary Time and Cognitive Impairment in Patients Using Long-Term Oxygen Therapy: A Cross-Sectional Study" International Journal of Environmental Research and Public Health 19, no. 3: 1726. https://doi.org/10.3390/ijerph19031726
APA StyleAnnaka, H., Nomura, T., & Moriyama, H. (2022). Sedentary Time and Cognitive Impairment in Patients Using Long-Term Oxygen Therapy: A Cross-Sectional Study. International Journal of Environmental Research and Public Health, 19(3), 1726. https://doi.org/10.3390/ijerph19031726