Artificial Intelligence in Bone Metastases: An MRI and CT Imaging Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. EGFR Mutation Prediction in Spinal Metastasis from Primary Lung Adenocarcinoma
3.2. Bone Metastasis from Prostate Cancer
3.3. Differentiation of Bone Metastases from Other Bone Diseases
3.4. Other Studies
3.5. RQS Assessment and Study Limitations
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Coleman, R.E. Metastatic Bone Disease: Clinical Features, Pathophysiology and Treatment Strategies. Cancer Treat. Rev. 2001, 27, 165–176. [Google Scholar] [CrossRef] [PubMed]
- Cecchini, M.G.; Wetterwald, A.; van der Pluijm, G.; Thalmann, G.N. Molecular and Biological Mechanisms of Bone Metastasis. EAU Update Ser. 2005, 3, 214–226. [Google Scholar] [CrossRef]
- Selvaggi, G.; Scagliotti, G.V. Management of Bone Metastases in Cancer: A Review. Crit. Rev. Oncol./Hematol. 2005, 56, 365–378. [Google Scholar] [CrossRef]
- Yu, H.-H.M.; Tsai, Y.-Y.; Hoffe, S.E. Overview of Diagnosis and Management of Metastatic Disease to Bone. Cancer Control J. Moffitt Cancer Cent. 2012, 19, 84–91. [Google Scholar] [CrossRef] [Green Version]
- Bussard, K.M.; Gay, C.V.; Mastro, A.M. The Bone Microenvironment in Metastasis; What Is Special about Bone? Cancer Metastasis Rev. 2007, 27, 41–55. [Google Scholar] [CrossRef]
- Coleman, R. The Role of Zoledronic Acid in Cancer: Clinical Studies in the Treatment and Prevention of Bone Metastases. Semin. Oncol. 2001, 28, 11–16. [Google Scholar] [CrossRef]
- Cuccurullo, V.; Lucio Cascini, G.; Tamburrini, O.; Rotondo, A.; Mansi, L. Bone Metastases Radiopharmaceuticals: An Overview. Curr. Radiopharm. 2013, 6, 41–47. [Google Scholar] [CrossRef]
- O’Sullivan, G.J. Imaging of Bone Metastasis: An Update. World J. Radiol. 2015, 7, 202. [Google Scholar] [CrossRef]
- Talbot, J.N.; Paycha, F.; Balogova, S. Diagnosis of bone metastasis: Recent comparative studies of imaging modalities. Q. J. Nucl. Med. Mol. Imaging 2011, 55, 374–410. [Google Scholar]
- Lambin, P.; Rios-Velazquez, E.; Leijenaar, R.; Carvalho, S.; van Stiphout, R.G.P.M.; Granton, P.; Zegers, C.M.L.; Gillies, R.; Boellard, R.; Dekker, A.; et al. Radiomics: Extracting More Information from Medical Images Using Advanced Feature Analysis. Eur. J. Cancer 2012, 48, 441–446. [Google Scholar] [CrossRef] [Green Version]
- Lambin, P.; Leijenaar, R.T.H.; Deist, T.M.; Peerlings, J.; de Jong, E.E.C.; van Timmeren, J.; Sanduleanu, S.; Larue, R.T.H.M.; Even, A.J.G.; Jochems, A.; et al. Radiomics: The Bridge between Medical Imaging and Personalized Medicine. Nat. Rev. Clin. Oncol. 2017, 14, 749–762. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Ren, M.; Shuang, X.; Yang, H.; Shi, D.; Lai, Q.; Dong, Y. Multiparametric MRI -Based Radiomics Approaches for Preoperative Prediction of EGFR Mutation Status in Spinal Bone Metastases in Patients with Lung Adenocarcinoma. J. Magn. Reson. Imaging 2021, 54, 497–507. [Google Scholar] [CrossRef] [PubMed]
- Ren, M.; Yang, H.; Lai, Q.; Shi, D.; Liu, G.; Shuang, X.; Su, J.; Xie, L.; Dong, Y.; Jiang, X. MRI-Based Radiomics Analysis for Predicting the EGFR Mutation Based on Thoracic Spinal Metastases in Lung Adenocarcinoma Patients. Med. Phys. 2021, 48, 5142–5151. [Google Scholar] [CrossRef]
- Fan, Y.; Dong, Y.; Yang, H.; Chen, H.; Yu, Y.; Wang, X.; Wang, X.; Yu, T.; Luo, Y.; Jiang, X. Subregional Radiomics Analysis for the Detection of the EGFR Mutation on Thoracic Spinal Metastases from Lung Cancer. Phys. Med. Biol. 2021, 66, 215008. [Google Scholar] [CrossRef] [PubMed]
- Cao, R.; Dong, Y.; Wang, X.; Ren, M.; Wang, X.; Zhao, N.; Yu, T.; Zhang, L.; Luo, Y.; Cui, E.N.; et al. MRI-Based Radiomics Nomogram as a Potential Biomarker to Predict the EGFR Mutations in Exon 19 and 21 Based on Thoracic Spinal Metastases in Lung Adenocarcinoma. Acad. Radiol. 2021, 29, e9–e17. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yu, B.; Zhong, F.; Guo, Q.; Li, K.; Hou, Y.; Lin, N. MRI-Based Texture Analysis of the Primary Tumor for Pre-Treatment Prediction of Bone Metastases in Prostate Cancer. Magn. Reson. Imaging 2019, 60, 76–84. [Google Scholar] [CrossRef]
- Hayakawa, T.; Tabata, K.; Tsumura, H.; Kawakami, S.; Katakura, T.; Hashimoto, M.; Watanabe, Y.; Iwamura, M.; Hasegawa, T.; Ishiyama, H. Size of Pelvic Bone Metastasis as a Significant Prognostic Factor for Metastatic Prostate Cancer Patients. Jpn. J. Radiol. 2020, 38, 993–996. [Google Scholar] [CrossRef]
- Zhang, W.; Mao, N.; Wang, Y.; Xie, H.; Duan, S.; Zhang, X.; Wang, B. A Radiomics Nomogram for Predicting Bone Metastasis in Newly Diagnosed Prostate Cancer Patients. Eur. J. Radiol. 2020, 128, 109020. [Google Scholar] [CrossRef]
- Sun, W.; Liu, S.; Guo, J.; Liu, S.; Hao, D.; Hou, F.; Wang, H.; Xu, W. A CT-Based Radiomics Nomogram for Distinguishing between Benign and Malignant Bone Tumours. Cancer Imaging 2021, 21, 20. [Google Scholar] [CrossRef]
- Xiong, X.; Wang, J.; Hu, S.; Dai, Y.; Zhang, Y.; Hu, C. Differentiating between Multiple Myeloma and Metastasis Subtypes of Lumbar Vertebra Lesions Using Machine Learning–Based Radiomics. Front. Oncol. 2021, 11, 601699. [Google Scholar] [CrossRef]
- Yin, P.; Mao, N.; Zhao, C.; Wu, J.; Chen, L.; Hong, N. A Triple-Classification Radiomics Model for the Differentiation of Primary Chordoma, Giant Cell Tumor, and Metastatic Tumor of Sacrum Based on T2-Weighted and Contrast-Enhanced T1-Weighted MRI. J. Magn. Reson. Imaging 2018, 49, 752–759. [Google Scholar] [CrossRef] [PubMed]
- Zhong, X.; Li, L.; Jiang, H.; Yin, J.; Lu, B.; Han, W.; Li, J.; Zhang, J. Cervical Spine Osteoradionecrosis or Bone Metastasis after Radiotherapy for Nasopharyngeal Carcinoma? The MRI-Based Radiomics for Characterization. BMC Med. Imaging 2020, 20, 104. [Google Scholar] [CrossRef]
- Filograna, L.; Lenkowicz, J.; Cellini, F.; Dinapoli, N.; Manfrida, S.; Magarelli, N.; Leone, A.; Colosimo, C.; Valentini, V. Identification of the Most Significant Magnetic Resonance Imaging (MRI) Radiomic Features in Oncological Patients with Vertebral Bone Marrow Metastatic Disease: A Feasibility Study. La Radiol. Med. 2018, 124, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Lang, N.; Zhang, Y.; Zhang, E.; Zhang, J.; Chow, D.; Chang, P.; Yu, H.J.; Yuan, H.; Su, M.-Y. Differentiation of Spinal Metastases Originated from Lung and Other Cancers Using Radiomics and Deep Learning Based on DCE-MRI. Magn. Reson. Imaging 2019, 64, 4–12. [Google Scholar] [CrossRef] [PubMed]
- Fiz, F.; Viganò, L.; Gennaro, N.; Costa, G.; La Bella, L.; Boichuk, A.; Cavinato, L.; Sollini, M.; Politi, L.S.; Chiti, A.; et al. Radiomics of Liver Metastases: A Systematic Review. Cancers 2020, 12, 2881. [Google Scholar] [CrossRef] [PubMed]
- Stanzione, A.; Gambardella, M.; Cuocolo, R.; Ponsiglione, A.; Romeo, V.; Imbriaco, M. Prostate MRI Radiomics: A Systematic Review and Radiomic Quality Score Assessment. Eur. J. Radiol. 2020, 129, 109095. [Google Scholar] [CrossRef] [PubMed]
- Chetan, M.R.; Gleeson, F.V. Radiomics in Predicting Treatment Response in Non-Small-Cell Lung Cancer: Current Status, Challenges and Future Perspectives. Eur. Radiol. 2020, 31, 1049–1058. [Google Scholar] [CrossRef] [PubMed]
- Valdora, F.; Houssami, N.; Rossi, F.; Calabrese, M.; Tagliafico, A.S. Rapid Review: Radiomics and Breast Cancer. Breast Cancer Res. Treat. 2018, 169, 217–229. [Google Scholar] [CrossRef]
- Calabrese, A.; Santucci, D.; Landi, R.; Beomonte Zobel, B.; Faiella, E.; de Felice, C. Radiomics MRI for Lymph Node Status Prediction in Breast Cancer Patients: The State of Art. J. Cancer Res. Clin. Oncol. 2021, 147, 1587–1597. [Google Scholar] [CrossRef]
- Kendrick, J.; Francis, R.; Hassan, G.M.; Rowshanfarzad, P.; Jeraj, R.; Kasisi, C.; Rusanov, B.; Ebert, M. Radiomics for Identification and Prediction in Metastatic Prostate Cancer: A Review of Studies. Front. Oncol. 2021, 11, 4489. [Google Scholar] [CrossRef]
- Peh, W. CT-Guided Percutaneous Biopsy of Spinal Lesions. Biomed. Imaging Interv. J. 2006, 2, e25. [Google Scholar] [CrossRef] [PubMed]
Authors | Publication Year | Objective | Journal | Number of Patients | Imaging Modality | Segmentation | Technique Used for Feature Selection | Validation | Classification | Features | Best Results | Calibration Statistics | Decision Curve Analysis | RQS |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Jiang X et al. [12] | 2021 | Detect EGFR mutation in spinal metastasis in patients with primary lung adenocarcinoma | Journal of Magnetic Resonance Imaging | 97 | 3T MRI T1W, T2W, T2W-FS | Manual, ITK-SNAP | Mann–Whitney U-test, LASSO, 10-fold cross-validation | Y | Logistic regression models | Handcrafted features: first-order, shape- and size- based, texture, filtered features | Fusion features: AUC = 0.771, ACC = 0.550, SEN = 0.750, SPE = 0.875 | Y | Y | 10/36 = 27.7% |
Ren M et al. [13] | 2021 | Detect EGFR mutation in spinal metastasis in patients with primary lung adenocarcinoma | Medical Physics | 110 | 3T MRI T1W, T2W, T2W-FS | Manual, ITK-SNAP | Intraclass correlation coefficient (ICC) analysis, Mann–Whitney U, LASSO, 10-fold cross-validation | Y | Logistic regression, random forest, neural network, and support vector machine | First-order, shape-based, and texture (1967) | Fusion features: AUC = 0.803 (0.682–0.924), SEN = 0.700, SPE = 0.818; nomogram, AUC = 0.882 (0.695–0.974), ACC = 0.808, SEN = 0.846, SPE = 0.846 | Y | Y | 11/36 = 30.5% |
Fan Y et al. [14] | 2021 | Detect EGFR mutation in spinal metastasis in patients with primary lung adenocarcinoma | Physics in Medicine & Biology | 94 | 3T MRI, T1W, T2W-FS | Manual, ITK-SNAP | Mann–Whitney U-test, LASSO, 10-fold cross-validation | Y | Logistic regression models | First-order, shape- and size- based, texture, high-dimensional features (1595) | Multiregional radiomics signature: AUC = 0.777 (0.612–0.967), ACC = 0.688, SEN = 0.615, SPE = 0.947 | N | N | 8/36 = 22.2% |
Ran C et al. [15] | 2020 | Detect EGFR mutation subtypes in exons 19 and 21 in spinal metastasis in patients with primary lung adenocarcinoma | Academic Radiology | 76 | 3T MRI, T1W, T2W-FS | Manual | Mann–Whitney U, LASSO, 10-fold cross-validation | Y | Logistic regression models | First-order, shape-based, and texture (1967) | T1W: AUC = 0.728 (0.526 0.903), ACC = 0.692, SEN = 0.692, SPE = 0.769; T2W-FS: AUC = 0.852 (0.706 0.998), ACC = 0.731, SEN = 0.846, SPE = 0.769; nomogram, AUC = 0.821 (0.692–0.929), SEN = 0.667, SPE = 0.909 | Y | Y | 12/36 = 33.3% |
Wang Y et al. [16] | 2019 | Pretreatment prediction of bone metastasis in patients with prostate cancer | Magnetic Resonance Imaging | 176 | 3T MRI T2W, T1W DCE | Manual, IBEX | Linear regression, ridge regression, logistic regression models | Y | Linear regression, ridge regression, logistics regression models | Shape, intensity, intensity histogram, GLCM, gray-level run (976) | Combined T2W and DCE: AUC = 0.898 (0.833–0.937), ACC = 0.821, SEN = 0.647, SPE = 0.782 | Y | N | 8/36 = 22.2% |
Hayakawa T et al. [17] | 2020 | Investigate the potential prognostic value of clinical risk factors, image features, and radiomics of pelvic bone metastasis in newly diagnosed prostate cancer patients | Japanese Journal of Radiology | 69 | CT | Manual, 3D Slicer | N | N | Not available | Shape-based, first-order statistics, texture (105) | Maximum 2D diameter and least axis were detected as risk factors for OS (HR 1.007 and 1.013, respectively) | N | N | 0/36 = 0% |
Zhang W et al. [18] | 2020 | Pretreatment prediction of bone metastasis in patients with prostate cancer | BMC Medical Imaging | 116 | 3T MRI, T2W-FS, DWI, DCE T1W | Manual, AK software | ANOVA | Y | Logistic regression models | Not available (204) | AUC = 0.84 | Y | Y | 14/36 = 38.8% |
Sun W et al. [19] | 2021 | Distinguish between benign and malignant bone tumors | Cancer Imaging | 206 | CT | Manual, ITK-SNAP | LASSO | Y | Logistic regression models | Shape, statistical, texture, wavelet (1130) | Radiomic model, AUC = 0.781 (0.643–0.918); nomogram, AUC = 0.917 | Y | Y | 12/36 = 33.3% |
Xiong X et al. [20] | 2021 | Differentiating between multiple myeloma and different tumor metastasis lesions of the lumbar vertebra | Frontiers in Oncology | 107 | 3T MRI, T1W, T2W-FS | Manual | LASSO, 10-fold cross-validation | Y | Support vector machine, k-nearest neighbor, random forest, artificial neural networks (ANNs), and naïve Bayes | Histogram features, GLCM, GRLM, and an autoregressive model (282) | Differentiating myeloma and metastasis, ANN T2W-FS: AUC = 0.815, SEN = 0.879, SPE = 0.790; differentiating myeloma and metastasis subtypes, ANN T2W-FS: AUC = 0.648, SEN = 0.714, SPE = 0.775 | N | N | 8/36 = 22.2% |
Yin P et al. [21] | 2018 | Differentiation between primary sacral chordoma, sacral giant cell tumor, and sacral metastatic tumor | Journal of Magnetic Resonance Imaging | 167 | 3T MRI, T2W-FS, T1W CE | Manual, ITK-SNAP | ANOVA, LASSO, Pearson correlation, random forest | Y | Random forest | Histogram features, form factor features, Haralick, GLCM features, RLM (385). | Combined T2W and T1W CE: AUC = 0.773, ACC = 0.711; T2W, AUC = 0.678, ACC = 0.541; T1W CE, AUC = 0.592, ACC = 0.568 | Y | N | 9/36 = 25% |
Zhong X et al. [22] | 2020 | Differentiating of cervical spine osteoradionecrosis from metastasis after radiotherapy in nasopharyngeal carcinoma | BMC Medical Imaging | 123 | 1.5 MRI, T1W CE | Manual, MaZda | Intraclass correlation coefficient (ICC) analysis, combination feature selection algorithm (combination of Fisher coefficient, classification error probability combined with average correlation coefficients, and mutual information), LASSO, 10-fold cross-validation | Y | Logistic regression models | Histogram, gray-level co-occurrence matrix, run-length matrix, absolute gradient, autoregressive model, and wavelet (279) | Nomogram: AUC = 0.720 (0.573–0.867), ACC = 0.723, SEN = 0.800, SPE = 0.640 | Y | Y | 11/36 = 30.5% |
Filograna L et al. [23] | 2019 | Differentiate between metastatic and nonmetastatic vertebral bodies in patients with bone marrow metastatic disease | La Radiologia Medica | 8 | 1.5 MRI, T1W, T2W-FS | Not available | Wilcoxon test | N | Logistic regression models | Statistical/ histogram, morphological, and textural features (89) | T1W: AUC = 0.814 (0.685–0.942); T2W: AUC = 0.911 (0.829–0.993) | N | N | 2/36 = 5.5% |
Lang N et al. [24] | 2019 | Differentiate metastatic cancer in the spine originated from lung cancer and other nonlung tumors | Magnetic Resonance Imaging | 61 | 3T MRI DCE | Manual, automatic | Random forest algorithm | N | Logistic regression models | Texture, histogram (33 × 3 maps) | 3 features, histogram + texture: ACC = 0.68; 5 features, histogram + texture: ACC = 0.71; | N | N | 1/36 = 2.7% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faiella, E.; Santucci, D.; Calabrese, A.; Russo, F.; Vadalà, G.; Zobel, B.B.; Soda, P.; Iannello, G.; de Felice, C.; Denaro, V. Artificial Intelligence in Bone Metastases: An MRI and CT Imaging Review. Int. J. Environ. Res. Public Health 2022, 19, 1880. https://doi.org/10.3390/ijerph19031880
Faiella E, Santucci D, Calabrese A, Russo F, Vadalà G, Zobel BB, Soda P, Iannello G, de Felice C, Denaro V. Artificial Intelligence in Bone Metastases: An MRI and CT Imaging Review. International Journal of Environmental Research and Public Health. 2022; 19(3):1880. https://doi.org/10.3390/ijerph19031880
Chicago/Turabian StyleFaiella, Eliodoro, Domiziana Santucci, Alessandro Calabrese, Fabrizio Russo, Gianluca Vadalà, Bruno Beomonte Zobel, Paolo Soda, Giulio Iannello, Carlo de Felice, and Vincenzo Denaro. 2022. "Artificial Intelligence in Bone Metastases: An MRI and CT Imaging Review" International Journal of Environmental Research and Public Health 19, no. 3: 1880. https://doi.org/10.3390/ijerph19031880
APA StyleFaiella, E., Santucci, D., Calabrese, A., Russo, F., Vadalà, G., Zobel, B. B., Soda, P., Iannello, G., de Felice, C., & Denaro, V. (2022). Artificial Intelligence in Bone Metastases: An MRI and CT Imaging Review. International Journal of Environmental Research and Public Health, 19(3), 1880. https://doi.org/10.3390/ijerph19031880