Predicting Infectious Diseases: A Bibliometric Review on Africa
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Predicting Infectious Disease Outbreak Research Trends
3.2. Network Analysis
3.3. Keyword Analysis
3.4. Thematic Evolution Analysis
3.5. Number of Received Citations of the Documents and Bibliometric Indices
4. Discussion
4.1. Outbreaks-Driven Research
4.2. Under-Representation of African Authors
4.3. Domination of Malaria in the Research Theme
4.4. Slow Adoption of Fourth Industrial Revolution Technologies
4.5. Recommendations: Key Emerging Themes and the Way Forward
- There is a dire need to promote publications and equitable partnership between African researchers and other researchers in predicting African’s infectious diseases. Ways to achieve this include but are not limited to: (1) collaboration from expertise in different fields since predicting infectious diseases is interdisciplinary as mentioned earlier; (2) more funding from African agencies to promote equitable research collaboration [55] emphasize that mutually beneficial partnerships between African countries and Western nations can improve research capacity and address global health challenges.
- Future studies should focus more on predicting infectious diseases such as COVID-19 and Ebola, which, unlike malaria, have not received enough attention from researchers regardless of their continuous devasting impacts [75]. The ongoing outbreak and the devastating impacts of COVID-19 have indicated that early warning systems are now needed more than ever to build preparedness for infectious diseases.
- Considering that researchers in predicting Africa’s infectious diseases have focused on weather-based prediction systems considering mainly meteorological factors, future studies must incorporate other factors ranging from hydrological, environmental, international travel, human demographics and behavior, social media, and lack of political will [7]. Other researchers outside Africa have already considered these factors and have enhanced the precisions of the prediction models [11,28]. Since factors that influence infectious diseases vary from one country/region to another [72], future studies should also investigate which factors are important for predicting infectious diseases in a specific region/country in Africa.
- There is also a need to explore further machine learning, artificial intelligence and other 4IR tools to find which technological tools can efficiently and effectively monitor and predict infectious diseases in Africa. These technological tools can be pivotal to reinforce the capacity of traditional surveillance systems [26].
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Holmes, K.K.; Bertozzi, S.; Bloom, B.R.; Jha, P. (Eds.) Major Infectious Diseases, 3rd ed.; The International Bank for Reconstruction and Development/The World Bank: Washington, DC, USA, 2017. [Google Scholar] [CrossRef]
- Nkengasong, J.N.; Tessema, S.K. Africa Needs a New Public Health Order to Tackle Infectious Disease Threats. Cell 2020, 183, 296–300. [Google Scholar] [CrossRef] [PubMed]
- WHO. Global Health Estimate 2016: Deaths by Cause, Age, Sex by Country and Region, 2000–2016. Geveva World Heal. Organ. 2018. Available online: http://www.who.int/healthinfo/global_burden_disease/en/ (accessed on 8 June 2021).
- Nueangnong, V.; Subih, A.A.S.H.; Al-Hattami, H.M. The 2020’s world deadliest pandemic: Corona Virus (COVID-19) and International Medical Law (IML). Cogent Soc. Sci. 2020, 6, 8936. [Google Scholar] [CrossRef]
- Di Pietro, R.; Calcagno, S.; Biondi-Zoccai, G.; Versaci, F. Is COVID-19 the deadliest event of the last century? Eur. Hear. J. 2021, 83. [Google Scholar] [CrossRef] [PubMed]
- WHO. Coronavirus Disease 2019 (COVID-19) Situation Report. Available online: https://covid19.who.int/ (accessed on 4 January 2022).
- Fenollar, F.; Mediannikov, O. Emerging infectious diseases in Africa in the 21st century. New Microbes New Infect. 2018, 26, S10–S18. [Google Scholar] [CrossRef]
- To, K.K.; Chan, J.F.; Tsang, A.K.; Cheng, V.C. Ebola virus disease: A highly fatal infectious disease reemerging in West Africa. Microbes Infect. 2015, 17, 84–97. [Google Scholar] [CrossRef]
- World Health Organization African Regional Office. In The African Regional Health Report: The Health of the People; World Health Organization: Geneva, Switzerland, 2014; p. 196.
- World Health Organisation. A heavy burden: The productivity cost of illness in Africa. 2019. Available online: https://www.afro.who.int/publications/heavy-burden-productivity-cost-illness-africa. (accessed on 8 June 2021).
- Modu, B.; Polovina, N.; Lan, Y.; Konur, S.; Asyhari, A.T.; Peng, Y. Towards a Predictive Analytics-Based Intelligent Malaria Outbreak Warning System. Appl. Sci. 2017, 7, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Guo, P.; Liu, T.; Zhang, Q.; Wang, L.; Xiao, J.; Zhang, Q.; Luo, G.; Li, Z.; He, J.; Zhang, Y.; et al. Developing a dengue forecast model using machine learning: A case study in China. PLoS Negl. Trop. Dis. 2017, 11, e000597. [Google Scholar] [CrossRef]
- Chae, S.; Kwon, S.; Lee, D. Predicting Infectious Disease Using Deep Learning and Big Data. Int. J. Environ. Res. Public Health 2018, 15, 1596. [Google Scholar] [CrossRef] [Green Version]
- Manyangadze, T.; Chimbari, M.J.; Gebreslasie, M.; Ceccato, P.; Mukaratirwa, S. Modelling the spatial and seasonal distribution of suitable habitats of schistosomiasis intermediate host snails using Maxent in Ndumo area, KwaZulu-Natal Province, South Africa. Parasites Vectors 2016, 9, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Masinde, M. Africa’s Malaria Epidemic Predictor: Application of Machine Learning on Malaria Incidence and Climate Data. In Proceedings of the 2020 the 4th International Conference on Compute and Data Analysis, Silicon Valley, CA, USA, 9–12 March 2020; pp. 29–37. [Google Scholar]
- Macherera, M.; Chimbari, M.J. A review of studies on community based early warning systems. Jamba J. Disaster Risk Stud. 2016, 8, 1–10. [Google Scholar] [CrossRef]
- Girdler-Brown, B. Evaluation of the notifiable diseases surveillance system in South Africa. Int. J. Infect. Dis. 2017, 59, 139–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ewell, C.; Kypraios, T.; Christley, R.; Roberts, G. A novel approach to real-time risk prediction for emerging infectious diseases: A case study in Avian Influenza H5N1. Prev. Veter Med. 2009, 91, 19–28. [Google Scholar] [CrossRef]
- Sharma, V.; Kumar, A.; Panat, L.; Karajkhede, G. Malaria Outbreak Prediction Model Using machine learning. Int. J. of Adv. Res. in Comput. Eng. Technol. 2015, 4, 4415–4419. [Google Scholar]
- Thakur, S.; Dharavath, R. Artificial neural network based prediction of malaria abundances using big data: A knowledge capturing approach. Clin. Epidemiology Glob. Health 2019, 7, 121–126. [Google Scholar] [CrossRef] [Green Version]
- Darkoh, E.L.; Larbi, J.A.; Lawer, E.A. A Weather-Based Prediction Model of Malaria Prevalence in Amenfi West District, Ghana. Malar. Res. Treat. 2017, 2017, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y.; Ratnam, J.V.; Doi, T.; Morioka, Y.; Behera, S.; Tsuzuki, A.; Minakawa, N.; Sweijd, N.; Kruger, P.; Maharaj, R.; et al. Malaria predictions based on seasonal climate forecasts in South Africa: A time series distributed lag nonlinear model. Sci. Rep. 2019, 9, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramadona, A.L.; Lazuardi, L.; Hii, Y.L.; Holmner, A.; Kusnanto, H.; Rocklöv, J. Prediction of Dengue Outbreaks Based on Disease Surveillance and Meteorological Data. PLoS ONE 2016, 11, e0152688. [Google Scholar] [CrossRef]
- Sarkar, B.K.; Sana, S.S. An e-healthcare system for disease prediction using hybrid data mining technique. J. Model. Manag. 2019, 14, 628–661. [Google Scholar] [CrossRef]
- Baldominos, A.; Puello, A.; Ogul, H.; Asuroglu, T.; Colomo-Palacios, R. Predicting Infections Using Computational Intelligence—A Systematic Review. IEEE Access 2020, 8, 31083–31102. [Google Scholar] [CrossRef]
- Choi, J.; Cho, Y.; Shim, E.; Woo, H. Web-based infectious disease surveillance systems and public health perspectives: A systematic review. BMC Public Health 2016, 16, 1238. [Google Scholar] [CrossRef] [Green Version]
- Varalakshmi, M.; Kesarkar, A.P.; Lopez, D. Embarrassingly Parallel GPU Based Matrix Inversion Algorithm for Big Climate Data Assimilation. Int. J. Grid High Perform. Comput. 2018, 10, 71–92. [Google Scholar] [CrossRef]
- Thomson, M.C.; Connor, S.J. The development of Malaria Early Warning Systems for Africa. Trends Parasitol. 2001, 17, 438–445. [Google Scholar] [CrossRef]
- Tonnang, H.E.; Kangalawe, R.Y.; Yanda, P.Z. Predicting and mapping malaria under climate change scenarios: The potential redistribution of malaria vectors in Africa. Malar. J. 2010, 9, 111. [Google Scholar] [CrossRef] [Green Version]
- Githeko, A.K.; Ogallo, L.; Lemnge, M.; Okia, M.; Ototo, E.N. Development and validation of climate and ecosystem-based early malaria epidemic prediction models in East Africa. Malar. J. 2014, 13, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Pollett, S.; Johansson, M.; Biggerstaff, M.; Morton, L.C.; Bazaco, S.L.; Major, D.M.B.; Stewart-Ibarra, A.M.; Pavlin, J.A.; Mate, S.; Sippy, R.; et al. Identification and evaluation of epidemic prediction and forecasting reporting guidelines: A systematic review and a call for action. Epidemics 2020, 33, 100400. [Google Scholar] [CrossRef]
- Yang, W.; Zhang, J.; Ma, R. The Prediction of Infectious Diseases: A Bibliometric Analysis. Int. J. Environ. Res. Public Health 2020, 17, 6218. [Google Scholar] [CrossRef]
- Kawuki, J.; Yu, X.; Musa, T.H. Bibliometric Analysis of Ebola Research Indexed in Web of Science and Scopus (2010–2020). BioMed Res. Int. 2020, 2020, 1–12. [Google Scholar] [CrossRef]
- Zyoud, S.H. Global research trends of Middle East respiratory syndrome coronavirus: A bibliometric analysis. BMC Infect. Dis. 2016, 16, 255. [Google Scholar] [CrossRef] [Green Version]
- Pauna, V.H.; Picone, F.; Le Guyader, G.; Buonocore, E.; Franzese, P.P. The scientific research on ecosystem services: A bibliometric analysis. Ecol. Quest. 2018, 29, 53–62. [Google Scholar]
- Vera-Polania, F.; Perilla-Gonzalez, Y.; Martinez-Pulgarin, D.F.; Baquero-Rodriguez, J.D.; Munoz-Urbano, M.; Lagos-Gallegos, M.; Lagos-Grisales, G.J.; Villegas, S.; Rodriguez-Morales, A.J. Bibliometric assessment of the Latin-American contributions in dengue. Recent Pat. Antiinfect. Drug Discov. 2014, 9, 195–201. [Google Scholar] [CrossRef]
- Van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sweileh, W.M. Bibliometric analysis of peer-reviewed literature on climate change and human health with an emphasis on infectious diseases. Glob. Health 2020, 16, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Van Eck, N.J.; Waltman, L. Citation-based clustering of publications using CitNetExplorer and VOSviewer. Science 2017, 111, 1053–1070. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Derviş, H. Bibliometric analysis using Bibliometrix an R Package. J. Scientometr. Res. 2019, 8, 156–160. [Google Scholar] [CrossRef]
- WHO. Case definition recommendations for Ebola or Marburg virus diseases: Interim Guidel. 2014. Available online: https://apps.who.int/iris/handle/10665/146397 (accessed on 1 February 2022).
- World Health Organisation. WHO. Plague–Madagascar. 2017. Available online: https://www.who.int/emergencies/disease-outbreak-news/item/plague---madagascar (accessed on 1 February 2022).
- World Health Organisation. Countries slides Measles. 2019. Available online: https://www.who.int/immunization/monitoring_surveillance/burden/vpd/surveillance_type/Country_slides_measles.pptx (accessed on 8 June 2021).
- Kraemer, M.U.G.; Faria, N.R.; Reiner, R.C.; Golding, N.; Nikolay, B.; Stasse, S.; A Johansson, M.; Salje, H.; Faye, O.; Wint, G.R.W.; et al. Spread of yellow fever virus outbreak in Angola and the Democratic Republic of the Congo 2015–2016: A modelling study. Lancet Infect. Dis. 2017, 17, 330–338. [Google Scholar] [CrossRef]
- Yinka-Ogunleye, A.; Aruna, O.; Ogoina, D.; Aworabhi, N.; Eteng, W.; Badaru, S.; Mohammed, A.; Agenyi, J.; Etebu, E.N.; Numbere, T.W.; et al. Reemergence of human monkeypox in Nigeria, 2017. Emerg. Infect. Dis. 2018, 24, 1149. [Google Scholar] [CrossRef]
- Lourenço, J.; de Lourdes Monteiro, M.; Valdez, T.; Rodrigues, J.M.; Pybus, O.; Faria, N.R. Epidemiology of the Zika virus outbreak in the Cabo Verde islands, West Africa. PLoS Curr. 2018, 10. [Google Scholar] [CrossRef]
- Ritchie, A.; Teufel, S.; Robertson, S. Using Terms from Citations for IR: Some First Results. Lect. Notes Comput. Sci. 2008, 11, 211–221. [Google Scholar] [CrossRef] [Green Version]
- Shiau, W.-L.; Chen, S.-Y.; Tsai, Y.-C. Management information systems issues: Co-citation analysis of journal articles. Int. J. Electron. Commer. Stud. 2015, 6, 145–162. [Google Scholar] [CrossRef] [Green Version]
- White, H.D.; McCain, K.W. Visualizing a discipline: An author co-citation analysis of information science, 1972–1995. J. Am. Soc. Inf. Sci. 1998, 49, 327–355. [Google Scholar] [CrossRef]
- Chen, C.; Dubin, R.; Kim, M.C. Emerging trends and new developments in regenerative medicine: A scientometric update (2000–2014). Expert Opin. Biol. Ther. 2014, 14, 1295–1317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organisation. World Malaria Report 2020. Years of Progress and Challenges; World Health Organisation: Geneva, Switzerland, 2020. [Google Scholar]
- Cobo, M.J.; López-Herrera, A.G.; Herrera-Viedma, E.; Herrera, F. An approach for detecting, quantifying, and visualizing the evolution of a research field: A practical application to the Fuzzy Sets Theory field. J. Inform. 2011, 5, 146–166. [Google Scholar] [CrossRef]
- Chen, X.; Lun, Y.; Yan, J.; Hao, T.; Weng, H. Discovering thematic change and evolution of utilizing social media for healthcare research. BMC Med Informatics Decis. Mak. 2019, 19, 50. [Google Scholar] [CrossRef]
- Li, J.; Goerlandt, F.; Reniers, G. Trevor Kletz’s scholarly legacy: A co-citation analysis. J. Loss Prev. Process Ind. 2020, 66, 104166. [Google Scholar] [CrossRef]
- Mbaye, R.; Gebeyehu, R.; Hossmann, S.; Mbarga, N.F.; Bih-Neh, E.; Eteki, L.; Thelma, O.-A.; Oyerinde, A.; Kiti, G.; Mburu, Y.; et al. Who is telling the story? A systematic review of authorship for infectious disease research conducted in Africa, 1980–2016. BMJ Glob. Health 2019, 4, e001855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Craig, M.H.; Snow, R.W.; le Sueur, D. A climate-based distribution model of malaria transmission in sub-Saharan Africa. Parasitol. today 1999, 15, 105–111. [Google Scholar] [CrossRef]
- Thomson, M.C.; Mason, S.J.; Phindela, T.; Connor, S.J. Use of rainfall and sea surface temperature monitoring for malaria early warning in Botswana. Am. J. Trop. Med. Hyg. 2005, 73, 214–221. [Google Scholar] [CrossRef] [Green Version]
- Thomson, M.C.; Doblas-Reyes, F.J.; Mason, S.J.; Hagedorn, R.; Connor, S.J.; Phindela, T.; Morse, A.P.; Palmer, T.N. Malaria early warnings based on seasonal climate forecasts from multi-model ensembles. Nature 2006, 439, 576–579. [Google Scholar] [CrossRef]
- Zhou, G.; Minakawa, N.; Githeko, A.K.; Yan, G. Association between climate variability and malaria epidemics in the East African highlands. In Proceedings of the National Academy of Sciences, Nairobi, Kenya, 30 December 2003; Volume 101, pp. 2375–2380. [Google Scholar]
- Hay, S.I.; Snow, R.W.; Rogers, D.J. Predicting malaria seasons in Kenya using multitemporal meteorological satellite sensor data. Trans. R. Soc. Trop. Med. Hyg. 1998, 92, 12–20. [Google Scholar] [CrossRef]
- Rogers, D.J.; Randolph, S.E.; Snow, R.W.; Hay, S.I. Satellite imagery in the study and forecast of malaria. Nature 2002, 415, 710–715. [Google Scholar] [CrossRef] [Green Version]
- Teklehaimanot, H.D.; Lipsitch, M.; Teklehaimanot, A.; Schwartz, J. Weather-based prediction of Plasmodium falciparum malaria in epidemic-prone regions of Ethiopia I. Patterns of lagged weather effects reflect biological mechanisms. Malar. J. 2004, 3, 41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoshen, M.B.; Morse, A.P. A weather-driven model of malaria transmission. Malar. J. 2004, 3, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kleinschmidt, I.; Bagayoko, M.; Clarke, G.P.Y.; Craig, M.; Le Sueur, D. A spatial statistical approach to malaria mapping. International. J. Epidemiol. 2000, 29, 355–361. [Google Scholar]
- Naidoo, A.V.; Hodkinson, P.; King, L.L.; A Wallis, L. African authorship on African papers during the COVID-19 pandemic. BMJ Glob. Health 2021, 6, e004612. [Google Scholar] [CrossRef] [PubMed]
- Chu, K.M.; Jayaraman, S.; Kyamanywa, P.; Ntakiyiruta, G. Building Research Capacity in Africa: Equity and Global Health Collaborations. PLoS Med. 2014, 11, e1001612. [Google Scholar] [CrossRef] [Green Version]
- Kelaher, M.; Ng, L.; Knight, K.; Rahadi, A. Equity in global health research in the new millennium: Trends in first-authorship for randomized controlled trials among low-and middle-income country researchers 1990–2013. Int. J. Epidemiology 2016, 45, 2174–2183. [Google Scholar] [CrossRef] [Green Version]
- North, M.A.; Hastie, W.W.; Hoyer, L. Out of Africa: The underrepresentation of African authors in high-impact geoscience literature. Earth Sci. Rev. 2020, 208, 103262. [Google Scholar] [CrossRef]
- Orquiola, M. Markets, Minds, and Money: Why America Leads the World in University Research, 1st ed.; Havard University Press: London, UK, 2020. [Google Scholar]
- WHO. In World Malaria Report 2019; WHO: Geneva, Switzerland, 2019.
- Phoobane, P.; Masinde, M.; Botai, J. Prediction Model for Malaria: An Ensemble of Machine Learning and Hydrological Drought Indices. In Proceedings of the International Conference on Emerging Technologies and Intelligent Systems, London, UK, 25–26 February 2021; Springer Science and Business Media LLC: Berlin, Germany, 2021; pp. 569–584. [Google Scholar]
- Nkiruka, O.; Prasad, R.; Clement, O. Prediction of malaria incidence using climate variability and machine learning. Informatics Med. Unlocked 2021, 22, 100508. [Google Scholar] [CrossRef]
- Lü, G.; Batty, M.; Strobl, J.; Lin, H.; Zhu, A.-X.; Chen, M. Reflections and speculations on the progress in Geographic Information Systems (GIS): A geographic perspective. Int. J. Geogr. Inf. Sci. 2019, 33, 346–367. [Google Scholar] [CrossRef]
- Marr, B. Artificial Intelligence in Practice: How 50 Successful Companies Used AI and Machine Learning to Solve Problems; Johns Willey and Sons: West Sussex, UK, 2019. [Google Scholar]
- WHO. Disease Outbreak News. 2021. Available online: https://www.who.int/emergencies/disease-outbreak-news (accessed on 8 June 2021).
Infectious Diseases | Period of Occurrence | Countries/Regions | Impact | Sources |
---|---|---|---|---|
Plague | 2017 | Madagascar | 2348 confirmed and 202 deaths | [42] |
Measles | 2010–2013 | DRC | Largest outbreak: 294,455 cases, 5045 deaths | [43] |
Yellow Fever Virus | 2015–2016 | Angola, DRC | Largest outbreak: 7334 suspected cases, 393 deaths | [44] |
Ebola | 2013–2016 | Guinea, Sierra Leone, Liberia | Largest outbreak: 28,646 cases and 11,323 deaths | [7] |
Monkeypox | 2017 | Nigeria | Largest outbreak: 146 suspected cases and 42 confirmed cases, 1 death | [45] |
Zika Virus | 2015–2016 | Cabo Verde | First outbreak detection in Africa, 7580 Zika virus suspected cases | [46] |
COVID-19 | 2019–4 January 2022 (ongoing) | Africa | 7,164,485 confirmed cases and 155,675 deaths | [6] |
Rank | Institution | Published Papers | Citations | Total Link Strength |
---|---|---|---|---|
1 | University of Oxford | 20 | 1309 | 43 |
2 | Columbia University | 15 | 654 | 17 |
3 | University of Liverpool | 14 | 769 | 21 |
4 | University of Pretoria | 12 | 73 | 19 |
5 | Kenya Government Medical Research Centre | 11 | 676 | 20 |
5 | Ministry of Health | 11 | 614 | 25 |
Rank | Keyword | Occurrences | Total Link Strength | Rank | Keyword | Occurrences | Total Link Strength |
---|---|---|---|---|---|---|---|
1 | transmission | 68 | 346 | 11 | Plasmodium falciparum | 20 | 111 |
2 | malaria | 60 | 334 | 12 | epidemiology | 20 | 103 |
3 | Africa | 57 | 304 | 13 | climate change | 19 | 100 |
4 | risk | 25 | 191 | 14 | patterns | 17 | 110 |
5 | model | 25 | 129 | 15 | prediction | 17 | 87 |
6 | climate | 24 | 137 | 16 | COVID-19 | 17 | 33 |
7 | dynamics | 24 | 122 | 17 | disease | 16 | 63 |
8 | rainfall | 23 | 133 | 18 | variability | 15 | 87 |
9 | temperature | 22 | 147 | 19 | outbreak | 15 | 57 |
10 | impact | 20 | 113 | 20 | epidemic | 14 | 89 |
Rank | Authors and Year | Paper Title | Paper Type | Citations from VOSviewer | Citations from Google Scholar |
---|---|---|---|---|---|
1 | Craig, M.H., Snow, R.W. and le Sueur, D., 1999. [56] | A climate-based distribution model of malaria transmission in sub-Saharan Africa. | Journal: Parasitology today | 45 | 1036 |
2 | Thomson, M.C., Mason, S.J., Phindela, T. and Connor, S.J., 2005. [57] | Use of rainfall and sea surface temperature monitoring for malaria early warning in Botswana. | The American Journal of Tropical Medicine and Hygiene | 29 | 279 |
3 | Thomson, M.C., Doblas-Reyes, F.J., Mason, S.J., Hagedorn, R., Connor, S.J., Phindela, T., Morse, A.P. and Palmer, T.N., 2006. [58] | Malaria early warnings based on seasonal climate forecasts from multi-model ensembles. | Nature | 24 | 5 |
4 | Zhou, G., Minakawa, N., Githeko, A.K. and Yan, G., 2004. [59] | Association between climate variability and malaria epidemics in the East African highlands. | Conference paper: Proceedings of the National Academy of Sciences | 23 | 543 |
5 | Hay, S.I., Snow, R.W. and Rogers, D.J., 1998. [60] | Predicting malaria seasons in Kenya using multitemporal meteorological satellite sensor data. | Transactions of the Royal Society of Tropical Medicine and Hygiene | 23 | 291 |
6 | Rogers, D.J., Randolph, S.E., Snow, R.W. and Hay, S.I., 2002. [61] | Satellite imagery in the study and forecast of malaria. | Journal: Nature | 21 | 556 |
7 | Teklehaimanot, H.D., Lipsitch, M., Teklehaimanot, A. and Schwartz, J., 2004. [62] | Weather-based prediction of Plasmodium falciparum malaria in epidemic-prone regions of Ethiopia I. Patterns of lagged weather effects reflect biological mechanisms. | Malaria journal | 19 | 241 |
8 | Hoshen, M.B. and Morse, A.P., 2004. [63] | A weather-driven model of malaria transmission. | Malaria journal | 17 | 321 |
9 | Kleinschmidt, I., Bagayoko, M., Clarke, G.P.Y., Craig, M. and Le Sueur, D., 2000. [64] | A spatial statistical approach to malaria mapping. | International Journal of Epidemiology | 16 | 10 |
10 | Hay, S.I., Were, E.C., Renshaw, M., Noor, A.M., Ochola, S.A., Olusanmi, I., Alipui, N. and Snow, R.W., 2003. Forecasting, warning, and detection of malaria epidemics: A case study. The Lancet, 361(9370), pp. 1705–1706. | Forecasting, warning, and detection of malaria epidemics: A case study. | The Lancet journal | 14 | 134 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Phoobane, P.; Masinde, M.; Mabhaudhi, T. Predicting Infectious Diseases: A Bibliometric Review on Africa. Int. J. Environ. Res. Public Health 2022, 19, 1893. https://doi.org/10.3390/ijerph19031893
Phoobane P, Masinde M, Mabhaudhi T. Predicting Infectious Diseases: A Bibliometric Review on Africa. International Journal of Environmental Research and Public Health. 2022; 19(3):1893. https://doi.org/10.3390/ijerph19031893
Chicago/Turabian StylePhoobane, Paulina, Muthoni Masinde, and Tafadzwanashe Mabhaudhi. 2022. "Predicting Infectious Diseases: A Bibliometric Review on Africa" International Journal of Environmental Research and Public Health 19, no. 3: 1893. https://doi.org/10.3390/ijerph19031893
APA StylePhoobane, P., Masinde, M., & Mabhaudhi, T. (2022). Predicting Infectious Diseases: A Bibliometric Review on Africa. International Journal of Environmental Research and Public Health, 19(3), 1893. https://doi.org/10.3390/ijerph19031893