Dental Consequences of Vitamin D Deficiency during Pregnancy and Early Infancy—An Observational Study
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
4.1. Strengths and Weaknesses
4.2. Implications and Future Recommendations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Trotter, M.; Hixon, B.B. Sequential changes in weight, density, and percentage ash weight of human skeletons from an early fetal period through old age. Anat. Rec. 1974, 179, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Givens, M.H.; Macy, I.G. The chemical composition of the human fetus. J. Biol. Chem. 1933, 102, 7–17. [Google Scholar] [CrossRef]
- Koch, G. Pediatric Dentistry: A Clinical Approach; John Wiley & Sons: New York, NY, USA, 2017. [Google Scholar]
- Ward, L.M.; Gaboury, I.; Ladhani, M.; Zlotkin, S. Vitamin D–deficiency rickets among children in Canada. Can. Med. Assoc. J. 2007, 177, 161–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holick, M.F.; Binkley, N.C.; Bischoff-Ferrari, H.A.; Gordon, C.M.; Hanley, D.A.; Heaney, R.P.; Murad, M.H.; Weaver, C.M. Evaluation, treatment, and prevention of vitamin D deficiency: An Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 2011, 96, 1911–1930. [Google Scholar] [CrossRef] [Green Version]
- Wheeler, B.J.; Taylor, B.J.; Herbison, P.; Haszard, J.J.; Mikhail, A.; Jones, S.; Harper, M.J.; Houghton, L.A. High-dose monthly maternal cholecalciferol supplementation during breastfeeding affects maternal and infant vitamin D status at 5 months postpartum: A Randomized Controlled Trial. J. Nutr. 2016, 146, 1999–2006. [Google Scholar] [CrossRef]
- Hollis, B.W.; Wagner, C.L. Vitamin D requirements during lactation: High-dose maternal supplementation as therapy to prevent hypovitaminosis D for both the mother and the nursing infant. Am. J. Clin. Nutr. 2004, 80, 1752S–1758S. [Google Scholar] [CrossRef]
- Wheeler, B.J.; Taylor, B.J.; de Lange, M.; Harper, M.J.; Jones, S.; Mekhail, A.; Houghton, L.A. A longitudinal study of 25-hydroxy vitamin D and parathyroid hormone status throughout pregnancy and exclusive lactation in New Zealand mothers and their infants at 45° south. Nutrients 2017, 10, 86. [Google Scholar] [CrossRef] [Green Version]
- Grant, C.C.; Stewart, A.W.; Scragg, R.; Milne, T.; Rowden, J.; Ekeroma, A.; Wall, C.; Mitchell, E.A.; Crengle, S.; Trenholme, A. Vitamin D during pregnancy and infancy and infant serum 25-hydroxyvitamin D concentration. Pediatrics 2013, 133, e143–e153. [Google Scholar] [CrossRef] [Green Version]
- Thomas, S.D.C.; Fudge, A.N.; Whiting, M.; Coates, P.S. The correlation between third-trimester maternal and newborn-serum 25-hydroxy-vitamin D in a selected South Australian group of newborn samples. BMJ Open 2011, 1, e000236. [Google Scholar] [CrossRef] [Green Version]
- Elhennawy, K.; Manton, D.J.; Crombie, F.; Zaslansky, P.; Radlanski, R.J.; Jost-Brinkmann, P.-G.; Schwendicke, F. Structural, mechanical and chemical evaluation of molar-incisor hypomineralization-affected enamel: A systematic review. Arch. Oral Biol. 2017, 83, 272–281. [Google Scholar] [CrossRef]
- Cremonesi, I.; Nucci, C.; D’Alessandro, G.; Alkhamis, N.; Marchionni, S.; Piana, G. X-linked hypophosphatemic rickets: Enamel abnormalities and oral clinical findings. Scanning 2014, 36, 456–461. [Google Scholar] [CrossRef] [PubMed]
- Seow, W.; Latham, S. The spectrum of dental manifestations in vitamin D-resistant rickets: Implications for management. Pediatr. Dent. 1986, 8, 245. [Google Scholar] [PubMed]
- Seow, W.K.; Needleman, H.; Holm, I. Effect of familial hypophosphatemic rickets on dental development: A controlled, longitudinal study. Pediatr. Dent. 1995, 17, 346–350. [Google Scholar] [PubMed]
- Stimmler, L.; Snodgrass, G.; Jaffe, E. Dental defects associated with neonatal symptomatic hypocalcaemia. Arch. Dis. Child. 1973, 48, 217–220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hujoel, P.P. Vitamin D and dental caries in controlled clinical trials: Systematic review and meta-analysis. Nutr. Rev. 2013, 71, 88–97. [Google Scholar] [CrossRef] [PubMed]
- Borsting, T.; Stafne, S.N.; Gustafsson, M.K.; Morkeved, S.; Schuller, A.; VanDommelen, P.; Slattelid Skeeie, M.; Skaare, A.B.; Syversen, U.; Stunes, A.K.; et al. Associations between Maternal Vitamin D Status in Second and Third Trimester of Pregnancy and Offspring Enamel Hypomineralisation at 7–9 Years: A Longitudinal Study. In Proceedings of the 26th Conference of the Norwegian Epidemiological Association, Tromsø, Norway, 7–8 November 2017. [Google Scholar]
- Nørrisgaard, P.E.; Haubek, D.; Kühnisch, J.; Chawes, B.L.; Stokholm, J.; Bønnelykke, K.; Bisgaard, H. Association of high-dose vitamin D supplementation during pregnancy with the risk of enamel defects in offspring: A 6-year follow-up of a randomized clinical trial. JAMA Pediatrics 2019, 173, 924–930. [Google Scholar] [CrossRef]
- Botelho, J.; Machado, V.; Proença, L.; Delgado, A.S.; Mendes, J.J. Vitamin D deficiency and oral health: A comprehensive review. Nutrients 2020, 12, 1471. [Google Scholar] [CrossRef]
- University of Otago. Socioeconomic Deprivation Indexes: NZDep and NZiDep; Department of Public Health, University of Otago: Wellington, New Zealand, 2018. [Google Scholar]
- Ismail, A.; Sohn, W.; Tellez, M.; Amaya, A.; Sen, A.; Hasson, H.; Pitts, N. The International Caries Detection and Assessment System (ICDAS): An integrated system for measuring dental caries. Community Dent. Oral Epidemiol. 2007, 35, 170–178. [Google Scholar] [CrossRef] [Green Version]
- WHO. Oral Health Surveys: Basic Methods; World Health Organization: Geneva, Switzerland, 2013. [Google Scholar]
- Bödecker, C.F.; Bödecker, H. A practical index of the varying susceptibility to dental caries in man. Dent. Cosmos 1931, 77, 707–716. [Google Scholar]
- Ghanim, A.; Silva, M.; Elfrink, M.; Lygidakis, N.; Mariño, R.; Weerheijm, K.; Manton, D. Molar incisor hypomineralisation (MIH) training manual for clinical field surveys and practice. Eur. Arch. Paediatr. Dent. 2017, 18, 225–242. [Google Scholar] [CrossRef]
- Clarkson, J.; O’mullane, D. A modified DDE Index for use in epidemiological studies of enamel defects. J. Dent. Res. 1989, 68, 445–450. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, K.; Hitsumoto, S.; Miyake, Y.; Okubo, H.; Sasaki, S.; Miyatake, N.; Arakawa, M. Higher vitamin D intake during pregnancy is associated with reduced risk of dental caries in young Japanese children. Ann. Epidemiol. 2015, 25, 620–625. [Google Scholar] [CrossRef] [PubMed]
- Suárez-Calleja, C.; Aza-Morera, J.; Iglesias-Cabo, T.; Tardón, A. Vitamin D, pregnancy and caries in children in the INMA-Asturias birth cohort. BMC Pediatr. 2021, 21, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Navarro, C.L.A.; Grgic, O.; Trajanoska, K.; van der Tas, J.T.; Rivadeneira, F.; Wolvius, E.B.; Voortman, T.; Kragt, L. Associations between prenatal, perinatal, and early childhood vitamin d status and risk of dental caries at 6 years. J. Nutr. 2021, 151, 1993–2000. [Google Scholar] [CrossRef]
- Drummond, B.K.; Kilpatrick, N. Planning and Care for Children and Adolescents with Dental Enamel Defects; Springer: Berlin, Germany, 2016. [Google Scholar]
- Pitts, N.B.; Zero, D.T.; Marsh, P.D.; Ekstrand, K.; Weintraub, J.A.; Ramos-Gomez, F.; Tagami, J.; Twetman, S.; Tsakos, G.; Ismail, A. Dental caries. Nat. Rev. Dis. Primers 2017, 3, 17030. [Google Scholar] [CrossRef] [Green Version]
- Munns, C.; Zacharin, M.R.; Rodda, C.P.; Batch, J.A.; Morley, R.; Cranswick, N.E.; Craig, M.E.; Cutfield, W.S.; Hofman, P.L.; Taylor, B.J. Prevention and treatment of infant and childhood vitamin D deficiency in Australia and New Zealand: A consensus statement. Med. J. Aust. 2006, 185, 268–272. [Google Scholar] [CrossRef]
- Saraf, R.; Jensen, B.P.; Camargo, C.A., Jr.; Morton, S.M.; Jing, M.; Sies, C.W.; Grant, C.C. Vitamin D status at birth and acute respiratory infection hospitalisation during infancy. Paediatr. Perinat. Epidemiol. 2021, 35, 540–548. [Google Scholar] [CrossRef]
- Grant, C.C.; Kaur, S.; Waymouth, E.; Mitchell, E.A.; Scragg, R.; Ekeroma, A.; Stewart, A.; Crane, J.; Trenholme, A.; Camargo, C.A., Jr. Reduced primary care respiratory infection visits following pregnancy and infancy vitamin D supplementation: A randomised controlled trial. Acta Paediatr. 2015, 104, 396–404. [Google Scholar] [CrossRef]
Characteristics | Male | Female | All |
---|---|---|---|
Participant Characteristics | |||
Deprivation Index a | |||
Low | 17 (40) | 13 (33) | 30 (37) |
Med | 15 (36) | 20 (51) | 35 (43) |
High | 10 (24) | 6 (15) | 16 (20) |
Ethnicity | |||
NZ European | 40 (95) | 31 (79) | 71 (88) |
NZ Māori | 0 (0) | 6 (15) | 6 (7) |
Other | 2 (5) | 2 (5) | 4 (5) |
Mean gestation in weeks (SD) | 39.7 (1.2) | 39.8 (1.0) | 39.7 (1.1) |
Season of Birth | |||
Spring | 11 (26) | 10 (26) | 21 (26) |
Summer | 5 (12) | 8 (21) | 13 (16) |
Autumn | 13 (31) | 7 (18) | 20 (25) |
Winter | 13 (31) | 14 (36) | 27 (33) |
Birthweight (gms) | |||
2600–2999 | 3 (7) | 6 (15) | 9 (11) |
3000–3999 | 30 (71) | 28 (72) | 58 (72) |
4000–4900 | 9 (21) | 5 (13) | 14 (17) |
Mean Birthweight (gms) | 3591 (503) | 3534 (461) | 3564 (481) |
Maternal Characteristics | |||
Age at delivery | |||
17–24 years | 2 (5) | 2 (5) | 4 (5) |
25 to 34 years | 23 (55) | 22 (56) | 45 (56) |
35+ years | 17 (40) | 15 (38) | 32 (40) |
Mean age at delivery | 32.9 (4.9) | 34.0 (4.1) | 33.4 (4.6) |
Total | 42 (52) | 39 (48) | 81 (100) |
25OHD a | N (%) | nmol/L Range |
---|---|---|
Third Trimester (maternal blood) | ||
Deficient | 3 (4) | 26.6 to 29.6 |
Insufficient | 11 (14) | 30.8 to 47.7 |
Sufficient | 43 (53) | 51.5 to 160 |
Total b | 57 (71) | 26.6 to 160 |
Birth (child cord blood) | ||
Deficient | 28 (35) | 13.9 to 29.1 |
Insufficient | 25 (31) | 30.4 to 49.3 |
Sufficient | 25 (31) | 50.0 to 98.8 |
Total c | 78 (97) | 13.9 to 98.8 |
5 months (child blood) | ||
Deficient | 16 (20) | 4.7 to 29.5 |
Insufficient | 11 (14) | 30.6 to 44.7 |
Sufficient | 47 (58) | 51.6 to 156 |
Total d | 74 (92) | 4.7 to 156 |
Characteristics | 3rd Trimester—Maternal Blood | Birth—Cord Blood | 5 Months—Infant Blood | Total | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Deficient <30 nmol | Insufficient a <50 nmol | Sufficient 50+ nmol | Deficient <30 nmol | Insufficient a <50 nmol | Sufficient 50+ nmol | Deficient <30 nmol | Insufficient a <50 nmol | Sufficient 50+ nmol | ||
All | 3 (5) | 14 (17) | 43 (53) | 28 (36) | 53 (65) | 25 (31) | 16 (22) | 27 (33) | 47 (58) | 81 (100) |
Caries experience b | ||||||||||
Caries free | 0 (0) | 5 (35) | 19 (44) | 12 (35) | 24 (67) | 10 (40) | 5 (15) | 12 (44) | 22 (46) | 36 (44) |
Low | 1 (5) | 5 (35) | 14 (33) | 5 (24) | 13 (25) | 8 (32) | 7 (33) | 10 (37) | 11 (23) | 22 (27) |
High | 2 (14) | 4 (29) | 10 (23) | 11 (48) | 16 (30) | 7 (28) | 4 (21) | 5 (19) | 14 (30) | 23 (28) |
Enamel defect prevalence c | ||||||||||
Any defect | 2 (5) | 8 (15) | 30 (58) | 15 (30) | 31 (60) | 19 (36) | 11 (23) | 17 (33) | 30 (58) | 52 (64) |
Any demarcated opacity | 2 (6) | 7 (15) | 27 (57) | 14 (31) | 28 (60) | 17 (36) | 9 (21) | 14 (30) | 28 (60) | 47 (58) |
Demarcated W/C | 2 (6) | 7 (16) | 26 (58) | 13 (30) | 26 (58) | 17 (38) | 9 (23) | 14 (31) | 26 (58) | 45 (56) |
Demarcated Y/B | 1 (6) | 3 (13) | 13 (57) | 8 (35) | 15 (65) | 8 (34) | 4 (18) | 5 (22) | 17 (74) | 23 (28) |
Diffuse | 0 (0) | 1 (6) | 11 (69) | 3 (20) | 6 (38) | 9 (56) | 1 (7) | 3 (19) | 11 (69) | 16 (20) |
Caries severity d | ||||||||||
dmft/DMFT | 9.3 (7.5) | 3.3 (5.0) | 1.5 (1.8) | 2.8 (4.0) | 2.2 (3.2) | 1.6 (1.7) | 1.9 (1.9) | 1.4 (1.8) | 2.1 (3.3) | 1.9 (2.8) |
dmft for common teeth e | 6.7 (6.1) | 2.6 (4.0) | 1.4 (1.8) | 2.5 (2.4) | 1.9 (2.8) | 1.6 (1.7) | 1.7 (2.0) | 1.2 (1.8) | 1.9 (2.8) | 1.8 (2.5) |
Enamel defect severity f | ||||||||||
Any defects | 3.0 (2.8) | 4.4 (2.6) | 7.3 (4.8) | 5.7 (4.2) | 5.9 (4.6) | 6.6 (4.2) | 6.3 (3.9) | 4.9 (3.7) | 7.1 (4.6) | 6.1 (4.3) |
Any demarcated opacity | 3.0 (2.8) | 4.0 (2.2) | 5.3 (3.6) | 4.2 (2.3) | 4.8 (3.5) | 4.8 (3.2) | 5.7 (2.5) | 4.3 (2.8) | 5.5 (3.5) | 4.8 (3.3) |
Demarcated W/C | 1.5 (0.7) | 2.7 (2.1) | 3.2 (1.8) | 2.8 (1.7) | 3.0 (1.9) | 3.2 (1.7) | 4.0 (1.9) | 3.1 (1.8) | 3.3 (1.8) | 3.1 (1.8) |
Demarcated Y/B | 3.0 (0.0) | 3.0 (2.0) | 3.1 (2.2) | 2.5 (1.4) | 2.5 (1.3) | 2.8 (2.9) | 3.0 (1.8) | 2.6 (1.8) | 2.7 (2.1) | 2.6 (1.9) |
Diffuse | 0.0 (0.0) | 4.0 (0.0) | 3.3 (2.8) | 5.0 (3.6) | 3.3 (2.9) | 3.4 (2.2) | 4.0 (0.0) | 2.7 (1.2) | 3.1 (2.5) | 3.3 (2.4) |
IRR (CI) Maternal Vitamin D: Third Trimester | IRR (CI) Baby: Cord Blood | IRR (CI) Baby: 5 Months | IRR (CI) Ever Insufficient c | IRR (CI) Ever Deficient d | |
---|---|---|---|---|---|
dmftDMFT a | |||||
Model 1 | 2.31 (1.00–5.34) e | 1.42 (0.69–2.93) | 0.68 (0.32–1.43) | 1.19 (0.51–2.79) | 1.65 (0.86–3.15) |
Model 2 | 2.35 (1.01–5.44) e | 1.42 (0.69–2.93) | 0.68 (0.32–1.45) | 1.18 (0.50–2.78) | 1.63 (0.85–3.13) |
Model 3 | 3.55 (1.15–10.92) e | 1.67 (0.68–4.06) | 0.90 (0.36–2.26) | 1.22 (0.48–3.10) | 1.64 (0.81–3.31) |
Enamel defects b | |||||
Model 1 | 0.46 (0.19–1.11) | 0.65 (0.32–1.29) | 0.69 (0.35–1.36) | 0.63 (0.29–1.39) | 0.71 (0.38–1.33) |
Model 2 | 0.46 (0.18–1.16) | 0.67 (0.33–1.36) | 0.65 (0.33–1.30) | 0.65 (0.30–1.41) | 0.70 (0.37–1.30) |
Model 3 | 0.37 (0.13–1.06) | 0.55 (0.21–1.47) | 0.67 (0.27–1.63) | 0.61 (0.24–1.57) | 0.75 (0.39–1.43) |
Demarcated opacities | |||||
Model 1 | 0.54 (0.22–1.36) | 0.67 (0.32–1.39) | 0.67 (0.33–1.39) | 0.61 (0.27–1.37) | 0.65 (0.34–1.24) |
Model 2 | 0.54 (0.21–1.40) | 0.69 (0.33–1.44) | 0.65 (0.32–1.35) | 0.61 (0.27–1.39) | 0.64 (0.34–1.24) |
Model 3 | 0.47 (0.16–1.36) | 0.67 (0.24–1.86) | 0.62 (0.24–1.58) | 0.63 (0.23–1.73) | 0.70 (0.36–1.38) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beckett, D.M.; Broadbent, J.M.; Loch, C.; Mahoney, E.K.; Drummond, B.K.; Wheeler, B.J. Dental Consequences of Vitamin D Deficiency during Pregnancy and Early Infancy—An Observational Study. Int. J. Environ. Res. Public Health 2022, 19, 1932. https://doi.org/10.3390/ijerph19041932
Beckett DM, Broadbent JM, Loch C, Mahoney EK, Drummond BK, Wheeler BJ. Dental Consequences of Vitamin D Deficiency during Pregnancy and Early Infancy—An Observational Study. International Journal of Environmental Research and Public Health. 2022; 19(4):1932. https://doi.org/10.3390/ijerph19041932
Chicago/Turabian StyleBeckett, Deanna M., Jonathan M. Broadbent, Carolina Loch, Erin K. Mahoney, Bernadette K. Drummond, and Benjamin J. Wheeler. 2022. "Dental Consequences of Vitamin D Deficiency during Pregnancy and Early Infancy—An Observational Study" International Journal of Environmental Research and Public Health 19, no. 4: 1932. https://doi.org/10.3390/ijerph19041932
APA StyleBeckett, D. M., Broadbent, J. M., Loch, C., Mahoney, E. K., Drummond, B. K., & Wheeler, B. J. (2022). Dental Consequences of Vitamin D Deficiency during Pregnancy and Early Infancy—An Observational Study. International Journal of Environmental Research and Public Health, 19(4), 1932. https://doi.org/10.3390/ijerph19041932