Effects of Sulfamethazine and Cupric Ion on Treatment of Anaerobically Digested Swine Wastewater with Growing Duckweed
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Spirodela Polyrrhiza and Synthetic Wastewater
2.3. Identification of Duckweed
2.4. Experiment Design
2.5. Analytical Methods
2.5.1. Determination of Physical and Chemical Properties of Duckweed
2.5.2. Degradation Products Analysis
2.6. Statistical Analysis
3. Result and Discussion
3.1. Spirodela Polyrhiza
3.2. Nutrient Removal
3.3. Effects on Antioxidant System
3.4. Effects on Photosynthetic Pigments
3.5. Effects on Proteins and Vitamin E
3.6. Degradation Products and Degradation Pathway of SMZ Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, X.; Tian, Z.; Lv, Z.; Chen, Z.; Liu, Y.; Yong, X.; Zhou, J.; Xie, X.; Jia, H.; Wei, P. Effects of copper salts on performance, antibiotic resistance genes, and microbial community during thermophilic anaerobic digestion of swine manure. Bioresour. Technol. 2020, 300, 122728. [Google Scholar] [CrossRef] [PubMed]
- Sekyere, J.O. Antibiotic types and handling practices in disease management among pig farms in Ashanti Region, Ghana. J. Vet. Med. 2014, 2014, 531952. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yang, C.; Zeng, G.; Wu, S.; Lin, Y.; Zhou, Q.; Lou, W.; Du, C.; Nie, L.; Zhong, Y. Nutrient removal from swine wastewater with growing microalgae at various zinc concentrations. Algal Res. 2020, 46, 101804. [Google Scholar] [CrossRef]
- Cheng, D.; Ngo, H.; Guo, W.; Liu, Y.; Zhou, J.; Chang, S.; Nguyen, D.D.; Bui, X.-T.; Zhang, X. Bioprocessing for elimination antibiotics and hormones from swine wastewater. Sci. Total Environ. 2018, 621, 1664–1682. [Google Scholar] [CrossRef] [PubMed]
- Cheng, D.; Ngo, H.H.; Guo, W.; Chang, S.W.; Nguyen, D.D.; Liu, Y.; Wei, Q.; Wei, D. A critical review on antibiotics and hormones in swine wastewater: Water pollution problems and control approaches. J. Hazard. Mater. 2019, 387, 121682. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Gao, Y.; Luo, J.; Yan, S.; Rengel, Z.; Zhang, Z. Interaction of veterinary antibiotic tetracyclines and copper on their fates in water and water hyacinth (Eichhornia crassipes). J. Hazard. Mater. 2014, 280, 389–398. [Google Scholar] [CrossRef]
- Zhou, Q.; Li, X.; Lin, Y.; Yang, C.; Tang, W.; Wu, S.; Li, D.; Lou, W. Effects of copper ions on removal of nutrients from swine wastewater and on release of dissolved organic matter in duckweed systems. Water Res. 2019, 158, 171–181. [Google Scholar] [CrossRef]
- Hu, H.; Li, X.; Wu, S.; Yang, C. Sustainable livestock wastewater treatment via phytoremediation: Current status and future perspectives. Bioresour. Technol. 2020, 315, 123809. [Google Scholar] [CrossRef]
- He, L.-Y.; Ying, G.-G.; Liu, Y.-S.; Su, H.-C.; Chen, J.; Liu, S.-S.; Zhao, J.-L. Discharge of swine wastes risks water quality and food safety: Antibiotics and antibiotic resistance genes from swine sources to the receiving environments. Environ. Int. 2016, 92–93, 210–219. [Google Scholar] [CrossRef]
- Sun, X.; Zhao, J.; Wang, Q.; Ren, X.; Li, R.; Kumar Awasthi, M.; Zhang, Z. Behaviors and related mechanisms of Zn resistance and antibiotic resistance genes during co-composting of erythromycin manufacturing wastes and pig manure. Bioresour. Technol. 2020, 318, 124048. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, Q.; Zhang, J.; Guan, T.; Chen, Y.; Shi, W. Critical roles of cyanobacteria as reservoir and source for antibiotic resistance genes. Environ. Int. 2020, 144, 106034. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Li, X.; Wu, S.; Lou, W.; Yang, C. Effects of long-term exposure to oxytetracycline on phytoremediation of swine wastewater via duckweed systems. J. Hazard. Mater. 2021, 414, 125508. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Huang, R.; Wu, J.; Zhang, W.; Han, Y.; Xiao, B.; Wang, D.; Zhou, Y.; Liu, B.; Yu, G. Biohythane production and microbial characteristics of two alternating mesophilic and thermophilic two-stage anaerobic co-digesters fed with rice straw and pig manure. Bioresour. Technol. 2021, 320, 124303. [Google Scholar] [CrossRef]
- Cheng, H.-H.; Narindri, B.; Chu, H.; Whang, L.-M. Recent advancement on biological technologies and strategies for resource recovery from swine wastewater. Bioresour. Technol. 2020, 303, 122861. [Google Scholar] [CrossRef] [PubMed]
- Nagarajan, D.; Kusmayadi, A.; Yen, H.-W.; Dong, C.-D.; Lee, D.-J.; Chang, J.-S. Current advances in biological swine wastewater treatment using microalgae-based processes. Bioresour. Technol. 2019, 289, 121718. [Google Scholar] [CrossRef]
- Zubair, M.; Wang, S.; Zhang, P.; Ye, J.; Liang, J.; Nabi, M.; Zhou, Z.; Tao, X.; Chen, N.; Sun, K.; et al. Biological nutrient removal and recovery from solid and liquid livestock manure: Recent advance and perspective. Bioresour. Technol. 2020, 301, 122823. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yang, C.; Lin, Y.; Hu, T.; Zeng, G. Effects of oxytetracycline and zinc ion on nutrient removal and biomass production via microalgal culturing in anaerobic digester effluent. Bioresour. Technol. 2022, 346, 126667. [Google Scholar] [CrossRef]
- Hu, H.; Zhou, Q.; Li, X.; Lou, W.; Du, C.; Teng, Q.; Zhang, D.; Liu, H.; Zhong, Y.; Yang, C. Phytoremediation of anaerobically digested swine wastewater contaminated by oxytetracycline via Lemna aequinoctialis: Nutrient removal, growth characteristics and degradation pathways. Bioresour. Technol. 2019, 291, 121853. [Google Scholar] [CrossRef]
- Garcia-Rodriguez, A.; Matamoros, V.; Fontas, C.; Salvado, V. The influence of Lemna sp. and Spirogyra sp. on the removal of pharmaceuticals and endocrine disruptors in treated wastewaters. Int. J. Environ. Sci. Technol. 2015, 12, 2327–2338. [Google Scholar] [CrossRef] [Green Version]
- Cheng, J.; A Bergmann, B.; Classen, J.J.; Stomp, A.M.; Howard, J.W. Nutrient recovery from swine lagoon water by Spirodela punctata. Bioresour. Technol. 2002, 81, 81–85. [Google Scholar] [CrossRef]
- Li, X.; Yang, W.L.; He, H.; Wu, S.; Zhou, Q.; Yang, C.; Zeng, G.; Luo, L.; Lou, W. Responses of microalgae Coelastrella sp. to stress of cupric ions in treatment of anaerobically digested swine wastewater. Bioresour. Technol. 2018, 251, 274–279. [Google Scholar] [CrossRef]
- Yang, R.; Xia, X.; Wang, J.; Zhu, L.; Wang, J.; Ahmad, Z.; Yang, L.; Mao, S.; Chen, Y. Dose and time-dependent response of single and combined artificial contamination of sulfamethazine and copper on soil enzymatic activities. Chemosphere 2020, 250, 126161. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Li, X.; Wu, S.; Zhong, Y.; Yang, C. Enhanced strategies for antibiotic removal from swine wastewater in anaerobic digestion. Trends Biotechnol. 2021, 39, 8–11. [Google Scholar] [CrossRef]
- Kumar, V.; Pandita, S.; Sidhu, G.P.S.; Sharma, A.; Khanna, K.; Kaur, P.; Bali, A.S.; Setia, R. Copper bioavailability, uptake, toxicity and tolerance in plants: A comprehensive review. Chemosphere 2021, 262, 127810. [Google Scholar] [CrossRef]
- Zhou, C.; Ma, Q.; Li, S.; Zhu, M.; Xia, Z.; Yu, W. Toxicological effects of single and joint sulfamethazine and cadmium stress in soil on pakchoi (Brassica chinensis L.). Chemosphere 2021, 263, 128296. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Lin, Y.; Li, X.; Yang, C.; Han, Z.; Zeng, G.; Lu, L.; He, S. Effect of zinc ions on nutrient removal and growth of Lemna aequinoctialis from anaerobically digested swine wastewater. Bioresour. Technol. 2018, 249, 457–463. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Peng, Y.; Lin, Y.; Wu, S.; Yu, X.; Yang, C. Bisphenol S-doped g-C3N4 nanosheets modified by boron nitride quantum dots as efficient visible-light-driven photocatalysts for degradation of sulfamethazine. Chem. Eng. J. 2021, 405, 126661. [Google Scholar] [CrossRef]
- Baciak, M.; Sikorski, L.; Piotrowicz-Cieślak, A.I.; Adomas, B. Content of biogenic amines in Lemna minor (common duckweed) growing in medium contaminated with tetracycline. Aquat. Toxicol. 2016, 180, 95–102. [Google Scholar] [CrossRef]
- Xiong, J.-Q.; Kim, S.-J.; Kurade, M.B.; Govindwar, S.; Abou-Shanab, R.A.I.; Kim, J.-R.; Roh, H.-S.; Khan, M.A.; Jeon, B.-H. Combined effects of sulfamethazine and sulfamethoxazole on a freshwater microalga, Scenedesmus obliquus: Toxicity, biodegradation, and metabolic fate. J. Hazard. Mater. 2019, 370, 138–146. [Google Scholar] [CrossRef]
- Chen, D.; Zhang, H.; Wang, Q.; Shao, M.; Li, X.; Chen, D.; Zeng, R.; Song, Y. Intraspecific variations in cadmium tolerance and phytoaccumulation in giant duckweed (Spirodela polyrhiza). J. Hazard. Mater. 2020, 395, 122672. [Google Scholar] [CrossRef]
- Blokhina, O.; Virolainen, E.; Fagerstedt, K.V. Antioxidants, oxidative damage and oxygen deprivation stress: A review. Ann. Bot. 2003, 91, 179–194. [Google Scholar] [CrossRef] [Green Version]
- Geng, Q.; Li, T.; Li, P.; Wang, X.; Chu, W.; Ma, Y.; Ma, H.; Ni, H. The accumulation, transformation, and effects of quinestrol in duckweed (Spirodela polyrhiza L.). Sci. Total Environ. 2018, 634, 1034–1041. [Google Scholar] [CrossRef]
- Xu, Y.; Yu, W.; Ma, Q.; Zhou, H.; Jiang, C. Toxicity of sulfadiazine and copper and their interaction to wheat (Triticum aestivum L.) seedlings. Ecotoxicol. Environ. Saf. 2017, 142, 250–256. [Google Scholar] [CrossRef]
- Müller, P.; Niyogi, L.K.K. Non-photochemical quenching. A response to excess light energy. Plant Physiol. 2001, 125, 1558–1566. [Google Scholar] [CrossRef] [Green Version]
- Aarti, P.D.; Tanaka, R.; Tanaka, A. Effects of oxidative stress on chlorophyll biosynthesis in cucumber (Cucumis sativus) cot-yledons. Physiol. Plant. 2010, 128, 186–197. [Google Scholar] [CrossRef]
- Jahns, P.; Holzwarth, A.R. The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II. Biochim. Biophys. Acta 2012, 1817, 182–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiong, J.-Q.; Govindwar, S.; Kurade, M.B.; Paeng, K.-J.; Roh, H.-S.; Khan, M.A.; Jeon, B.-H. Toxicity of sulfamethazine and sul-famethoxazole and their removal by a green microalga, scenedesmus obliquus. Chemosphere 2019, 218, 551–558. [Google Scholar] [CrossRef] [PubMed]
- Gaur, R.Z.; Suthar, S. Nutrient scaling of duckweed (Spirodela polyrhiza) biomass in urban wastewater and its utility in anaerobic co-digestion. Process Saf. Environ. Prot. 2017, 107, 138–146. [Google Scholar] [CrossRef]
- Singh, V.; Pandey, B.; Suthar, S. Phytotoxicity of amoxicillin to the duckweed Spirodela polyrhiza: Growth, oxidative stress, biochemical traits and antibiotic degradation. Chemosphere 2018, 201, 492–502. [Google Scholar] [CrossRef]
- Muñoz, P.; Munné-Bosch, S. Vitamin E in Plants: Biosynthesis, Transport, and Function. Trends Plant Sci. 2019, 24, 1040–1051. [Google Scholar] [CrossRef]
- Hu, Z.; Fang, Y.; Yi, Z.; Tian, X.; Li, J.; Jin, Y.; He, K.; Liu, P.; Du, A.; Huang, Y. Determining the nutritional value and antioxidant capacity of duckweed (Wolffia arrhiza) under artificial conditions. LWT 2022, 153, 112477. [Google Scholar] [CrossRef]
- Liu, X.; Ji, H.; Li, S.; Liu, W. Graphene modified anatase/titanate nanosheets with enhanced photocatalytic activity for efficient degradation of sulfamethazine under simulated solar light. Chemosphere 2019, 233, 198–206. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Zhang, Y.; Zhou, M.; Cai, J.; Li, X.; Tian, Y. Synergistic degradation of antibiotic sulfamethazine by novel pre-magnetized Fe0/PS process enhanced by ultrasound. Chem. Eng. J. 2018, 354, 777–789. [Google Scholar] [CrossRef]
- Wen, X.-J.; Lu, Q.; Lv, X.-X.; Sun, J.; Guo, J.; Fei, Z.-H.; Niu, C.-G. Photocatalytic degradation of sulfamethazine using a direct Z-Scheme AgI/Bi4V2O11 photocatalyst: Mineralization activity, degradation pathways and promoted charge separation mechanism. J. Hazard. Mater. 2020, 385, 121508. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.; Jiao, Z.; Chen, H.; Jiang, F.; Wang, X. Carboxylic acid-functionalized cadmium sulfide/graphitic carbon nitride composite photocatalyst with well-combined interface for sulfamethazine degradation. J. Photochem. Photobiol. A Chem. 2018, 364, 22–31. [Google Scholar] [CrossRef]
- Chen, H.; Wei, Y.; Xie, C.; Wang, H.; Chang, S.; Xiong, Y.; Du, C.; Xiao, B.; Yu, G. Anaerobic treatment of glutamate-rich wastewater in a continuous UASB reactor: Effect of hydraulic retention time and methanogenic degradation pathway. Chemosphere 2020, 245, 125672. [Google Scholar] [CrossRef]
Ionic Concentrations (mg/L) | Value |
---|---|
COD | 220.05 ± 11.36 |
NH3-N | 82.84 ± 3.47 |
PO4-P | 15.10 ± 0.97 |
NO3-N | 100.57 ± 2.59 |
Ca2+ | 119.65 ± 2.15 |
Mg2+ | 25.16 ± 2.32 |
K+ | 98.97 ± 4.31 |
Na+ | 175.58 ± 1.86 |
Cl− | 280.43 ± 10.34 |
SO42− | 125.82 ± 6.73 |
Fe-EDTA | 40.15 ± 2.43 |
Minor elements | 2.61 ± 0.18 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, Y.; Yang, C.; Cheng, J.J. Effects of Sulfamethazine and Cupric Ion on Treatment of Anaerobically Digested Swine Wastewater with Growing Duckweed. Int. J. Environ. Res. Public Health 2022, 19, 1949. https://doi.org/10.3390/ijerph19041949
Xiao Y, Yang C, Cheng JJ. Effects of Sulfamethazine and Cupric Ion on Treatment of Anaerobically Digested Swine Wastewater with Growing Duckweed. International Journal of Environmental Research and Public Health. 2022; 19(4):1949. https://doi.org/10.3390/ijerph19041949
Chicago/Turabian StyleXiao, Yu, Chunping Yang, and Jay J. Cheng. 2022. "Effects of Sulfamethazine and Cupric Ion on Treatment of Anaerobically Digested Swine Wastewater with Growing Duckweed" International Journal of Environmental Research and Public Health 19, no. 4: 1949. https://doi.org/10.3390/ijerph19041949
APA StyleXiao, Y., Yang, C., & Cheng, J. J. (2022). Effects of Sulfamethazine and Cupric Ion on Treatment of Anaerobically Digested Swine Wastewater with Growing Duckweed. International Journal of Environmental Research and Public Health, 19(4), 1949. https://doi.org/10.3390/ijerph19041949