Retention Ability of a Glass Carbomer Pit and Fissure Sealant
Abstract
:1. Introduction
2. Materials and Methods
- Permanent molars completely erupted with deep pits and fissures susceptible to tooth decay.
- No clinical signs of the dental caries process.
- Teeth without dental abnormalities.
- Partially erupted permanent molars.
- Clinical signs of dental caries.
- Teeth with fillings or sealants.
- Sub-group A:—64 molars—Helioseal F™, Ivoclar Vivadent Schaan, Liechtenstein—conventional resin-based sealant;
- Sub-group B—64 molars—GCP Glass Seal™, GCP Dental b.v. Mijlweg the Netherlands—glass carbomer sealant group.
Statistical Analysis
3. Results
4. Discussion
Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, J.D.; Chen, X.; Frencken, J.; Du, M.Q.; Chen, Z. Dental caries and first permanent molar pit and fissure morphology in 7- to 8-year-old children in Wuhan, China. Int. J. Oral Sci. 2012, 4, 67–72. [Google Scholar] [CrossRef] [Green Version]
- Berger, S.; Goddon, I.; Chen, C.M.; Senkel, H.; Hickel, R.; Stösser, L.; Heinrich-Weltzien, R.; Kühnisch, J. Are pit and fissure sealants needed in children with a higher caries risk? Clin. Oral Investig. 2010, 14, 613–620. [Google Scholar] [CrossRef] [PubMed]
- Gooch, B.F.; Griffin, S.O.; Gray, S.K.; Kohn, W.G.; Rozier, R.G.; Siegal, M.; Fontana, M.; Brunson, D.; Carter, N.; Curtis, D.K.; et al. Centers for Disease Control and Prevention. Preventing dental caries through school-based sealant programs: Updated recommendations and reviews of evidence. J. Am. Dent. Assoc. 2009, 140, 1356–1365. [Google Scholar] [CrossRef] [Green Version]
- Beauchamp, J.; Caufield, P.; Crall, J.; Donly, K.; Feigal, R.; Gooch, B.; Ismail, A.; Kohn, W.; Siegal, M.; Simonsen, R. Evidence-based clinical recommendations for the use of pit-and-fissure sealants A report of the American Dental Association Council on Scientific Affairs. Dent. Clin. N. Am. 2009, 53, 131–147. [Google Scholar] [CrossRef] [PubMed]
- Jafarzadeh, M.; Malekafzali, B.; Tadayon, N.; Fallahi, S. Retention of a Flowable CompositeResin in Comparison to a Conventional Resin-Based Sealant: One-year Follow-up. J. Dent. 2010, 7, 1–5. [Google Scholar]
- Bhat, P.K.; Konde, S.; Raj, S.N.; Kumar, N.C. Moisture-tolerant resin-based sealant: A boon. Contemp. Clin. Dent. 2013, 4, 343–348. [Google Scholar] [PubMed]
- Kervanto-Seppälä, S.; Lavonius, E.; Pietilä, I.; Pitkäniemi, J.; Meurman, J.H.; Kerosuo, E. Comparing the caries-preventive effect of two fissure sealing modalities in public health care: A single application of glass ionomer and a routine resin-based sealant programme. A randomized split-mouth clinical trial. Int. J. Paediatr. Dent. 2008, 18, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Kühnisch, J.; Mansmann, U.; Heinrich-Weltzien, R.; Hickel, R. Longevity of materials for pit and fissure sealing–results from a meta-analysis. Dent. Mater. 2012, 28, 298–303. [Google Scholar] [CrossRef] [PubMed]
- Magalhães, A.C.; Buzalaf, M.A.R.; Rios, D. A High-viscosity GIC Sealant Increases the Fluoride Concentration in Interproximal Fluid More Than a Resin-based Sealant Containing Fluoride. J. Evid. Based Dent. Pract. 2014, 14, 28–30. [Google Scholar] [CrossRef] [PubMed]
- Kosior, P.; Dobrzyński, M.; Korczyński, M.; Herman, K.; Czajczyńska-Waszkiewicz, A.; Kowalczyk-Zając, M.; Piesiak-Pańczyszyn, D.; Fita, K.; Janeczek, M. Long-term release of fluoride from fissure sealants—In vitro study. J. Trace Elem. Med. Biol. 2017, 41, 107–110. [Google Scholar] [CrossRef]
- Damian, L.R.; Dumitrescu, R.; Jumanca, D.; Sava-Rosianu, R.; Matichescu, A.; Balean, O.; Podariu, A.; Stefaniga, S.A.; Glaluscan, A. Clinical Study Regarding the Property of Composite Resin, Sealants, using VISTACAM iX. Rev. Mater. Plast. 2019, 56, 138–143. [Google Scholar] [CrossRef]
- Ngo, K.G.; Mount, G.J.; Peters, M.C. A study of glass-ionomer cement and its interface with enamel and dentin using a low-temperature, high-resolution scanning electron microscopic technique. Quintessence Int. 1997, 28, 63–69. [Google Scholar]
- Ngo, H.C.; Mount, G.; McIntyre, J.; Tuisuva, J.; Von Doussa, R.J. Chemical exchange between glass-ionomer restorations and residual carious dentine in permanent molars: An in vivo study. J. Dent. 2006, 34, 608–613. [Google Scholar] [CrossRef]
- Nicholson, J.W.; Cazarnecka, B.; Limanowska-Shaw, H. The long term interaction of dental cements with lactic acid solutions. J. Mater. Sci. Mater. Med. 1999, 10, 449–452. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Z.-Y.; Noh, I.-S.; Zhang, S.-M. Silicate-doped hydroxyapatite and its promotive effect on bone mineralization. Front. Mater. Sci. 2013, 7, 40–50. [Google Scholar] [CrossRef]
- Sidhu, S.K.; Nicholson, J.W. A Review of Glass- ionomer cements for clinical dentistry. J. Funct. Biomater. 2016, 7, 16. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Zhang, X.; Chen, Y.; Xe, Q.; Lan, J.; Qian, M.; He, N. A comparative study on the dissolution and solubility of hydroxyapatite and fluorapatite at 25 °C and 45 °C. Chem. Geol. 2009, 268, 89–96. [Google Scholar] [CrossRef]
- Okada, K.; Tosaki, S.; Hirota, K.; Hume, W.R. Surface hardness change of restorative filling materials stored in saliva. Dent. Mater. 2001, 17, 34–39. [Google Scholar] [CrossRef]
- Van Duinen, R.N.; Davidson, C.L.; Gee, A.; Feilzer, A.J. In situ transformation of glass-ionomer into an enamel-like material. Am. J. Dent. 2004, 17, 223–227. [Google Scholar]
- Gorseta, K.; Glavina, D.; Borzabadi-Farahani, A.; Van Duinen, R.N.; Skrinjaric, I.; Hill, R.D.; Lynch, E. One-Year Clinical Evaluation of a Glass Carbomer Fissure Sealant, a Preliminary Study. Eur. J. Prosthodont. Rest. Dent. 2014, 22, 67–71. [Google Scholar]
- Menne-Happ, U.; Ilie, N. Effect of gloss and heat on the mechanical behaviour of a glass carbomer cement. J. Dent. 2013, 41, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Du, M.; Fan, M.; Mulder, J.; Hum, N.A.; Frencken, J.E. Effectiveness of two new types of sealants: Retention after 2 years. Clin. Oral Investig. 2012, 16, 1443–1450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zainuddin, N.; Karpukhina, N.; Law, R.V.; Hill, R.G. Characterisation of remineralising Glass Carbomer® ionomer cement by MAS-NMR spectroscopy. Dent. Mater. 2012, 28, 1051–1058. [Google Scholar] [CrossRef] [PubMed]
- Arita, K.; Yamamoto, A.; Shinonaga, Y.; Harada, K.; Abe, Y.; Nakagawa, K.; Sugiyama, S. Hydroxyapatite particle characteristics influence the enhancement of the mechanical and chemical properties of conventional restorative glass ionomer cement. Dent. Mater. J. 2011, 30, 672–683. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.; Zhu, J.; Gu, X.; Wen, W.; Li, Q.; Fischer-Brandies, H.; Wang, H.; Mehl, C. Effects of incorporation of nano-fluorapatite or nanofluorohydroxyapatite on a resin-modified glass ionomer cement. Acta Biomater. 2011, 7, 1346–1353. [Google Scholar] [CrossRef]
- Fabian Molina, G.F.; Cabral, R.J.; Mazzola, I.; Brain Lascano, L.; Frencken, J.E. Biaxial flexural strength of high-viscosityglass-ionomer cements heat-cured with an LED lamp duringsetting. BioMed. Res. Int. 2013, 838460. [Google Scholar]
- Algera, T.J.; Kleverlaan, C.J.; Prahl-Andersen, B.; Feilzer, A.J. The influence of environmental conditions on the material properties of setting glass-ionomer cements. Dent. Mater. 2006, 22, 852–856. [Google Scholar] [CrossRef]
- Gorseta, K.; Glavina, D.; Skrinjaric, I. Influence of ultrasonicexcitation and heat application on the microleakage of glassionomer cements. Aust. Dent. J. 2012, 57, 453–457. [Google Scholar] [CrossRef]
- Glavina, D.; Gorseta, K.; Negovetic-Vranic, D.; Skrinjaric, I. Enamel shear-bond strength of Glass Carbomer after heating with three polymerization units. Int. J. Paediatr. Dent. 2009, 19 (Suppl. 1), 1–65. [Google Scholar]
- Bayrak, G.D.; Sandalli, N.; Selvi-Kuvvetli, S.; Topcuoglu, N.; Kulekci, G. Effect of two different polishing systems fluoride release, surface roughness and bacterial adhesion of newly developed restorative materials. J. Esthet. Res. Dent. 2017, 29, 424–434. [Google Scholar] [CrossRef]
- Kucukyilmaz, E.; Savas, S.; Kavrik, F.; Yasa, B.; Botsali, M.S. Fluoride release/recharging ability and bond strength of glass ionomer cements to sound and caries-affected dentin. Niger. J. Clin. Pract. 2017, 20, 226–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hasan, A.M.H.R.; Sidhu, S.K.; Nicholson, J.W. Fluoride release and uptake in enhanced bioactivity glass ionomer cement (“glass carbomer™”) compared with conventional and resin-modified glass ionomer cements. J. Appl. Oral Sci. 2019, 27, e20180230. [Google Scholar] [CrossRef] [PubMed]
- Pozos-Guillén, A.; Chavarría-Bolaños, D.; Garrocho-Rangel, A. A Split-mouth design in Paediatric Dentistry clinical trials. Eur. J. Paediatr. Dent. 2017, 18, 61–65. [Google Scholar] [PubMed]
- Simonsen, R.J. Retention and Effectiveness of Dental Sealant After 15 Years. J. Am. Dent. Assoc. 1991, 122, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Bica, C.I.; Chincesan, M.; Esian, D.; Martha, K.; Ion, V.; Marinescu, L.R.; Earar, K.; Matei, M.N. Dental Development in Children After Chemotherapy. Rev. Chim. 2017, 68, 1495–1498. [Google Scholar] [CrossRef]
- Abdelghany Elkwatehy, W.M.; Bukhari, M. The Efficacy of Different Sealant Modalities for Prevention of Pits and Fissures Caries: A Randomized Clinical Trial. J. Int. Soc. Prev. Community Dent. 2019, 9, 119–128. [Google Scholar] [CrossRef]
- Ahmed, H.; Mohammed, S.G. Effectiveness of Seven Types of Sealants: Retention after One Year. Int. J. Clin. Pediatr Dent. 2019, 12, 96–100. [Google Scholar]
- Morales-Chávez, M.C.; Nualart-Grollmus, Z.C. Retention of a resin-based sealant and a glass ionomer used as a fissure sealant in children with special needs. J. Clin. Exp. Dent. 2014, 6, 551–555. [Google Scholar] [CrossRef]
- McLean, J.W.; Nicholson, J.W.; Wilson, A.D. Guest Editorial: Proposed nomenclature for glass-ionomer dental cements and related materials. Quintessence Int. 1994, 25, 587–589. [Google Scholar]
- Nicholson, J.W. Glass-ionomer cements for clinical dentistry. Mater. Technol. 2010, 25, 8–13. [Google Scholar] [CrossRef]
- Crisp, S.; Kent, B.E.; Lewis, B.G.; Ferner, A.J.; Wilson, A.D. Glass ionomer cement formulations. II. The synthesis of novel polycarboxylic acids. J. Dent. Res. 1980, 59, 1055–1063. [Google Scholar] [CrossRef] [PubMed]
- Fareed, M.A.; Stamboulis, A. Nanoclay addition to conventional glass-ionomer cements: Influence on properties. Eur. Dent. J. 2014, 8, 456–463. [Google Scholar] [CrossRef] [PubMed]
- Uribe, S. The effectiveness of fissure sealants. Evid. Based Dent. 2004, 5, 92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arrow, P.; Riordan, P.J. Retention and caries preventive effects of a GIC and a resin-based fissure sealant. Community Dent. Oral Epidemiol. 1995, 23, 282–285. [Google Scholar] [CrossRef] [PubMed]
- Subramaniam, P.; Konde, S.; Mandanna, D.K. Retention of a resin-based sealant and a glass ionomer used as a fissure sealant: A comparative clinical study. J. Indian Soc. Pedod. Prev. Dent. 2008, 26, 114–120. [Google Scholar] [CrossRef] [PubMed]
Sealant retention after 6 months | |||||
I | II | III | Total | ||
GCP glass seal | 60 (93.75%) | 0 | 4 (4.69%) | 64 | |
Helioseal | 64 (100%) | 0 | 0 | 64 | p = 0.1191 |
Total | 124 (96.88%) | 0 | 4 (4.69%) | 128 (100%) | |
Sealant retention after 12 months. | |||||
I | II | III | Total | ||
GCP glass seal | 44 (68.75%) | 5 (7.81%) | 15 (23.44%) | 64 | p = 0.0187 |
Helioseal | 57 (89.06%) | 2 (3.13%) | 5 (7.81%) | 64 | |
Total | 101 (78.91) | 7 (5.47%) | 20 (15.63%) | 128 | |
Sealant retention after 18 months. | |||||
I | II | III | Total | ||
GCP glass seal | 37 (57.81%) | 6 (9.38%) | 21 (32.81%) | 64 | p = 0.0253 |
Helioseal | 51 (79.68%) | 2 (3.13%) | 11 (17.19%) | 64 | |
Total | 88 (68.75%) | 7 (5.47%) | 32 (25.00%) | 128 | |
Sealant retention after 24 months. | |||||
I | II | III | Total | ||
GCP glass seal | 23 (35.93%) | 3 (4.69%) | 38 (59.38%) | 64 | p < 0.0001 |
Helioseal | 47 (73.43%) | 5 (7.81%) | 12 (18.75%) | 64 | |
Total | 70 (54.69%) | 8 (6.25%) | 50 (39.06%) | 128 |
New carious lesions after 6 months | ||||
Yes | No | Total | ||
GCP glass seal | 0 | 64 | 64 | |
Helioseal | 0 | 64 | 64 | |
Total | 0 | 128 | 128 | |
New carious lesions after 12 months | ||||
Yes | No | Total | ||
GCP glass seal | 4 (6.25%) | 60 (93.75%) | 64 | p = 1.000 |
Helioseal | 3 (4.68) | 61 (95.31) | 64 | |
Total | 7 (5.47) | 121 (94.53%) | 128 | |
New carious lesions after 18 months | ||||
Yes | No | Total | ||
GCP glass seal | 6 (9.37%) | 58 (90.63%) | 64 | p = 1.0000 |
Helioseal | 5 (7.81%) | 59 (92.19%) | 64 | |
Total | 11 (8.59%) | 117 (91.41%) | 128 | |
New carious lesions after 24 months | ||||
Yes | No | Total | ||
GCP glass seal | 15 (23.44%) | 49 (76.56%) | 64 | p = 0.1663 |
Helioseal | 8 (12.5%) | 56 (87.50%) | 64 | |
Total | 23 (17.97%) | 105 (82.03%) | 128 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beresescu, L.; Kovacs, M.; Vlasa, A.; Stoica, A.M.; Benedek, C.; Pop, M.; Bungardean, D.; Eșian, D. Retention Ability of a Glass Carbomer Pit and Fissure Sealant. Int. J. Environ. Res. Public Health 2022, 19, 1966. https://doi.org/10.3390/ijerph19041966
Beresescu L, Kovacs M, Vlasa A, Stoica AM, Benedek C, Pop M, Bungardean D, Eșian D. Retention Ability of a Glass Carbomer Pit and Fissure Sealant. International Journal of Environmental Research and Public Health. 2022; 19(4):1966. https://doi.org/10.3390/ijerph19041966
Chicago/Turabian StyleBeresescu, Liana, Monika Kovacs, Alexandru Vlasa, Alexandra Mihaela Stoica, Csilla Benedek, Mihai Pop, Denisa Bungardean, and Daniela Eșian. 2022. "Retention Ability of a Glass Carbomer Pit and Fissure Sealant" International Journal of Environmental Research and Public Health 19, no. 4: 1966. https://doi.org/10.3390/ijerph19041966
APA StyleBeresescu, L., Kovacs, M., Vlasa, A., Stoica, A. M., Benedek, C., Pop, M., Bungardean, D., & Eșian, D. (2022). Retention Ability of a Glass Carbomer Pit and Fissure Sealant. International Journal of Environmental Research and Public Health, 19(4), 1966. https://doi.org/10.3390/ijerph19041966