A Simple Method to Establish Sufficiency and Stability in Meta-Analyses: With Application to Fine Particulate Matter Air Pollution and Preterm Birth
Abstract
:1. Introduction
2. Methods
2.1. Design
2.2. Study Selection
2.3. Outcome and Exposure Variables
2.4. Data Extraction
2.5. Sufficiency of the Aggregate Evidence
2.6. Stability of the Aggregate Evidence
2.7. Statistical Analysis
2.8. Assessment of Bias
2.9. Ethical Approval
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Brook, R.D.; Rajagopalan, S.; Pope, C.A., 3rd; Brook, J.R.; Bhatnagar, A.; Diez-Roux, A.V.; Holguin, F.; Hong, Y.; Luepker, R.V.; Mittleman, M.A.; et al. Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. Circulation 2010, 121, 2331–2378. [Google Scholar] [CrossRef] [Green Version]
- Environmental Protection Agency. Integrated Science Assessment for Particulate Matter; US Environmental Protection Agency Washington: Washington, DC, USA, 2019.
- Bu, X.; Xie, Z.; Liu, J.; Wei, L.; Wang, X.; Chen, M.; Ren, H. Global PM2.5-attributable health burden from 1990 to 2017: Estimates from the Global Burden of disease study 2017. Environ. Res. 2021, 197, 111123. [Google Scholar] [CrossRef] [PubMed]
- Pereira, G.; Bell, M.L.; Lee, M.L.H.J.; Koutrakis, P.; Belanger, K. Sources of fine particulate matter and risk of preterm birth in Connecticut, 2000–2006: A longitudinal study. Environ. Health Perspect. 2014, 122, 1117–1122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harrison, R.M. Airborne particulate matter. Philos. Trans. R. Soc. A 2020, 378, 20190319. [Google Scholar] [CrossRef] [PubMed]
- Guo, T.; Wang, Y.; Zhang, H.; Zhang, Y.; Zhao, J.; Wang, Q.; Shen, H.; Wang, Y.; Xie, X.; Wang, L.; et al. The association between ambient PM2.5 exposure and the risk of preterm birth in China: A retrospective cohort study. Sci. Total Environ. 2018, 633, 1453–1459. [Google Scholar] [CrossRef] [PubMed]
- Muellerleile, P.; Mullen, B. Sufficiency and Stability of Evidence for Public Health Interventions Using Cumulative Meta-Analysis. Am. J. Public Health 2006, 96, 515–522. [Google Scholar] [CrossRef] [PubMed]
- Ju, L.; Li, C.; Yang, M.; Sun, S.; Zhang, Q.; Cao, J.; Ding, R. Maternal air pollution exposure increases the risk of preterm birth: Evidence from the meta-analysis of cohort studies. Environ. Res. 2021, 202, 111654. [Google Scholar] [CrossRef] [PubMed]
- Quinn, J.-A.; Munoz, F.M.; Gonik, B.; Frau, L.; Cutland, C.; Mallett-Moore, T.; Kissou, A.; Wittke, F.; Das, M.; Nunes, T.; et al. Preterm birth: Case definition & guidelines for data collection, analysis, and presentation of immunisation safety data. Vaccine 2016, 34, 6047–6056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Yu, K.F. What’s the Relative Risk?A Method of Correcting the Odds Ratio in Cohort Studies of Common Outcomes. JAMA 1998, 280, 1690–1691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sutradhar, R.; Austin, P.C. Relative rates not relative risks: Addressing a widespread misinterpretation of hazard ratios. Ann. Epidemiol. 2018, 28, 54–57. [Google Scholar] [CrossRef] [PubMed]
- Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 2010, 36, 1–48. [Google Scholar] [CrossRef] [Green Version]
- Hedges, L.V. A random effects model for effect sizes. Psychol. Bull. 1983, 93, 388. [Google Scholar] [CrossRef]
- DerSimonian, R.; Kacker, R. Random-effects model for meta-analysis of clinical trials: An update. Contemp. Clin. Trials 2007, 28, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Egger, M.; Smith, G.D.; Schneider, M.; Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997, 315, 629–634. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Ren, C.; Delfino, R.J.; Chung, J.; Wilhelm, M.; Ritz, B. Association between local traffic-generated air pollution and preeclampsia and preterm delivery in the south coast air basin of California. Environ. Health Perspect. 2009, 117, 1773–1779. [Google Scholar] [CrossRef]
- Kloog, I.; Melly, S.J.; Ridgway, W.L.; Coull, B.A.; Schwartz, J. Using new satellite based exposure methods to study the association between pregnancy PM2.5 exposure, premature birth and birth weight in Massachusetts. Environ. Health 2012, 11, 40. [Google Scholar] [CrossRef] [Green Version]
- Gray, S.C.; Edwards, S.E.; Schultz, B.D.; Miranda, M.L. Assessing the impact of race, social factors and air pollution on birth outcomes: A population-based study. Environ. Health 2014, 13, 4. [Google Scholar] [CrossRef] [Green Version]
- Ha, S.; Hu, H.; Roussos-Ross, D.; Haidong, K.; Roth, J.; Xu, X. The effects of air pollution on adverse birth outcomes. Environ. Res. 2014, 134, 198–204. [Google Scholar] [CrossRef] [Green Version]
- Hyder, A.; Lee, H.J.; Ebisu, K.; Koutrakis, P.; Belanger, K.; Bell, M.L. PM2.5 exposure and birth outcomes: Use of satellite- and monitor-based data. Epidemiology 2014, 25, 58–67. [Google Scholar] [CrossRef]
- Chang, H.H.; Warren, J.L.; Darrow, L.A.; Reich, B.J.; Waller, L.A. Assessment of critical exposure and outcome windows in time-to-event analysis with application to air pollution and preterm birth study. Biostatistics 2015, 16, 509–521. [Google Scholar] [CrossRef] [Green Version]
- DeFranco, E.; Moravec, W.; Xu, F.; Hall, E.; Hossain, M.; Haynes, E.N.; Muglia, L.; Chen, A. Exposure to airborne particulate matter during pregnancy is associated with preterm birth: A population-based cohort study. Environ. Health 2016, 15, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hao, H.; Chang, H.H.; Holmes, H.A.; Mulholland, J.A.; Klein, M.; Darrow, L.A.; Strickland, M.J. Air Pollution and Preterm Birth in the U.S. State of Georgia (2002–2006): Associations with Concentrations of 11 Ambient Air Pollutants Estimated by Combining Community Multiscale Air Quality Model (CMAQ) Simulations with Stationary Monitor Measurements. Environ. Health Perspect. 2016, 124, 875–880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mendola, P.; Wallace, M.; Hwang, B.S.; Liu, D.; Robledo, C.A.; Männistö, T.; Sundaram, R.; Sherman, S.; Ying, Q.; Grantz, K. Preterm birth and air pollution: Critical windows of exposure for women with asthma. J. Allergy Clin. Immunol. 2016, 138, 432–440.e5. [Google Scholar] [CrossRef] [Green Version]
- Basu, R.; Pearson, D.; Ebisu, K.; Malig, B. Association between PM2.5 and PM2.5 Constituents and Preterm Delivery in California, 2000–2006. Paediatr. Perinat Epidemiol. 2017, 31, 424–434. [Google Scholar] [CrossRef] [PubMed]
- Kingsley, S.L.; Eliot, M.N.; Glazer, K.; Awad, Y.A.; Schwartz, J.D.; Savitz, D.A.; Kelsey, K.T.; Marsit, C.J.; Wellenius, G.A. Maternal ambient air pollution, preterm birth and markers of fetal growth in Rhode Island: Results of a hospital-based linkage study. J. Epidemiol. Community Health 2017, 71, 1131–1136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdo, M.; Ward, I.; O’Dell, K.; Ford, B.; Pierce, J.R.; Fischer, E.V.; Crooks, J.L. Impact of Wildfire Smoke on Adverse Pregnancy Outcomes in Colorado, 2007–2015. Int. J. Environ. Res. Public Health 2019, 16, 3720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheridan, P.; Ilango, S.; Bruckner, T.A.; Wang, Q.; Basu, R.; Benmarhnia, T. Ambient Fine Particulate Matter and Preterm Birth in California: Identification of Critical Exposure Windows. Am. J. Epidemiol. 2019, 188, 1608–1615. [Google Scholar] [CrossRef] [PubMed]
- Cassidy-Bushrow, A.E.; Burmeister, C.; Lamerato, L.; Lemke, L.D.; Mathieu, M.; O’Leary, B.F.; Sperone, F.G.; Straughen, J.K.; Reiners, J.J. Prenatal airshed pollutants and preterm birth in an observational birth cohort study in Detroit, Michigan, USA. Environ. Res. 2020, 189, 109845. [Google Scholar] [CrossRef]
- Qian, Z.; Liang, S.; Yang, S.; Trevathan, E.; Huang, Z.; Yang, R.; Wang, J.; Hu, K.; Zhang, Y.; Vaughn, M.; et al. Ambient air pollution and preterm birth: A prospective birth cohort study in Wuhan, China. Int. J. Hyg. Environ. Health 2015, 219, 195–203. [Google Scholar] [CrossRef]
- Li, Q.; Wang, Y.Y.; Guo, Y.; Zhou, H.; Wang, X.; Wang, Q.; Shen, H.; Zhang, Y.; Yan, D.; Zhang, Y.; et al. Effect of airborne particulate matter of 2.5mum or less on preterm birth: A national birth cohort study in China. Environ. Int. 2018, 121 Pt 2, 1128–1136. [Google Scholar] [CrossRef]
- Wang, Q.; Benmarhnia, T.; Zhang, H.; Knibbs, L.D.; Sheridan, P.; Li, C.; Bao, J.; Ren, M.; Wang, S.; He, Y.; et al. Identifying windows of susceptibility for maternal exposure to ambient air pollution and preterm birth. Environ. Int. 2018, 121 Pt 1, 317–324. [Google Scholar] [CrossRef] [PubMed]
- Ye, L.; Ji, Y.; Lv, W.; Zhu, Y.; Lu, C.; Xu, B.; Xia, Y. Associations between maternal exposure to air pollution and birth outcomes: A retrospective cohort study in Taizhou, China. Environ. Sci. Pollut. Res. 2018, 25, 21927–21936. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.; Yang, Y.; Li, J.; Zhu, X.; Ruan, Z.; Chen, S.; Huang, G.; Lin, H.; Zhou, J.-Y.; Zhao, Q. Migrant population is more vulnerable to the effect of air pollution on preterm birth: Results from a birth cohort study in seven Chinese cities. Int. J. Hyg. Environ. Health 2019, 222, 1047–1053. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Yang, L.; Bai, X.; Du, W.; Shen, G.; Fei, J.; Wang, Y.; Chen, A.; Chen, Y.; Zhao, M. Maternal ambient air pollution exposure with spatial-temporal variations and preterm birth risk assessment during 2013–2017 in Zhejiang Province, China. Environ. Int. 2019, 133 Pt B, 105242. [Google Scholar] [CrossRef]
- Yuan, L.; Zhang, Y.; Wang, W.; Chen, R.; Liu, Y.; Liu, C.; Kan, H.; Gao, Y.; Tian, Y. Critical windows for maternal fine particulate matter exposure and adverse birth outcomes: The Shanghai birth cohort study. Chemosphere 2019, 240, 124904. [Google Scholar] [CrossRef]
- Gehring, U.; Wijga, A.H.; Fischer, P.; de Jongste, J.C.; Kerkhof, M.; Koppelman, G.H.; Smit, H.A.; Brunekreef, B. Traffic-related air pollution, preterm birth and term birth weight in the PIAMA birth cohort study. Environ. Res. 2011, 111, 125–135. [Google Scholar] [CrossRef]
- Hannam, K.; McNamee, R.; Baker, P.; Sibley, C.; Agius, R. Air pollution exposure and adverse pregnancy outcomes in a large UK birth cohort: Use of a novel spatio-temporal modelling technique. Scand. J. Work. Environ. Health 2014, 40, 518–530. [Google Scholar] [CrossRef] [Green Version]
- Giorgis-Allemand, L.; Pedersen, M.; Bernard, C.; Aguilera, I.; Beelen, R.M.J.; Chatzi, L.; Cirach, M.; Danileviciute, A.; Dedele, A.; Van Eijsden, M.; et al. The Influence of Meteorological Factors and Atmospheric Pollutants on the Risk of Preterm Birth. Am. J. Epidemiol. 2017, 185, 247–258. [Google Scholar] [CrossRef] [Green Version]
- Ottone, M.; Broccoli, S.; Parmagnani, F.; Giannini, S.; Scotto, F.; Bonvicini, L.; Luberto, F.; Bacco, D.; Trentini, A.; Poluzzi, V.; et al. Source-related components of fine particulate matter and risk of adverse birth outcomes in Northern Italy. Environ. Res. 2020, 186, 109564. [Google Scholar] [CrossRef]
- Stieb, M.D.; Chen, L.; Beckerman, B.S.; Jerrett, M.; Crouse, D.L.; Omariba, D.W.; Peters, P.A.; van Donkelaar, A.; Martin, R.V.; Burnett, R.T.; et al. Associations of Pregnancy Outcomes and PM2.5 in a National Canadian Study. Environ. Health Perspect. 2016, 124, 243–249. [Google Scholar] [CrossRef] [Green Version]
- Lavigne, E.; Burnett, R.T.; Stieb, D.M.; Evans, G.J.; Pollitt, K.J.G.; Chen, H.; Van Rijswijk, D.; Weichenthal, S. Fine Particulate Air Pollution and Adverse Birth Outcomes: Effect Modification by Regional Nonvolatile Oxidative Potential. Environ. Health Perspect. 2018, 126, 077012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, G.; Guo, Y.; Abramson, M.J.; Williams, G.; Li, S. Exposure to low concentrations of air pollutants and adverse birth outcomes in Brisbane, Australia, 2003–2013. Sci. Total Environ. 2018, 622–623, 721–726. [Google Scholar] [CrossRef] [PubMed]
- Melody, S.; Wills, K.; Knibbs, L.D.; Ford, J.; Venn, A.; Johnston, F. Adverse birth outcomes in Victoria, Australia in association with maternal exposure to low levels of ambient air pollution. Environ. Res. 2020, 188, 109784. [Google Scholar] [CrossRef] [PubMed]
- Tapia, V.L.; Vasquez, B.V.; Vu, B.; Liu, Y.; Steenland, K.; Gonzales, G.F. Association between maternal exposure to particulate matter (PM2.5) and adverse pregnancy outcomes in Lima, Peru. J. Expo. Sci. Environ. Epidemiol. 2020, 30, 689–697. [Google Scholar] [CrossRef] [PubMed]
- Thompson, S.G. Systematic Review: Why sources of heterogeneity in meta-analysis should be investigated. BMJ 1994, 309, 1351–1355. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. BMJ 2003, 327, 557–560. [Google Scholar] [CrossRef] [Green Version]
- Ioannidis, J.P. The mass production of redundant, misleading, and conflicted systematic reviews and meta-analyses. Milbank Q. 2016, 94, 485–514. [Google Scholar] [CrossRef] [Green Version]
- Sacks, J.D.; Stanek, L.W.; Luben, T.J.; Johns, D.O.; Buckley, B.J.; Brown, J.S.; Ross, M. Particulate matter–induced health effects: Who is susceptible? Environ. Health Perspect. 2011, 119, 446–454. [Google Scholar] [CrossRef]
- Mullen, B.; Muellerleile, P.; Bryant, B. Cumulative Meta-Analysis: A Consideration of Indicators of Sufficiency and Stability. Pers. Soc. Psychol. Bull. 2001, 27, 1450–1462. [Google Scholar] [CrossRef]
- Cooper, H.M. Statistically combining independent studies: A meta-analysis of sex differences in conformity research. J. Personal. Soc. Psychol. 1979, 37, 131–146. [Google Scholar] [CrossRef]
- Rosenthal, R. The file drawer problem and tolerance for null results. Psychol. Bull. 1979, 86, 638–641. [Google Scholar] [CrossRef]
- Wasserstein, R.L.; Schirm, A.L.; Lazar, N.A. Moving to a World Beyond “p < 0.05”. Am. Stat. 2019, 73, 1–19. [Google Scholar]
- VanderWeele, T.J.; Ding, P. Sensitivity Analysis in Observational Research: Introducing the E-Value. Ann. Intern. Med. 2017, 167, 268–274. [Google Scholar] [CrossRef] [PubMed]
- DeFranco, E.A.; Lian, M.; Muglia, L.J.; Schootman, M. Area-level poverty and preterm birth risk: A population-based multilevel analysis. BMC Public Health 2008, 8, 316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mikati, I.; Benson, A.; Luben, T.; Sacks, J.; Richmond-Bryant, J. Disparities in Distribution of Particulate Matter Emission Sources by Race and Poverty Status. Am. J. Public Health 2018, 108, 480–485. [Google Scholar] [CrossRef]
First Author | Country | Year 1 | Births (N) | PTB (%) | PM2.5 Mean (SD) 2 | RR (95% CI) | cRR (95% CI) 3 | I2 (%) | ST (CI Limit) 4 |
---|---|---|---|---|---|---|---|---|---|
Wu | USA | 2009 | 81,186 | 8.3 | 1.8 (1.3) | 1.22 (1.07, 1.47) | 1.22 (1.04, 1.43) | 0 | 0.81 (1.06) |
+Gehring | Netherlands | 2010 | 3853 | 4.3 | 20.1 (NA) | 1.51 (0.68, 3.23) | 1.23 (1.05, 1.44) | 0 | 0.81 (1.06) |
+Kloog | USA | 2012 | 634,244 | 9.8 | 9.6 (5.1) | 1.05 (1.01, 1.12) | 1.12 (0.98, 1.29) | 51 | 0.89 (1.08) |
+Hyder | USA | 2013 | 656,769 | 6.3 | 11.4 (0.8) | 0.96 (0.82, 1.12) | 1.07 (0.97, 1.19) | 48 | 0.93 (1.07) |
+Hannam | UK | 2014 | 38,608 | 6.5 | NA | 0.96 (0.72, 1.26) | 1.06 (0.98, 1.15) | 31 | 0.94 (1.06) |
+Ha | USA | 2014 | 123,207 | 9.5 | 9.9 (1.7) | 1.26 (1.19, 1.33) | 1.11 (1.00, 1.24) | 80 | 0.89 (1.04) |
+Gray | USA | 2014 | 457,642 | 8.9 | 13.6 (1.7) | 1.05 (0.96, 1.09) | 1.10 (1.01, 1.20) | 80 | 0.90 (1.03) |
+Stieb | Canada | 2015 | 2,966,705 | 6.2 | 8.4 (2.4) | 0.96 (0.93, 0.99) | 1.07 (0.98, 1.17) | 89 | 0.93 (1.05) |
+Chang | USA | 2015 | 175,891 | 10.6 | 17.0 (NA) | 1.07 (1.00, 1.10) | 1.07 (1.00, 1.15) | 88 | 0.93 (1.03) |
+Hao | USA | 2015 | 511,658 | 9.2 | NA | 1.10 (1.03, 1.18) | 1.07 (1.01, 1.14) | 87 | 0.93 (1.02) |
+Qian | China | 2016 | 95,911 | 4.5 | 70.8 (NA) | 1.06 (1.04, 1.10) | 1.07 (1.01, 1.13) | 88 | 0.93 (1.02) |
+DeFranco | USA | 2016 | 224,921 | 8.5 | 13.0 (1.6) | 0.92 (0.85, 1.00) | 1.06 (1.00, 1.12) | 90 | 0.94 (1.02) |
+Mendola | USA | 2016 | 223,502 | 11.7 | 11.8 (NA) | 1.02 (0.98, 1.06) | 1.05 (1.00, 1.11) | 89 | 0.94 (1.02) |
+Basu | USA | 2017 | 231,637 | 10 | 18.8 (4.8) | 1.21 (1.18, 1.25) | 1.07 (1.01, 1.12) | 92 | 0.93 (1.02) |
+Kingsley | USA | 2017 | 61,640 | 8.1 | 9.5 (1.5) | 1.15 (0.79, 1.65) | 1.07 (1.01, 1.13) | 91 | 0.93 (1.02) |
+Giorgis-Allemand | EU | 2017 | 46,791 | 4.9 | NA | 0.93 (0.77, 1.08) | 1.06 (1.01, 1.12) | 91 | 0.94 (1.01) |
+Ye | China | 2018 | 24,246 | 6.2 | 68.8 (7.8) | 1.07 (1.02, 1.13) | 1.06 (1.01, 1.11) | 90 | 0.94 (1.01) |
+Lavigne | Canada | 2018 | 196,171 | 7.8 | 9.0 (2.0) | 0.80 (0.53, 1.15) | 1.06 (1.01, 1.11) | 90 | 0.94 (1.01) |
+Abdo | USA | 2019 | 446,961 | 14 | 7.1 (1.6) | 1.81 (1.14, 2.68) | 1.06 (1.01, 1.12) | 90 | 0.93 (1.02) |
+Sun | China | 2019 | 6275 | 5.9 | 60.4 (10.8) | 1.12 (1.03, 1.23) | 1.07 (1.02, 1.12) | 89 | 0.93 (1.02) |
+Ottone | Italy | 2020 | 23,708 | 5.5 | 18.0 (2.5) | 1.32 (1.02, 1.69) | 1.07 (1.03, 1.12) | 89 | 0.93 (1.02) |
+Melody | Australia | 2020 | 285,594 | 3 | 6.9 (NA) | 1.34 (1.08, 1.65) | 1.08 (1.03, 1.13) | 89 | 0.92 (1.02) |
+Tapia | Peru | 2020 | 123,034 | 7.2 | 22.3 (5.4) | 0.98 (0.95, 1.02) | 1.07 (1.03, 1.12) | 90 | 0.93 (1.02) |
+Cassidy-Bushrow | USA | 2020 | 7690 | 10.6 | 10.7 (1.3) | 1.09 (0.56, 2.01) | 1.07 (1.03, 1.12) | 89 | 0.93 (1.02) |
First Author | Country | Year 1 | Births (N) | PTB (%) | PM2.5 Mean (SD) 2 | HR (95% CI) | cHR (95% CI) 3 | I2 (%) | ST (CI Limit) 4 |
---|---|---|---|---|---|---|---|---|---|
Chen | Australia | 2017 | 173,720 | 7.7 | 6.2 (NA) | 1.45 (1.16, 1.79) | 1.45 (1.17, 1.80) | 0 | 0.69 (1.12) |
+Wang | China | 2018 | 469,975 | 5.5 | 39.1 (22.7) | 1.00 (0.81, 1.23) | 1.20 (0.84, 1.73) | 83 | 0.83 (1.20) |
+Guo | China | 2018 | 426,246 | 8.3 | 63.4 (24.9) | 1.06 (1.05, 1.06) | 1.14 (0.93, 1.40) | 81 | 0.87 (1.13) |
+Li | China | 2018 | 1,240,978 | 8.1 | 53.4 (15.9) | 1.09 (1.08, 1.10) | 1.10 (1.01, 1.21) | 99 | 0.90 (1.03) |
+Yuan | China | 2019 | 3692 | 4.6 | 49.3 (5.0) | 0.92 (0.60, 1.41) | 1.08 (1.05, 1.11) | 90 | 0.92 (1.02) |
+Sheridan | USA | 2019 | 2,293,218 | 8.2 | 13.5 (NA) | 1.12 (1.09, 1.14) | 1.09 (1.06, 1.13) | 93 | 0.91 (1.02) |
+Liang | China | 2019 | 628,439 | 4.7 | 36.9 (NA) | 0.98 (0.93, 1.02) | 1.08 (1.01, 1.14) | 98 | 0.92 (1.02) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pereira, G. A Simple Method to Establish Sufficiency and Stability in Meta-Analyses: With Application to Fine Particulate Matter Air Pollution and Preterm Birth. Int. J. Environ. Res. Public Health 2022, 19, 2036. https://doi.org/10.3390/ijerph19042036
Pereira G. A Simple Method to Establish Sufficiency and Stability in Meta-Analyses: With Application to Fine Particulate Matter Air Pollution and Preterm Birth. International Journal of Environmental Research and Public Health. 2022; 19(4):2036. https://doi.org/10.3390/ijerph19042036
Chicago/Turabian StylePereira, Gavin. 2022. "A Simple Method to Establish Sufficiency and Stability in Meta-Analyses: With Application to Fine Particulate Matter Air Pollution and Preterm Birth" International Journal of Environmental Research and Public Health 19, no. 4: 2036. https://doi.org/10.3390/ijerph19042036
APA StylePereira, G. (2022). A Simple Method to Establish Sufficiency and Stability in Meta-Analyses: With Application to Fine Particulate Matter Air Pollution and Preterm Birth. International Journal of Environmental Research and Public Health, 19(4), 2036. https://doi.org/10.3390/ijerph19042036