Prediction and Analysis of Tokyo Olympic Games Swimming Results: Impact of the COVID-19 Pandemic on Swimmers’ Performance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Procedures
2.2. Data Analysis
3. Results
3.1. Freestyle
3.2. Backstroke
3.3. Tokyo 2020 Results
3.4. Freestyle and Backstroke Performance Improvement
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hołub, M.; Stanula, A.; Baron, J.; Głyk, W.; Rosemann, T.; Knechtle, B. Predicting Breaststroke and Butterfly Stroke Results in Swimming Based on Olympics History. Int. J. Environ. Res. Public Health 2021, 18, 6621. [Google Scholar] [CrossRef]
- Pyne, D.B.; Trewin, C.B.; Hopkins, W.G. Progression and variability of competitive performance of Olympic swimmers. J. Sports Sci. 2004, 22, 613–620. [Google Scholar] [CrossRef]
- Issurin, V.B. New horizons for the methodology and physiology of training periodization. Sports Med. 2010, 40, 189–206. [Google Scholar] [CrossRef] [PubMed]
- Chirico, E.; Tessitore, A.; Demarie, S. Physiological swimming test for water polo players in the last twenty years: A systematic review. J. Sports Med. Phys. Fit. 2021, 19. [Google Scholar] [CrossRef]
- Demarie, S.; Chirico, E.; Gianfelici, A.; Vannozzi, G. Anaerobic capacity assessment in elite swimmers through inertial sensors. Physiol. Meas. 2019, 40, 064003. [Google Scholar] [CrossRef] [PubMed]
- Loturco, I.; Nakamura, F.Y. Training periodisation: An obsolete methodology. Aspetar Sports Med. J. 2016, 5, 110–115. [Google Scholar]
- Reilly, T.; Morris, T.; Whyte, G. The specificity of training prescription and physiological assessment: A review. J. Sports Sci. 2009, 27, 575–589. [Google Scholar] [CrossRef]
- Morais, J.E.; Marinho, D.A.; Arellano, R.; Barbosa, T.M. Start and turn performances of elite sprinters at the 2016 European Championships in swimming. Sports Biomech. 2019, 18, 100–114. [Google Scholar] [CrossRef] [PubMed]
- Costa, M.J.; Marinho, D.A.; Reis, V.M.; Silva, A.J.; Marques, M.C.; Bragada, J.A.; Barbosa, T.M. Tracking the performance of world-ranked swimmers. J. Sports Sci. Med. 2010, 9, 411. [Google Scholar]
- Stanula, A.; Maszczyk, A.; Roczniok, R.; Pietraszewski, P.; Ostrowski, A.; Zając, A.; Strzała, M. The development and prediction of athletic performance in freestyle swimming. J. Hum. Kinet. 2012, 32, 97. [Google Scholar] [CrossRef]
- Trewin, C.B.; Hopkins, W.G.; Pyne, D.B. Relationship between world-ranking and Olympic performance of swimmers. J. Sports Sci. 2004, 22, 339–345. [Google Scholar] [CrossRef] [PubMed]
- Costa, M.J.; Garrido, N.D.; Marinho, D.A.; Santos, C.C. How Much the Swimming Performance Leading to Tokyo 2020 Olympic Games Was Impaired Due to the COVID-19 Lockdown? J. Sports Sci. Med. 2021, 20, 714–720. [Google Scholar] [CrossRef]
- Ben-Zaken, S.; Eliakim, A.; Nemet, D.; Kaufman, L.; Meckel, Y. Genetic characteristics of competitive swimmers: A review. Biol. Sport 2022, 39, 157–170. [Google Scholar] [CrossRef]
- Haddad, M.; Abbes, Z.; Mujika, I.; Chamari, K. Impact of COVID-19 on Swimming Training: Practical Recommendations during Home Confinement/Isolation. Int. J. Environ. Res. Public Health 2021, 18, 4767. [Google Scholar] [CrossRef]
- Walther, G.; Nottin, S.; Karpoff, L.; Pérez-Martin, A.; Dauzat, M.; Obert, P. Flow-mediated dilation and exercise-induced hyperaemia in highly trained athletes: Comparison of the upper and lower limb vasculature. Acta Physiol. 2008, 193, 139–150. [Google Scholar] [CrossRef] [PubMed]
- Demarie, S.; Galvani, C.; Chirico, E.; Gianfelici, A. Quantification of technical drills in swimming training. Med. Dello Sport 2020, 73, 575–586. [Google Scholar] [CrossRef]
- Gourgoulis, V.; Valkoumas, I.; Boli, A.; Aggeloussis, N.; Antoniou, P. Effect of an 11-week in-water training program with increased resistance on the swimming performance and the basic kinematic characteristics of the front crawl stroke. J. Strength Cond. Res. 2019, 33, 95–103. [Google Scholar] [CrossRef]
- Crowley, E.; Harrison, A.J.; Lyons, M. The Impact of Resistance Training on Swimming Performance: A Systematic Review. Sports Med. 2017, 47, 2285–2307. [Google Scholar] [CrossRef] [PubMed]
- Toussaint, H.M.; Vervoorn, K. Effects of specific high resistance training in the water on competitive swimmers. Int. J. Sports Med. 1990, 11, 228–233. [Google Scholar] [CrossRef]
- Nauright, J.; Zipp, S.; Kim, Y.H. The sports world in the era of COVID-19. Sport Soc. 2020, 23, 1703–1706. [Google Scholar] [CrossRef]
- Taku, K.; Arai, H. Impact of COVID-19 on athletes and coaches and their values in Japan: Repercussions of postponing the Tokyo 2020 olympic and paralympic games. J. Loss Trauma 2020, 25, 623–630. [Google Scholar] [CrossRef]
- Oblinger-Peters, V.; Krenn, B. “Time for Recovery” or “Utter Uncertainty”? The Postponement of the Tokyo 2020 Olympic Games through the Eyes of Olympic Athletes and Coaches. A Qualitative Study. Front. Psychol. 2020, 11, 3619. [Google Scholar] [CrossRef] [PubMed]
- Pillay, L.; van Rensburg, D.C.C.J.; van Rensburg, A.J.; Ramagole, D.A.; Holtzhausen, L.; Dijkstra, H.P.; Cronje, T. Nowhere to hide: The significant impact of coronavirus disease 2019 (COVID-19) measures on elite and semi-elite South African athletes. J. Sci. Med. Sport 2020, 23, 670–679. [Google Scholar] [CrossRef] [PubMed]
- Demarie, S.; Galvani, C.; Billat, V.L. Horse-riding competitions pre and post COVID-19: Effect of anxiety. srpe and hr on performance in eventing. Int. J. Environ. Res. Public Health 2020, 17, 8648. [Google Scholar] [CrossRef] [PubMed]
- Haan, R.; Alblooshi, M.E.A.; Syed, D.H.; Dougman, K.K.; Al Tunaiji, H.; Campos, L.A.; Baltatu, O.C. Health and Well-Being of Athletes During the Coronavirus Pandemic: A Scoping Review. Front. Public Health 2021, 9, 255. [Google Scholar] [CrossRef]
- Ruffault, A.; Bernier, M.; Fournier, J.; Hauw, N. Anxiety and motivation to return to sport during the French COVID-19 lockdown. Front. Psychol. 2020, 11, 3467. [Google Scholar] [CrossRef]
- Jagim, A.R.; Luedke, J.; Fitzpatrick, A.; Winkelman, G.; Erickson, J.L.; Askow, A.T.; Camic, C.L. The impact of COVID-19-related shutdown measures on the training habits and perceptions of Athletes in the United States: A brief research report. Front. Sports Act. Living 2020, 2, 208. [Google Scholar] [CrossRef]
- Liu, I.Q. The impact of COVID-19 pandemic on high performance secondary school student-athletes. Sport J. 2020, 24. Available online: https://thesportjournal.org/article/the-impact-of-covid-19-pandemic-on-high-performance-secondary-school-student-athletes/ (accessed on 6 October 2021).
- Mehrsafar, A.H.; Gazerani, P.; Zadeh, A.M.; Sánchez, J.C.J. Addressing potential impact of COVID-19 pandemic on physical and mental health of elite athletes. Brain Behavior. Immun. 2020, 87, 147. [Google Scholar] [CrossRef]
- Moreno-Perez, V.; Martín-Sánchez, M.L.; Del Coso, J.; Felipe, J.L.; Courel-Ibañez, J.; Sánchez-Sánchez, J. Impact of COVID-19 lockdown on match activity and physical performance in professional football referees. Biol. Sport 2021, 38, 761. [Google Scholar] [CrossRef]
- Muriel, X.; Courel-Ibáñez, J.; Cerezuela-Espejo, V.; Pallarés, J.G. Training load and performance impairments in professional cyclists during COVID-19 lockdown. Int. J. Sports Physiol. Perform. 2020, 16, 735–738. [Google Scholar] [CrossRef] [PubMed]
- Osipov, A.Y.; Ratmanskaya, T.I.; Zemba, E.A.; Potop, V.; Kudryavtsev, M.D.; Nagovitsyn, R.S. The impact of the universities closure on physical activity and academic performance in physical education in university students during the COVID-19 pandemic. Phys. Educ. Stud. 2021, 25, 20–27. [Google Scholar] [CrossRef]
- Salazar, H.; Svilar, L.; Garcia, L.; González-Lago, L.; Castellano, J. Negative Impact of COVID-19 Home Confinement on Physical Performance of Elite Youth Basketball Players. Sport Perform. Sci. Rep. 2020, 10, 1–3. [Google Scholar]
- Scheer, V.; Valero, D.; Villiger, E.; Rosemann, T.; Knechtle, B. The impact of the COVID-19 pandemic on endurance and ultra-endurance running. Medicina 2021, 57, 52. [Google Scholar] [CrossRef]
- Csulak, E.; Petrov, Á.; Kováts, T.; Tokodi, M.; Lakatos, B.; Kovács, A.; Merkely, B. The Impact of COVID-19 on the Preparation for the Tokyo Olympics: A Comprehensive Performance Assessment of Top Swimmers. Int. J. Environ. Res. Public Health 2021, 18, 9770. [Google Scholar] [CrossRef] [PubMed]
- Perez, G.M.; VanSumeren, M.; Brown, M.; Hew-Butler, T. Pandemic-Induced Reductions on Swim Training Volume and Performance in Collegiate Swimmers. Int. J. Environ. Res. Public Health 2022, 19, 164. [Google Scholar] [CrossRef] [PubMed]
- Clemente-Suárez, V.J.; Fuentes-García, J.P.; de la Vega Marcos, R.; Martínez Patiño, M.J. Modulators of the personal and professional threat perception of olympic athletes in the actual COVID-19 crisis. Front. Psychol. 2020, 11, 1985. [Google Scholar] [CrossRef]
- Metelski, A.; Kornakov, K. Effect of lockdown owing to COVID-19 on players’ match statistics in Bundesliga. J. Phys. Educ. Sport 2021, 21, 110–114. [Google Scholar]
- Parpa, K.; Michaelides, M. The impact of COVID-19 lockdown on professional soccer players’ body composition and physical fitness. Biol. Sport 2021, 38, 733. [Google Scholar] [CrossRef]
- Szczypińska, M.; Samełko, A.; Guszkowska, M. What Predicts the Mood of Athletes Involved in Preparations for Tokyo 2020/2021 Olympic Games During the COVID-19 Pandemic? The Role of Sense of Coherence, Hope for Success and Coping Strategies. J. Sports Sci. Med. 2021, 20, 421–430. [Google Scholar] [CrossRef]
- Fischer, K.; Haucap, J. Does Crowd Support Drive the Home Advantage in Professional Soccer? Evidence from German Ghost Games during the COVID-19 Pandemic. 2020. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3697062 (accessed on 6 October 2021). [CrossRef]
- Sedeaud, A.; De Larochelambert, Q.; Schipman, J.; Toussaint, J.F. The COVID-19 Pandemic Impact on Away and Home Victories in Soccer and Rugby Union. Front. Sports Act. Living 2021, 3, 695922. [Google Scholar] [CrossRef]
- Reinboud, W. Linear models can’t keep up with sport gender gap. Nature 2004, 432, 147. [Google Scholar] [CrossRef] [Green Version]
- Edelmann-Nusser, J.; Hohmann, A.; Henneberg, B. Modeling and prediction of competitive performance in swimming upon neural networks. Eur. J. Sport Sci. 2002, 2, 1–10. [Google Scholar] [CrossRef]
- Gonjo, T.; Olstad, B.H. Race analysis in competitive swimming: A narrative review. Int. J. Environ. Res. Public Health 2021, 18, 69. [Google Scholar] [CrossRef]
- Issurin, V.; Pushkar-Verbitsky, V.; Verbitsky, O. Effect of high-tech swimsuits on the swimming performance in top-level swimmers. J. Sports Med. Phys. Fit. 2014, 54, 383–388. [Google Scholar]
- Heazlewood, T. Prediction Versus Reality: The Use of Mathematical Models to Predict Elite Performance in Swimming and Athletics at the Olympic Games. J. Sports Sci. Med. 2006, 5, 541–547. [Google Scholar]
- Arboix-Alió, J.; Trabal, G.; Peña, J.; Arboix, A.; Hileno, R. The Behaviour of Home Advantage during the COVID-19 Pandemic in European Rink Hockey Leagues. Int. J. Environ. Res. Public Health 2022, 19, 228. [Google Scholar] [CrossRef]
- Feijen, S.; Tate, A.; Kuppens, K.; Claes, A.; Struyf, F. Swim-Training Volume and Shoulder Pain Across the Life Span of the Competitive Swimmer: A Systematic Review. J. Athl. Train. 2020, 55, 32–41. [Google Scholar] [CrossRef] [Green Version]
- Nugent, F.J.; Comyns, T.M.; Warrington, G.D. Quality versus Quantity Debate in Swimming: Perceptions and Training Practices of Expert Swimming Coaches. J. Hum. Kinet. 2017, 57, 147–158. [Google Scholar] [CrossRef] [Green Version]
- Mujika, I. Quantification of Training and Competition Loads in Endurance Sports: Methods and Applications. Int. J. Sports Physiol. Perform. 2017, 12 (Suppl. S2), S29–S217. [Google Scholar] [CrossRef]
- Mohr, M.; Nassis, G.P.; Brito, J.; Randers, M.B.; Castagna, C.; Parnell, D.; Krustrup, P. Return to elite football after the COVID-19 lockdown. Manag. Sport Leis. 2020, 1–9. [Google Scholar] [CrossRef]
- Wicker, P. The impact of participation frequency and travel distances for different sport participation purposes on subjective well-being: The ‘unhappy commuter’ and the happy sport tourist? Eur. Sport Manag. Q. 2020, 20, 385–402. [Google Scholar] [CrossRef]
- Iellamo, F.; Pigozzi, F.; Parisi, A.; Di Salvo, V. The stress of competition dissociates neural and cortisol homeostasis in elite athletes. J. Sports Med. Phys. Fit. 2003, 43, 539. [Google Scholar]
- Chennaoui, M.; Bougard, C.; Drogou, C.; Langrume, C.; Miller, C.; Gomez-Merino, D.; Vergnoux, F. Stress Biomarkers, Mood States, and Sleep during a Major Competition: “Success” and “Failure” Athlete’s Profile of High-Level Swimmers. Front. Physiol. 2016, 7, 94. [Google Scholar] [CrossRef] [Green Version]
- Knechtle, B.; Dalamitros, A.A.; Barbosa, T.M.; Sousa, C.V.; Rosemann, T.; Nikolaidis, P.T. Sex differences in swimming disciplines—Can women outperform men in swimming? Int. J. Environ. Res. Public Health 2020, 17, 3651. [Google Scholar] [CrossRef] [PubMed]
- Thibault, V.; Guillaume, M.; Berthelot, G.; Helou, N.E.; Schaal, K.; Quinquis, L.; Nassif, H.; Tafflet, M.; Escolano, S.; Hermine, O.; et al. Women and Men in Sport Performance: The Gender Gap has not Evolved since 1983. J. Sports Sci. Med. 2010, 9, 214–223. [Google Scholar]
- Sandbakk, Ø.; Solli, G.S.; Holmberg, H.C. Sex Differences in World-Record Performance: The Influence of Sport Discipline and Competition Duration. Int. J. Sports Physiol. Perform. 2018, 13, 2–8. [Google Scholar] [CrossRef]
Stroke | Distance | Gender | Rank | Predicted Tokyo Results | Rio Results | Tokyo Results | Difference Tokyo-Predicted | Difference Tokyo-Rio |
---|---|---|---|---|---|---|---|---|
Freestyle | 100 m | Men | 1° | 46.52 | 47.58 | 47.02 | 0.50 | −0.56 |
Mean | 46.72 | 47.96 | 47.64 | 0.92 | −0.32 | |||
8° | 47.19 | 48.41 | 48.1 | 0.91 | −0.31 | |||
Women | 1° | 51.49 | 52.70 | 51.56 | 0.07 | −1.14 | ||
Mean | 52.02 | 53.05 | 52.61 | 0.59 | −0.44 | |||
8° | 52.39 | 53.36 | 53.23 | 0.84 | −0.13 | |||
200 m | Men | 1° | 101.10 | 104.65 | 104.22 | 3.12 | −0.43 | |
Mean | 103.01 | 105.48 | 104.87 | 1.86 | −0.61 | |||
8° | 103.83 | 105.91 | 105.78 | 1.95 | −0.13 | |||
Women | 1° | 111.91 | 113.73 | 113.50 | 1.59 | −0.23 | ||
Mean | 112.78 | 115.12 | 115.01 | 2.23 | −0.11 | |||
8° | 113.26 | 116.29 | 116.39 | 3.13 | 0.10 | |||
Backstroke | 100 m | Men | 1° | 51.39 | 51.97 | 51.98 | 0.59 | 0.01 |
Mean | 51.52 | 52.68 | 52.44 | 0.92 | −0.24 | |||
8° | 52.46 | 53.50 | 52.95 | 0.49 | −0.55 | |||
Women | 1° | 57.33 | 58.45 | 57.47 | 0.14 | −0.98 | ||
Mean | 57.45 | 58.86 | 58.43 | 0.98 | −0.43 | |||
8° | 57.92 | 59.23 | 59.53 | 1.61 | 0.30 | |||
200 m | Men | 1° | 111.54 | 113.62 | 113.27 | 1.73 | −0.35 | |
Mean | 112.28 | 115.09 | 115.82 | 3.54 | 0.73 | |||
8° | 114.58 | 116.36 | 119.06 | 4.48 | 2.70 | |||
Women | 1° | 121.08 | 125.99 | 124.68 | 3.60 | −1.31 | ||
Mean | 123.37 | 127.85 | 126.76 | 3.39 | −1.09 | |||
8° | 124.86 | 129.44 | 128.48 | 3.62 | −0.96 |
Stroke | Distance | Gender | Rank | Predicted Results | Rio Results | Tokyo Results | Difference Tokyo-Predicted | Difference Tokyo-Rio |
---|---|---|---|---|---|---|---|---|
Breaststroke | 100 m | Men | 1° | 56.96 | 57.13 | 57.37 | 0.41 | 0.24 |
Mean | 58.12 | 58.99 | 58.61 | 0.49 | −0.38 | |||
8° | 59.16 | 58.99 | 59.36 | 0.20 | 0.37 | |||
Women | 1° | 63.41 | 64.93 | 64.95 | 1.54 | 0.02 | ||
Mean | 64.44 | 66.47 | 65.85 | 1.41 | −0.62 | |||
8° | 65.65 | 68.10 | 66.94 | 1.29 | −1.16 | |||
200 m | Men | 1° | 124.80 | 127.46 | 126.38 | 1.58 | −1.08 | |
Mean | 125.10 | 127.81 | 127.65 | 2.55 | −0.16 | |||
8° | 126.12 | 128.34 | 128.88 | 2.76 | 0.54 | |||
Women | 1° | 135.75 | 140.30 | 138.95 | 3.20 | −1.35 | ||
Mean | 137.99 | 142.36 | 141.70 | 3.71 | −0.66 | |||
8° | 140.12 | 143.74 | 144.57 | 4.45 | 0.83 | |||
Butterfly | 100 m | Men | 1° | 49.85 | 50.39 | 49.45 | −0.40 | −0.94 |
Mean | 50.26 | 51.28 | 50.65 | 0.39 | −0.63 | |||
8° | 50.51 | 51.84 | 51.49 | 0.98 | −0.35 | |||
Women | 1° | 54.66 | 55.48 | 55.59 | 0.93 | 0.11 | ||
Mean | 55.78 | 56.63 | 56.14 | 0.36 | −0.49 | |||
8° | 56.73 | 57.17 | 57.05 | 0.32 | −0.12 | |||
200 m | Men | 1° | 111.21 | 113.36 | 111.25 | 0.04 | −2.11 | |
Mean | 112.40 | 114.77 | 114.43 | 2.03 | −0.34 | |||
8° | 113.64 | 117.04 | 115.88 | 2.24 | −1.16 | |||
Women | 1° | 122.18 | 124.85 | 123.86 | 1.68 | −0.99 | ||
Mean | 124.02 | 126.40 | 126.78 | 2.76 | 0.38 | |||
8° | 125.29 | 127.87 | 129.48 | 4.19 | 1.61 |
Tokyo Results | Predicted Linear | Predicted Non-Linear | Predicted Last 2 Olympics | Difference Predicted Linear | Difference Predicted Non-Linear | Difference Last 2 Olympics | ||||
---|---|---|---|---|---|---|---|---|---|---|
Stroke | Distance | Gender | Rank | (s) | (s) | (s) | (s) | (%) | (%) | (%) |
Freestyle | 100 m | Men | 1° | 47.02 | 46.52 | 46.62 | 47.66 | 1.06 | 0.85 | −1.35 |
Mean | 47.64 | 46.72 | 46.92 | 48.07 | 1.93 | 1.51 | −0.91 | |||
8° | 48.1 | 47.19 | 47.40 | 48.37 | 1.88 | 1.45 | −0.57 | |||
Women | 1° | 51.56 | 51.49 | 51.71 | 52.33 | 0.13 | −0.30 | −1.48 | ||
Mean | 52.61 | 52.02 | 52.24 | 52.51 | 1.12 | 0.71 | 0.19 | |||
8° | 53.23 | 52.39 | 52.75 | 52.54 | 1.58 | 0.91 | 1.31 | |||
200 m | Men | 1° | 104.22 | 101.10 | 101.54 | 106.54 | 3.00 | 2.57 | −2.22 | |
Mean | 104.87 | 103.01 | 103.41 | 104.08 | 1.78 | 1.39 | 0.75 | |||
8° | 105.78 | 103.83 | 104.31 | 103.64 | 1.84 | 1.39 | 2.02 | |||
Women | 1° | 113.50 | 111.91 | 112.33 | 113.88 | 1.40 | 1.03 | −0.33 | ||
Mean | 115.01 | 112.78 | 113.40 | 113.67 | 1.94 | 1.40 | 1.17 | |||
8° | 116.39 | 113.26 | 113.92 | 114.55 | 2.69 | 2.12 | 1.58 | |||
Backstroke | 100 m | Men | 1° | 51.98 | 51.39 | 51.41 | 51.73 | 1.14 | 1.10 | 0.48 |
Mean | 52.44 | 51.52 | 51.85 | 52.08 | 1.76 | 1.12 | 0.69 | |||
8° | 52.95 | 52.46 | 52.43 | 53.16 | 0.92 | 0.98 | −0.40 | |||
Women | 1° | 57.47 | 57.33 | 57.48 | 57.64 | 0.25 | −0.02 | −0.30 | ||
Mean | 58.43 | 57.45 | 57.82 | 58.55 | 1.69 | 1.05 | −0.19 | |||
8° | 59.53 | 57.92 | 58.41 | 58.60 | 2.70 | 1.88 | 1.56 | |||
200 m | Men | 1° | 113.27 | 111.54 | 111.48 | 114.29 | 1.52 | 1.58 | −0.90 | |
Mean | 115.82 | 112.28 | 112.80 | 114.43 | 3.06 | 2.61 | 1.20 | |||
8° | 119.06 | 114.58 | 114.23 | 113.88 | 3.77 | 4.06 | 4.35 | |||
Women | 1° | 124.68 | 121.08 | 121.80 | 128.40 | 2.89 | 2.31 | −2.99 | ||
Mean | 126.76 | 123.37 | 124.14 | 128.57 | 2.67 | 2.06 | −1.43 | |||
8° | 128.48 | 124.86 | 125.83 | 128.92 | 2.82 | 2.07 | −0,34 |
Performance Improvement from 1968 to 2021 | |||||||
---|---|---|---|---|---|---|---|
Men | Women | ||||||
s | % | Slope | s | % | Slope | ||
Freestyle | 100 m | −5.7 | −10.7 | −0.1099 | −8.2 | −13.4 | −0.1352 |
200 m | −13.6 | −11.5 | −0.2263 | −18.0 | −13.5 | −0.2713 | |
Backstroke | 100 m | −8.4 | −13.8 | −0.1472 | −10.0 | −14.6 | −0.1725 |
200 m | −17.2 | −12.9 | −0.3067 | −24.1 | −16.0 | −0.3648 |
Performance Improvement from 1968 to 2021 | |||||||
---|---|---|---|---|---|---|---|
1° | 8° | ||||||
Men | s | % | Slope | s | % | Slope | |
Freestyle | 100 m | −5.2 | −9.9 | −0.0919 | −5.8 | −10.8 | −0.1141 |
200 m | −11.0 | −9.5 | −0.2197 | −15.7 | −12.9 | −0.2598 | |
Backstroke | 100 m | −6.7 | −11.4 | −0.1059 | −9.1 | −14.6 | −0.1666 |
200 m | −16.3 | −12.6 | −0.2793 | −17.4 | −12.8 | −0.3654 |
Performance Improvement from 1968 to 2021 | |||||||
---|---|---|---|---|---|---|---|
1° | 8° | ||||||
Women | s | % | Slope | s | % | Slope | |
Freestyle | 100 m | −8.4 | −14.1 | −0.1227 | −8.4 | −13.6 | −0.1444 |
200 m | −17.0 | −13.0 | −0.2342 | −19.6 | −14.4 | −0.3322 | |
Backstroke | 100 m | −8.7 | −13.2 | −0.1388 | −11.1 | −15.7 | −0.1927 |
200 m | −20.1 | −13.9 | −0.3282 | −28.1 | −18.0 | −0.4072 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Demarie, S.; Chirico, E.; Galvani, C. Prediction and Analysis of Tokyo Olympic Games Swimming Results: Impact of the COVID-19 Pandemic on Swimmers’ Performance. Int. J. Environ. Res. Public Health 2022, 19, 2110. https://doi.org/10.3390/ijerph19042110
Demarie S, Chirico E, Galvani C. Prediction and Analysis of Tokyo Olympic Games Swimming Results: Impact of the COVID-19 Pandemic on Swimmers’ Performance. International Journal of Environmental Research and Public Health. 2022; 19(4):2110. https://doi.org/10.3390/ijerph19042110
Chicago/Turabian StyleDemarie, Sabrina, Emanuele Chirico, and Christel Galvani. 2022. "Prediction and Analysis of Tokyo Olympic Games Swimming Results: Impact of the COVID-19 Pandemic on Swimmers’ Performance" International Journal of Environmental Research and Public Health 19, no. 4: 2110. https://doi.org/10.3390/ijerph19042110
APA StyleDemarie, S., Chirico, E., & Galvani, C. (2022). Prediction and Analysis of Tokyo Olympic Games Swimming Results: Impact of the COVID-19 Pandemic on Swimmers’ Performance. International Journal of Environmental Research and Public Health, 19(4), 2110. https://doi.org/10.3390/ijerph19042110