EEG-Based Identification of Emotional Neural State Evoked by Virtual Environment Interaction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview
2.2. Participants
2.3. EEG Data Acquisition and Experimental Procedure
2.4. EEG Preprocessing
2.5. EEG Feature Extraction
2.6. Feature Selection
2.7. Machine Learning Classification Algorithm
2.8. Evaluation Metrics
2.9. Tools
3. Results
3.1. Classification Performance of Machine Learning Classifiers
3.2. Importance of Features for Classification of Emotional Neural States
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yoo, S.S.; Fairneny, T.; Chen, N.K.; Choo, S.E.; Panych, L.P.; Park, H.; Jolesz, F.A. Brain-computer interface using fMRI: Spatial navigation by thoughts. Neuroreport 2004, 15, 1591–1595. [Google Scholar] [CrossRef] [PubMed]
- Guger, C.; Schlogl, A.; Neuper, C.; Walterspacher, D.; Strein, T.; Pfurtscheller, G. Rapid prototyping of an EEG-based brain-computer interface (BCI). IEEE Trans. Neural Syst. Rehabil. Eng. 2001, 9, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Fabiani, G.E.; McFarland, D.J.; Wolpaw, J.R.; Pfurtscheller, G. Conversion of EEG activity into cursor movement by a brain-computer interface (BCI). IEEE Trans. Neural Syst. Rehabil. Eng. 2004, 12, 331–338. [Google Scholar] [CrossRef]
- Kevric, J.; Subasi, A. Comparison of signal decomposition methods in classification of EEG signals for motor-imagery BCI system. Biomed. Signal Process. Control 2017, 31, 398–406. [Google Scholar] [CrossRef]
- Rota, G.; Handjaras, G.; Sitaram, R.; Birbaumer, N.; Dogil, G. Reorganization of functional and effective connectivity during real-time fMRI-BCI modulation of prosody processing. Brain Lang. 2011, 117, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Gu, X.; Cao, Z.; Jolfaei, A.; Xu, P.; Wu, D.; Jung, T.P.; Lin, C.T. EEG-based brain-computer interfaces (BCIs): A survey of recent studies on signal sensing technologies and computational intelligence approaches and their applications. IEEE/ACM Trans. Comput. Biol. Bioinform. 2021, 18, 1645–1666. [Google Scholar] [CrossRef]
- Duan, R.N.; Zhu, J.Y.; Lu, B.L. Differential entropy feature for EEG-based emotion classification. In Proceedings of the 2013 6th International IEEE/EMBS Conference on Neural Engineering (NER), San Diego, CA, USA, 6–8 November 2013; pp. 81–84. [Google Scholar]
- Secerbegovic, A.; Ibric, S.; Nisic, J.; Suljanovic, N.; Mujcic, A. Mental Workload vs. Stress Differentiation Using Single-Channel EEG. In CMBEBIH 2017: Proceedings of the International Conference on Medical and Biological Engineering 2017, Sarajevo, Bosnia and Herzegovina, 16–18 March 2017; Springer: Singapore; pp. 511–515.
- Wen, D.; Yuan, J.; Zhou, Y.; Xu, J.; Song, H.; Liu, Y.; Jung, T.P. The EEG Signal Analysis for Spatial Cognitive Ability Evaluation Based on Multivariate Permutation Conditional Mutual Information-Multi-Spectral Image. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 2113–2122. [Google Scholar] [CrossRef]
- Kim, T.L.; Kim, K.; Choi, C.; Lee, J.Y.; Shin, J.H. FOPR test: A virtual reality-based technique to assess field of perception and field of regard in hemispatial neglect. J. Neuroeng. Rehabil. 2021, 18, 39. [Google Scholar] [CrossRef]
- Stevens, E.S.; Bourassa, K.J.; Norr, A.M.; Reger, G.M. Posttraumatic Stress Disorder Symptom Cluster Structure in Prolonged Exposure Therapy and Virtual Reality Exposure. J. Trauma. Stress 2021, 34, 287–297. [Google Scholar] [CrossRef]
- Torrico, D.D.; Sharma, C.; Dong, W.; Fuentes, S.; Viejo, C.G.; Dunshea, F.R. Virtual reality environments on the sensory acceptability and emotional responses of no-and full-sugar chocolate. LWT 2021, 137, 110383. [Google Scholar] [CrossRef]
- Yu, M.; Xiao, S.; Hua, M.; Wang, H.; Chen, X.; Tian, F.; Li, Y. EEG-based emotion recognition in an immersive virtual reality environment: From local activity to brain network features. Biomed. Signal Process. Control 2022, 72, 103349. [Google Scholar] [CrossRef]
- Tamburin, S.; Dal Lago, D.; Armani, F.; Turatti, M.; Saccà, R.; Campagnari, S.; Chiamulera, C. Smoking-related cue reactivity in a virtual reality setting: Association between craving and EEG measures. Psychopharmacology 2021, 238, 1363–1371. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Kim, J.E. The Effect of Task Complexity on Time Estimation in the Virtual Reality Environment: An EEG Study. Appl. Sci. 2021, 11, 9779. [Google Scholar] [CrossRef]
- Kisker, J.; Lange, L.; Flinkenflügel, K.; Kaup, M.; Labersweiler, N.; Tetenborg, F.; Schöne, B. Authentic Fear Responses in Virtual Reality: A Mobile EEG Study on Affective, Behavioral and Electrophysiological Correlates of Fear. Front. Virtual Real. 2021, 2, 716318. [Google Scholar] [CrossRef]
- Qureshi, M.B.; Afzaal, M.; Qureshi, M.S.; Fayaz, M. Machine learning-based EEG signals classification model for epileptic seizure detection. Multimed. Tools Appl. 2021, 80, 17849–17877. [Google Scholar]
- Geraedts, V.J.; Koch, M.; Contarino, M.F.; Middelkoop, H.A.M.; Wang, H.; van Hilten, J.J.; Tannemaat, M.R. Machine learning for automated EEG-based biomarkers of cognitive impairment during Deep Brain Stimulation screening in patients with Parkinson’s Disease. Clin. Neurophysiol. 2021, 132, 1041–1048. [Google Scholar] [CrossRef]
- 360 Degree Interview Video for VR Device, Youtube Video, 3 min 50 s, SoohyunChoi. Available online: https://www.youtube.com/watch?v=4NCdEzKfc7A (accessed on 6 October 2020).
- [360 Degree Video Series] Beach Sunrise Video for VR, Youtube Video, 29 Minutes 16 Seconds, HotgoraeTV. Available online: https://www.youtube.com/watch?v=XoERcJsk4nQ (accessed on 3 February 2021).
- 3D 360 Degress VR Skydiving Experience with the Vuze Camera (4K), Youtube Video, 4 Minutes 25 Seconds, vuze.camera. Available online: https://www.youtube.com/watch?v=rTM8vXtdIUA (accessed on 17 September 2017).
- Sterlini, G.L.; Bryant, R.A. Hyperarousal and dissociation: A study of novice skydivers. Behav. Res. Ther. 2002, 40, 431–437. [Google Scholar] [CrossRef]
- Kwon, J.H.; Powell, J.; Chalmers, A. How level of realism influences anxiety in virtual reality environments for a job interview. Int. J. Hum. Comput. Stud. 2013, 71, 978–987. [Google Scholar] [CrossRef]
- Owens, M.E.; Beidel, D.C. Can Virtual Reality Effectively Elicit Distress Associated with Social Anxiety Disorder? J. Psychopathol. Behav. Assess. 2015, 37, 296–305. [Google Scholar] [CrossRef]
- Price, I.R.; Bundesen, C. Emotional changes in skydivers in relation to experience. Personal. Individ. Differ. 2005, 38, 1203–1211. [Google Scholar] [CrossRef]
- McCarthy, J.; Goffin, R. Measuring Job Interview Anxiety: Beyond Weak Knees and Sweaty Palms. Pers. Psychol. 2004, 57, 607–637. [Google Scholar] [CrossRef]
- Jasper, H.H. The ten-twenty electrode system of the international federation. Electroencephalogr. Clin. Neurophysiol. 1958, 10, 370–375. [Google Scholar]
- Bird, J.J.; Manso, L.J.; Ribeiro, E.P.; Ekárt, A.; Faria, D.R. A Study on Mental State Classification using EEG-based Brain-Machine Interface. In Proceedings of the 2018 International Conference on Intelligent Systems (IS), Funchal, Portugal, 25–27 September 2018; pp. 795–800. [Google Scholar]
- Delorme, A.; Makeig, S. EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 2004, 134, 9–21. [Google Scholar] [CrossRef] [Green Version]
- Alomari, M.H.; Samaha, A.; AlKamha, K. Automated Classification of L/R Hand Movement EEG Signals using Advanced Feature Extraction and Machine Learning. Int. J. Adv. Comput. Sci. Appl. 2013, 4, 2013. [Google Scholar]
- Rodrigues, J.; Weiß, M.; Hewig, J.; Allen, J.J.B. EPOS: EEG Processing Open-Source Scripts. Front. Neurosci. 2021, 15, 663. [Google Scholar] [CrossRef] [PubMed]
- Hassanpour, H.; Shahiri, M. Adaptive Segmentation Using Wavelet Transform. In Proceedings of the 2007 International Conference on Electrical Engineering, Lahore, Pakistan, 11–12 April 2007. [Google Scholar] [CrossRef]
- Chen, A.C.N.; Feng, W.; Zhao, H.; Yin, Y.; Wang, P. EEG default mode network in the human brain: Spectral regional field powers. NeuroImage 2008, 41, 561–574. [Google Scholar] [CrossRef]
- Jaiswal, S.; Tsai, S.-Y.; Juan, C.-H.; Muggleton, N.G.; Liang, W.-K. Low delta and high alpha power are associated with better conflict control and working memory in high mindfulness, low anxiety individuals. Soc. Cogn. Affect. Neurosci. 2019, 14, 645–655. [Google Scholar] [CrossRef]
- Nakashima, K.; Sato, H. The Effects of Various Mental Tasks on Appearance of Frontal Midline Theta Activity in EEG. J. Hum. Ergol. 1992, 21, 201–206. [Google Scholar]
- Xing, M.; Tadayonnejad, R.; MacNamara, A.; Ajilore, O.; DiGangi, J.; Phan, K.L.; Klumpp, H. Resting-state theta band connectivity and graph analysis in generalized social anxiety disorder. NeuroImage Clin. 2016, 13, 24–32. [Google Scholar] [CrossRef] [Green Version]
- Barry, R.J.; Clarke, A.R.; McCarthy, R.; Selikowitz, M.; Rushby, J.A.; Ploskova, E. EEG differences in children as a function of resting-state arousal level. Clin. Neurophysiol. 2004, 115, 402–408. [Google Scholar] [CrossRef]
- Díaz, H.M.; Cid, F.M.; Otárola, J.; Rojas, R.; Alarcón, O.; Cañete, L. EEG Beta band frequency domain evaluation for assessing stress and anxiety in resting, eyes closed, basal conditions. Procedia Comput. Sci. 2009, 162, 974–981. [Google Scholar] [CrossRef]
- Engel, A.K.; Fries, P.; Singer, W. Dynamic predictions: Oscillations and synchrony in top–down processing. Nat. Rev. Neurosci. 2001, 2, 704–716. [Google Scholar] [CrossRef] [PubMed]
- Benasich, A.A.; Gou, Z.; Choudhury, N.; Harris, K.D. Early cognitive and language skills are linked to resting frontal gamma power across the first 3 years. Behav. Brain Res. 2008, 195, 215–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arsalan, A.; Majid, M.; Butt, A.R.; Anwar, S.M. Classification of Perceived Mental Stress Using a Commercially Available EEG Headband. IEEE J. Biomed. Health Inform. 2019, 23, 2257–2264. [Google Scholar] [CrossRef]
- Loo, C.K.; Samraj, A.; Lee, G.C. Evaluation of Methods for Estimating Fractal Dimension in Motor Imagery-Based Brain Computer Interface. Discrete Dyn. Nat. Soc. 2011, 2011, 724697. [Google Scholar] [CrossRef] [Green Version]
- Hou, X.; Liu, Y.; Sourina, O.; Tan, Y.R.E.; Wang, L.; Mueller-Wittig, W. EEG Based Stress Monitoring. In Proceedings of the 2015 IEEE International Conference on Systems, Man, and Cybernetics, Hong Kong, China, 9–12 October 2015; pp. 3110–3115. [Google Scholar]
- Wijayanto, I.; Rizal, A.; Humairani, A. Seizure Detection Based on EEG Signals Using Katz Fractal and SVM Classifiers. In Proceedings of the 2019 5th International Conference on Science in Information Technology (ICSITech), Yogyakarta, Indonesia, 23–24 October 2019; pp. 78–82. [Google Scholar]
- Akar, S.A.; Kara, S.; Latifoğlu, F.; Bilgiç, V. Investigation of the noise effect on fractal dimension of EEG in schizophrenia patients using wavelet and SSA-based approaches. Biomed. Signal Process. Control 2015, 18, 42–48. [Google Scholar] [CrossRef]
- Katz, M.J. Fractals and the analysis of waveforms. Comput. Biol. Med. 1988, 18, 145–156. [Google Scholar] [CrossRef]
- Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B 1996, 58, 267–288. [Google Scholar] [CrossRef]
- Marquardt, D.W.; Snee, R.D. Ridge regression in practice. Am. Stat. 1975, 29, 3–20. [Google Scholar]
- Tauscher, J.P.; Schottky, F.W.; Grogorick, S.; Bittner, P.M.; Mustafa, M.; Magnor, M. Immersive EEG: Evaluating Electroencephalography in Virtual Reality. In Proceedings of the 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), Osaka, Japan, 23–27 March 2019; pp. 1794–1800. [Google Scholar]
- Tremmel, C.; Herff, C.; Sato, T.; Rechowicz, K.; Yamani, Y.; Krusienski, D.J. Estimating cognitive workload in an interactive virtual reality environment using EEG. Front. Hum. Neurosci. 2019, 13, 401. [Google Scholar] [CrossRef]
- Alimardani, M.; Hermans, A.; Tinga, A.M. Assessment of empathy in an affective VR environment using EEG signals. arXiv 2020, arXiv:2003.10886. Available online: https://arxiv.org/abs/2003.10886 (accessed on 14 December 2021).
- Stevens, R.; Galloway, T.; Berka, C. Integrating EEG models of cognitive load with machine learning models of scientific problem solving. Augment. Cogn. Past Present Future 2016, 2, 55–65. [Google Scholar]
- Gross, J.; Baumgartl, H.; Buettner, R. A Novel Machine Learning Approach for High-Performance Diagnosis of Premature Internet Addiction Using the Unfolded EEG Spectra. In Proceedings of the 26th Americas Conference on Information Systems, Online, 15–17 August 2020. [Google Scholar]
- Baumgartl, H.; Roessler, P.; Sauter, D.; Buettner, R. Measuring Social Desirability Using a Novel Machine Learning Approach Based on EEG Data. In Proceedings of the Pacific Asia Conference on Information Systems, Dubai, United Arab Emirates, 20–24 June 2020; p. 100. [Google Scholar]
- Wang, X.W.; Nie, D.; Lu, B.L. Emotional state classification from EEG data using machine learning approach. Neurocomputing 2014, 129, 94–106. [Google Scholar] [CrossRef]
- Bazgir, O.; Mohammadi, Z.; Habibi, S.A.H. Emotion recognition with machine learning using EEG signals. In Proceedings of the 2018 25th National and 3rd International Iranian Conference on Biomedical Engineering (ICBME), Qom, Iran, 29–30 November 2018; pp. 1–5. [Google Scholar]
- Jenke, R.; Peer, A.; Buss, M. Feature extraction and selection for emotion recognition from EEG. IEEE Trans. Affect. Comput. 2014, 5, 327–339. [Google Scholar] [CrossRef]
- Jatupaiboon, N.; Pan-ngum, S.; Israsena, P. Emotion classification using minimal EEG channels and frequency bands. In Proceedings of the 2013 10th International Joint Conference on Computer Science and Software Engineering (JCSSE), Khon Kaen, Thailand, 29–31 May 2013; pp. 21–24. [Google Scholar]
- Li, M.; Xu, H.; Liu, X.; Lu, S. Emotion recognition from multichannel EEG signals using K-nearest neighbor classification. Technol. Health Care 2018, 26, 509–519. [Google Scholar] [CrossRef]
Feature Category | Feature | No. of Features |
---|---|---|
Frequency band power (FP) | Delta power | 20 features (4 electrodes × 5 band power) |
Theta power | ||
Alpha power | ||
Beta power | ||
Gamma power | ||
Differential asymmetry (DASM) | Delta power | 10 features (2 electrode pairs × 5 band power) |
Theta power | ||
Alpha power | ||
Beta power | ||
Gamma power | ||
Rational asymmetry (RASM) | Delta power | 10 features (2 electrode pairs × 5 band power) |
Theta power | ||
Alpha power | ||
Beta power | ||
Gamma power | ||
Correlation coefficient (CC) | Delta power | 10 features (2 electrode pairs × 5 band power) |
Theta power | ||
Alpha power | ||
Beta power | ||
Gamma power | ||
Fractal dimension (FD) | AF7 | 4 features (4 electrodes) |
AF8 | ||
TP9 | ||
TP10 |
Rank | Ridge Regression Coefficient | Feature | Lasso Regression Coefficient | Feature | No. | Selected Features (Common Feature) |
---|---|---|---|---|---|---|
1 | 1.6540 | CC_Gamma_AF 1 | 1.6025 | CC_Gamma_AF | 1 | CC_Gamma_AF |
2 | 1.5410 | CC_Gamma_TP | 1.1770 | CC_Gamma_TP | 2 | CC_Gamma_TP |
3 | 1.4678 | DASM_Beta_TP 2 | 0.7070 | FP_Alpha_AF7 | 3 | DASM_Beta_TP |
4 | 1.2270 | FP_Delta_TP9 3 | 0.6682 | DASM_Beta_TP | 4 | DASM_Delta_TP |
5 | 1.2219 | DASM_Delta_TP | 0.5537 | CC_Beta_AF | 5 | FP_Beta_TP9 |
6 | 1.2061 | FP_Beta_TP9 | 0.5525 | FP_Beta_TP9 | 6 | FP_Alpha_AF7 |
7 | 1.1511 | FP_Alpha_AF7 | 0.5366 | FP_Beta_AF8 | 7 | CC_Beta_AF |
8 | 1.1342 | RASM_Delta_AF 4 | 0.2972 | CC_Delta_AF | 8 | FP_Beta_AF8 |
9 | 1.0362 | CC_Beta_AF | 0.2726 | DASM_Alpha_AF | 9 | FP_Gamma_TP9 |
10 | 1.0280 | DASM_Gamma_TP | 0.2453 | FP_Alpha_TP10 | 10 | CC_Delta_AF |
11 | 0.8683 | FP_Beta_AF8 | 0.2225 | FP_Gamma_AF8 | 11 | DASM_Alpha_AF |
12 | 0.8216 | FP_Gamma_TP9 | 0.1509 | DASM_Delta_TP | 12 | FP_Alpha_TP10 |
13 | 0.5619 | RASM_Gamma_TP | 0.1448 | FP_Theta_TP9 | 13 | DASM_Theta_AF |
14 | 0.5369 | CC_Delta_AF | 0.1327 | FP_Theta_AF7 | 14 | FP_Theta_AF7 |
15 | 0.4626 | DASM_Alpha_AF | 0.1064 | FP_Delta_AF8 | ||
16 | 0.4328 | RASM_Beta_TP | 0.0798 | DASM_Gamma_TP | ||
17 | 0.4295 | RASM_Theta_AF | 0.0751 | FP_Delta_AF7 | ||
18 | 0.3106 | FP_Alpha_TP10 | 0.0561 | DASM_Theta_AF | ||
19 | 0.2201 | DASM_Theta_AF | 0.0329 | DASM_Beta_AF | ||
20 | 0.1270 | FP_Theta_AF7 | 0.0081 | FP_Gamma_TP9 |
Classifier | Hyperparameter | Argument |
---|---|---|
XGBoost classifier | Eta | 0.3 |
Gamma | 0 | |
max_depth | 6 | |
min_child_weight | 1 | |
Support vector classifier | Kernel | rbf |
Gamma | auto | |
Logistic regression | Penalty | L2 |
Solver | newton-cg |
Condition | Classifier | Precision | Recall | F1-Score | Accuracy | AUROC 1 |
---|---|---|---|---|---|---|
Baseline vs. low arousal | XGBoost | 0.846 | 0.846 | 0.838 | 0.849 | 0.925 |
SVC 2 | 0.795 | 0.829 | 0.764 | 0.737 | 0.789 | |
LR 3 | 0.533 | 0.563 | 0.528 | 0.522 | 0.583 | |
Baseline vs. high arousal | XGBoost | 0.851 | 0.855 | 0.858 | 0.838 | 0.860 |
SVC | 0.769 | 0.747 | 0.748 | 0.722 | 0.686 | |
LR | 0.651 | 0.673 | 0.663 | 0.632 | 0.669 | |
Baseline vs. social anxiety | XGBoost | 0.929 | 0.914 | 0.915 | 0.929 | 0.941 |
SVC | 0.843 | 0.833 | 0.860 | 0.830 | 0.856 | |
LR | 0.721 | 0.728 | 0.733 | 0.712 | 0.813 | |
low arousal vs. high arousal | XGBoost | 0.853 | 0.858 | 0.880 | 0.843 | 0.858 |
SVC | 0.757 | 0.751 | 0.752 | 0.750 | 0.814 | |
LR | 0.740 | 0.696 | 0.717 | 0.704 | 0.778 | |
low arousal vs. social anxiety | XGBoost | 0.865 | 0.840 | 0.852 | 0.840 | 0.857 |
SVC | 0.777 | 0.788 | 0.743 | 0.739 | 0.814 | |
LR | 0.514 | 0.555 | 0.573 | 0.558 | 0.474 | |
high arousal vs. social anxiety | XGBoost | 0.903 | 0.921 | 0.907 | 0.892 | 0.936 |
SVC | 0.839 | 0.854 | 0.826 | 0.853 | 0.855 | |
LR | 0.787 | 0.743 | 0.754 | 0.757 | 0.813 |
Condition | Classifier | Precision | Recall | F1-Score | Accuracy | AUROC 1 |
---|---|---|---|---|---|---|
Baseline vs. low arousal vs. high arousal | XGBoost | 0.912 | 0.911 | 0.913 | 0.938 | 0.938 |
SVC 2 | 0.677 | 0.670 | 0.671 | 0.679 | 0.631 | |
LR 3 | 0.579 | 0.572 | 0.527 | 0.531 | 0.578 | |
Baseline vs. low arousal vs. social anxiety | XGBoost | 0.847 | 0.844 | 0.839 | 0.860 | 0.856 |
SVC | 0.707 | 0.758 | 0.754 | 0.745 | 0.767 | |
LR | 0.537 | 0.532 | 0.564 | 0.547 | 0.534 | |
low arousal vs. high arousal vs. social anxiety | XGBoost | 0.902 | 0.911 | 0.911 | 0.938 | 0.905 |
SVC | 0.745 | 0.726 | 0.755 | 0.734 | 0.764 | |
LR | 0.660 | 0.664 | 0.651 | 0.664 | 0.725 | |
Baseline vs. low 4 vs. high arousal vs. social anxiety | XGBoost | 0.843 | 0.874 | 0.846 | 0.845 | 0.858 |
SVC | 0.730 | 0.752 | 0.752 | 0.742 | 0.683 | |
LR | 0.629 | 0.619 | 0.533 | 0.517 | 0.556 |
Rank | Baseline vs. Low 1 | Baseline vs. High 2 | Baseline vs. Social 3 | Low vs. High | Low vs. Social | High vs. Social |
---|---|---|---|---|---|---|
1 | FP_beta_TP9 | CC_delta_AF | DASM_delta_TP | DASM_delta_TP | FP_theta_AF7 | DASM_delta_TP |
2 | DASM_alpha_AF | FP_alpha_TP10 | FP_theta_AF7 | CC_gamma_TP | DASM_delta_TP | FP_theta_AF7 |
3 | CC_delta_AF | DASM_alpha_AF | DASM_theta_AF | FP_alpha_TP10 | CC_gamma_TP | FP_beta_AF8 |
4 | FP_alpha_AF7 | CC_beta_AF | DASM_beta_TP | DASM_theta_AF | FP_beta_AF8 | DASM_alpha_AF |
5 | DASM_beta_TP | FP_theta_AF7 | FP_alpha_AF7 | CC_beta_AF | CC_delta_AF | FP_beta_TP9 |
Rank | Baseline vs. Low 1 vs. High 2 | Baseline vs. Low 1 vs. Social 3 | Low vs. High vs. Social | Baseline vs. Low vs. High vs. Social |
---|---|---|---|---|
1 | DASM_theta_AF | FP_theta_AF7 | DASM_delta_TP | FP_theta_AF7 |
2 | CC_delta_AF | DASM_alpha_AF | FP_theta_AF7 | DASM_delta_TP |
3 | DASM_alpha_AF | FP_alpha_TP10 | DASM_alpha_AF | CC_gamma_TP |
4 | DASM_delta_TP | FP_beta_AF8 | CC_beta_AF | FP_alpha_TP10 |
5 | DASM_beta_TP | FP_beta_TP9 | DASM_theta_AF | CC_delta_AF |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, D.; Choi, J.; Kim, J.; Cho, S.; Han, S. EEG-Based Identification of Emotional Neural State Evoked by Virtual Environment Interaction. Int. J. Environ. Res. Public Health 2022, 19, 2158. https://doi.org/10.3390/ijerph19042158
Jung D, Choi J, Kim J, Cho S, Han S. EEG-Based Identification of Emotional Neural State Evoked by Virtual Environment Interaction. International Journal of Environmental Research and Public Health. 2022; 19(4):2158. https://doi.org/10.3390/ijerph19042158
Chicago/Turabian StyleJung, Dawoon, Junggu Choi, Jeongjae Kim, Seoyoung Cho, and Sanghoon Han. 2022. "EEG-Based Identification of Emotional Neural State Evoked by Virtual Environment Interaction" International Journal of Environmental Research and Public Health 19, no. 4: 2158. https://doi.org/10.3390/ijerph19042158
APA StyleJung, D., Choi, J., Kim, J., Cho, S., & Han, S. (2022). EEG-Based Identification of Emotional Neural State Evoked by Virtual Environment Interaction. International Journal of Environmental Research and Public Health, 19(4), 2158. https://doi.org/10.3390/ijerph19042158