Environmental and Socioeconomic Factors for Gastric Cancer in 14 Counties of the Huai River Basin from 2014 to 2018
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source
2.3. Statistical Analyses
2.3.1. Standardization of GIR and GMR Values
2.3.2. Analysis of Point Density of Environmental Factors
2.3.3. Analysis Index of Socioeconomic Factors
3. Results
3.1. GIR and GMR Values in the 14 Counties of the HRB from 2014 to 2018
3.2. Point Density of Environmental Factors
3.3. Index of Socioeconomic Factors
3.4. Interaction between the Point Density of Environmental Factors and Index of Socioeconomic Factors
3.5. Relationships between GIR and GMR with the Point Density of Environmental Factors and Index of Socioeconomic Factors
4. Relevant Tests of Panel Data
4.1. Build a Model
4.2. Descriptive Statistics
4.3. Dynamic Panel Regression
4.4. Robustness Testing
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
HRB | Huai River Basin |
GIS | Geographic Information System |
GC | Gastric Cancer |
GIR | Gastric Cancer Incidence Rate |
GMR | Gastric Cancer Mortality Rate |
LB | Lingbi |
SX | Shouxian |
MC | Mengcheng |
YD | Yingdong District |
YQ | Yongqiao District |
WS | Wenshang |
JY | Juye |
LS | Luoshan |
SQ | Shenqiu |
FG | Fugou |
XP | Xiping |
SY | Sheyang |
JH | Jinhu |
XY | Xuyi |
Point Density of Environmental Factors | |
ISF | Index of Socioeconomic Factors |
References
- Wang, D. Ten year new starting point for removing and curing pollution by trials and hardships-Interpretation of water pollution prevention and control planning in the Huai River Basin. Environ. Proc. 2009, 1, 59–60. [Google Scholar]
- Cao, W.; Chen, H.D.; Yu, Y.W.; Li, N.; Chen, W.Q. Changing profiles of cancer burden worldwide and in China: A secondary analysis of the global cancer statistics 2020. Chin. Med. J. 2021, 134, 783–791. [Google Scholar] [CrossRef]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, R.M.; Zong, Y.N.; Cao, S.M.; Xu, R.H. Current cancer situation in China: Good or bad news from the 2018 Global Cancer Statistics? Cancer Commun. 2019, 39, 1–12. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Wang, Y.; Luan, F.; Yu, Z.; Feng, H.; Chen, B.; Chen, W. Chinese and global burdens of gastric cancer from 1990 to 2019. Cancer Med. 2021, 10, 3461–3473. [Google Scholar] [CrossRef]
- Harada, K.; Zhao, M.; Shanbhag, N.; Baba, H.; Ajani, J.A. Palliative care for advanced gastric cancer. Expert Rev. Anticancer Ther. 2020, 20, 575–580. [Google Scholar] [CrossRef] [PubMed]
- Li, X.L. Surveillance analysis of malignant tumor registration in Xuyi County in 2012. Med Inf. 2014, 37, 336. [Google Scholar]
- Li, X.L.; Shou, G.; Xu, S. Analysis on the Ranking of Death Causes of Residents in Xuyi County in 2014. Med Inf. 2015, 41, 47. [Google Scholar]
- Zhao, C.Y. Analysis of the incidence and mortality of malignant tumor among residents in Sheyang County from 2013 to 2017. Electron. J. Clin. Med. Lit. 2018, 61, 5180–5182. [Google Scholar]
- Chen, R.G.; Yang, Y.M.; Wang, X.Q.; Shang, J.C. Differences in gastric cancer incidence factors between different regions. Med. Theory Prac. 2019, 32, 3609–3611. [Google Scholar]
- Parkin, D.M.; Boyd, L.; Walker, L.C. The fraction of cancer attributable to lifestyle and environmental factors in the UK in 2010. Br. J. Cancer. 2017, 105, S77–S81. [Google Scholar] [CrossRef] [Green Version]
- Yang, G.H.; Fang, D.Z. Research on the Correlation between Cancer and the Huai River Water Environment. In Atlas of the Huai River Basin Water Environment: Digestive Cancer Mortality; Yang, G., Zhuang, D., Eds.; Springer: Dordrecht, The Netherlands, 2014. [Google Scholar]
- Ren, H.; Wan, X.; Yang, F.; Shi, X.; Xu, J.; Zhuang, D.; Yang, G. Association between Changing Mortality of Digestive Tract Cancers and Water Pollution: A Case Study in the Huai River Basin, China. Int. J. Environ. Res. Public Health 2015, 12, 214–226. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Wu, X.; Li, S.; Li, C.; Guo, Z. Impact of environmental factors on gastric cancer: A review of the scientific evidence, human prevention and adaptation. J. Environ. Sci. 2020, 89, 65–79. [Google Scholar] [CrossRef] [PubMed]
- Lynch, S.M.; Rebbeck, T.R. Bridging the gap between biologic, individual, and macroenvironmental factors in cancer: A multi-level approach. Cancer Epidemiol. Biomark. Prev. 2013, 22, 485–495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gomez, S.L.; Shariff-Marco, S.; DeRouen, M.; Keegan, T.H.; Yen, I.H.; Mujahid, M.; Satariano, W.A.; Glaser, S.L. The impact of neighborhood social and built environment factors across the cancer continuum: Current research, methodological considerations, and future directions. Cancer 2015, 121, 2314–2330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Man, J.Y. A Study on the Correlation between Socioeconomic Status and Risk in Esophageal and Gastric Junction Cancer; Shandong University: Jinan, China, 2020. [Google Scholar]
- Sivakumar, J.; Alnimri, F.; Johnson, M.A.; Ward, S.; Chong, L.; Hii, M.W. Health economic analysis of curative intent gastrectomy for gastric carcinoma and the costs related to postoperative complications. ANZ J. Surg. 2021, 91, E1–E6. [Google Scholar] [CrossRef]
- Han, C.; Wu, Q.; Zhen, N.; Yuan, T.; Zhang, J.; Liu, J.; Sun, N.N.; Shi, M.; Liu, C.F.; Shi, Y.Q. Correlation analysis of the incidence of stomach cancer in China from 1989 to 2014 and statistical yearbook indicators. Tumor Prev. Treat. 2019, 32, 434–440. [Google Scholar]
- Kroenke, C.H.; Michael, Y.L.; Poole, E.M.; Kwan, M.L.; Nechuta, S.; Leas, E.; Caan, B.J.; Pierce, J.; Shu, X.O.; Zheng, Y.; et al. Postdiagnosis social networks and breast cancer mortality in the after-breast cancer pooling project. Cancer 2017, 123, 1228–1237. [Google Scholar] [CrossRef] [Green Version]
- Hinzey, A.; Gaudier-Diaz, M.M.; Lustberg, M.B.; DeVries, A.C. Breast cancer and social environment: Getting by with a little help from our friends. Breast Cancer Res. 2016, 18, 54. [Google Scholar] [CrossRef]
- López-Abente, G.; Locutura-Rupérez, J.; Fernández-Navarro, P.; Martín-Méndez, I.; Bel-Lan, A.; Núñez, O. Compositional analysis of topsoil metal and their associations with cancer mortality using misalignment data spatially. Environ. Geochem. Health 2018, 40, 283–294. [Google Scholar] [CrossRef] [Green Version]
- Zha, Z.Q.; Wei, X.; Jia, S.C.; Chen, Y.J.; Liu, Z.R. Knowledge, attitude and practice of cancer related risk factors among residents in Huaihe cancer prevention and control areas, Anhui province. Anhui J. Prev. Med. 2018, 24, 241–246. [Google Scholar]
- Wilding, S.; Ziauddeen, N.; Smith, D.; Roderick, P.; Chase, D.; Alwan, N.A. Are environmental area characteristics at birth associated with overweight and obesity in school-aged children? Findings from the SLOPE (Studying Lifecourse Obesity PrEdictors) population-based cohort in the south of England. BMC Med. 2020, 18, 43. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, S.; Nguyen, D.T.; Teeter, L.D.; Graviss, E.A. Spatial-temporal distribution of genotypes tuberculosis cases in a county with active transmission. BMC Infect. Dis. 2017, 17, 378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swaan, C.M.; Öry, A.V.; Schol, L.G.C.; Jacobi, A.; Richardus, J.H.; Timen, A. Ebola Preparedness in The Netherlands: The Need for Coordination Between the Public Health and the Curative Sector. J. Public Health Manag. Pract. 2018, 24, 18–25. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, B.T.; Nguyen, T.M.T.; Bach, Q. Assessment of groundwater quality based on principal component analysis and pollution source-based examination: A case study in Ho Chi Minh City, Vietnam. Environ. Monit. Assess. 2020, 192, 395. [Google Scholar] [CrossRef] [PubMed]
- Vanessa, G.L.; Victoria, M.; Teresa, N.; André, M.; James, F.P.; Tim, R.; Ioannis, B. Dietary patterns derived from principal component analysis (PCA) and risk of colorectal cancer: A systematic review and meta-analysis. Eur. J. Clin. Nutr. 2019, 73, 366–386. [Google Scholar]
- Torre, L.A.; Siegel, R.L.; Ward, E.M.; Jemal, A. Global Cancer Incidence and Mortality Rates and Trends—An Update. Cancer Epidemiol. Biomark. Prev. 2016, 25, 16–27. [Google Scholar] [CrossRef] [Green Version]
- Tian, L.L.; Luo, J.; Zhang, J.; Sun, K.Y.; Yang, T.H. Spatial distribution of cancer residents and its influencing factors in Xiantao City. J. Cent. China Norm. Univ. (Nat. Sci. Edit.) 2019, 53, 745–754. [Google Scholar]
- Wei, D.B.; Singh, R.P.; Li, Y.K.; Fu, D.F. The nitrogen removal efficiency of surface flow constructed wetland for treating slightly polluted river water. Environ. Sci. Pollut. Res. 2020, 27, 24902–24913. [Google Scholar] [CrossRef]
- Li, X.X. Pay close attention to the prevention and control of agricultural non-point source pollution and promote the ecological and economic development of the Huaihe River Basin—Investigation report on the control of non-point source pollution in the Huaihe River Basin. China Econ. Trade Guide. 2019, 12, 48–52. [Google Scholar]
- De, V.E.; Uribe, C.; Pardo, C.; Lemmens, V.; Van de Poel, E.; Forman, D. Gastric cancer survival and affiliation of health insurance in a middle-income setting. Cancer Epidemiol. 2015, 39, 91–96. [Google Scholar]
- Kirby, R.S.; Delmelle, E.; Eberth, J.M. Advances in spatial epidemiology and geographic information systems. Ann. Epidemiol. 2017, 27, 1–9. [Google Scholar] [CrossRef] [PubMed]
2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | |
---|---|---|---|---|---|---|---|
YD | 0.145 *** | 0.197 *** | 0.142 *** | 0.223 *** | 0.213 *** | 0.252 *** | 0.262 *** |
MC | 0.116 *** | 0.238 *** | 0.246 *** | 0.278 *** | 0.241 *** | 0.261 *** | 0.282 *** |
FG | 0.138 *** | 0.247 *** | 0.295 *** | 0.291 *** | 0.217 *** | 0.278 *** | 0.377 *** |
WS | 0.125 *** | 0.267 *** | 0.269 *** | 0.232 *** | 0.216 *** | 0.231 *** | 0.216 *** |
LB | 0.083 ** | 0.082 ** | 0.098 ** | 0.076 ** | 0.084 ** | 0.098 ** | 0.082 ** |
SY | 0.102 ** | 0.091 ** | 0.104 ** | 0.043 ** | 0.031 ** | 0.089 ** | 0.081 ** |
XP | 0.081 ** | 0.076 ** | 0.071 ** | 0.053 ** | 0.061 ** | 0.083 ** | 0.073 ** |
YQ | 0.101 ** | 0.071 ** | 0.072 ** | 0.091 ** | 0.081 ** | 0.092 ** | 0.074 ** |
XY | 0.055 * | 0.042 * | 0.051 * | 0.012 * | 0.035 * | 0.031 * | 0.035 * |
LS | 0.027 * | 0.026 * | 0.029 * | 0.013 * | 0.014 * | 0.017 * | 0.034 * |
JY | 0.029 * | 0.021 * | 0.025 * | 0.042 * | 0.015 * | 0.043 * | 0.015 * |
JH | 0.017 * | 0.043 * | 0.027 * | 0.025 * | 0.031 * | 0.042 * | 0.031 * |
SX | 0.064 * | 0.031 * | 0.035 * | 0.039 * | 0.015 * | 0.018 * | 0.015 * |
SQ | 0.022 * | 0.022 * | 0.011 * | 0.013 * | 0.047 * | 0.041 * | 0.047 * |
County | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
---|---|---|---|---|---|---|---|
XY | 2.15 *** | 2.04 *** | 2.8 *** | 2.1 *** | 2.94 *** | 3.09 *** | 3.13 *** |
SY | 2.22 *** | 4.29 *** | 3.46 *** | 2 *** | 2.33 *** | 2.74 *** | 3.14 *** |
WS | 3.1 *** | 3.82 *** | 3.01 *** | 4.1 *** | 4.41 *** | 4.16 *** | 3.04 *** |
JH | 3.31 *** | 3.79 *** | 3.23 *** | 4.06 *** | 3.98 *** | 3.96 *** | 3.16 *** |
FG | 0.07 ** | −0.19 ** | −0.16 ** | 0.39 ** | 0.3 ** | −0.36 ** | −0.29 ** |
XP | 0.16 ** | −0.72 ** | 0.75 ** | −0.17 ** | −0.37 ** | −0.73 ** | −0.79 ** |
MC | 0.09 ** | −0.48 ** | 0.02 ** | −0.4 ** | −0.42 ** | 0.34 ** | 0.32 ** |
LB | 0.05 ** | −0.98 ** | −0.64 ** | −0.72 ** | −0.65 ** | −0.83 ** | −0.81 ** |
JY | −1.62 * | −2.43 * | −1.56 * | −1.76 * | −1.66 * | −1.65 * | −1.75 * |
SQ | −2.22 * | −1.18 * | −1.27 * | −1.2 * | −1.22 * | −1.33 * | −1.35 * |
LS | −1.17 * | −1.16 * | −1.4 * | -2.09 * | −2.24 * | −1.43 * | −1.47 * |
SX | 2.49 * | −2.63 * | −1.42 * | −2.1 * | −2.39 * | −1.53 * | −1.71 * |
YQ | −2.48 * | −1 * | −2.43 * | −1.8 * | −1.25 * | −2.59 * | −2.6 * |
YD | −3.81 * | −1.82 * | −1.58 * | −1.02 * | −2.07 * | −2.87 * | −2.82 * |
2014 | 2015 | 2016 | 2017 | 2018 | 5Y ^ | χ2 | p | |
---|---|---|---|---|---|---|---|---|
Point Density of Environmental Factors | ||||||||
Low value area Median value area | 65.77 53.87 | 74.5 58.8 | 59.82 57.96 | 58.37 46.98 | 51.8 47.2 | 62.63 52.38 | 21.36 ** | <0.01 |
High value area | 47.72 | 42.92 | 40.4 | 41.2 | 40.7 | 43.27 | ||
Index of Socio-economic Factors | ||||||||
Low value area | 60.15 | 64.58 | 58.33 | 50.32 | 47.70 | 55.58 | 11.37 * | <0.05 |
Median value area | 57.63 | 64.45 | 61.40 | 48.36 | 42.89 | 54.95 | ||
High value area | 54.53 | 60.03 | 47.66 | 44.61 | 42.58 | 49.32 |
2014 | 2015 | 2016 | 2017 | 2018 | 5Y ^ | χ2 | p | |
---|---|---|---|---|---|---|---|---|
Point Density of Environmental Factors | ||||||||
Low value area Median region | 49.57 36.35 | 49.75 40.5 | 42.95 38.22 | 39.38 35.16 | 40.23 33.93 | 44.37 36.83 | 11.25 ** | <0.01 |
High value area | 34.04 | 30.2 | 33.22 | 31.84 | 33.53 | 32.56 | ||
Index of Socio-economic Factors | ||||||||
Low value area | 39.82 | 46.67 | 49.65 | 46.75 | 48.67 | 46.31 | 18.74 ** | <0.01 |
Median region | 45.36 | 40.17 | 35.17 | 31.85 | 34.1 | 36.79 | ||
High value area | 34.3 | 34.03 | 31.42 | 28.19 | 30.99 | 31.78 |
Variable | Obs | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|---|
GIR | 70 | 53.2057 | 18.3246 | 26.9400 | 111.9300 |
GMR | 70 | 38.3057 | 13.7211 | 18.9400 | 84.0300 |
70 | 0.000017 | 0.05267 | 0.012000 | 0.37700 | |
ISF | 70 | 0.0003 | 1.2359 | −1.8000 | 3.4600 |
Model 1 | Model 2 | |
---|---|---|
VARIABLES | GIR | GMR |
L.GIR | 0.8920 ** | |
(12.5166) | ||
L.GMR | 0.9795 ** | |
(8.4945) | ||
L.PDF | −0.9322 * (−2.6349) | 1.3256 (2.7612) |
L.ISF | −2.9768 * | 1.1984 |
(−2.3485) | (1.3197) | |
Constant | 3.2980 | 0.2038 |
(0.6965) | (0.0469) | |
Observations | 56 | 56 |
Number of id | 14 | 14 |
AR (1) | 0.0328 | 0.0436 |
AR (2) | 0.9374 | 0.2618 |
Sargan (p-value) | 0.4746 | 0.7873 |
Model 1 | Model 2 | |
---|---|---|
VARIABLES | GIR | GMR |
L.GIR | 0.8725 ** | |
(3.8458) | ||
L.GMR | 0.8081 ** | |
(4.3345) | ||
L.PDF | −0.9624 * (−1.9858) | 1.8653 (1.4824) |
L.ISF | −2.8586 * | 1.1548 |
(−1.9859) | (1.0958) | |
Constant | 3.3732 | 5.3909 |
(0.2836) | (0.7322) | |
Observations | 42 | 42 |
Number of id | 14 | 14 |
AR (1) | 0.0173 | 0.0589 |
AR (2) | 0.9211 | 0.2052 |
Sargan (p-value) | 0.2517 | 0.5545 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, Y.; Ye, B.; Wang, Q.; Dong, S. Environmental and Socioeconomic Factors for Gastric Cancer in 14 Counties of the Huai River Basin from 2014 to 2018. Int. J. Environ. Res. Public Health 2022, 19, 2213. https://doi.org/10.3390/ijerph19042213
Lin Y, Ye B, Wang Q, Dong S. Environmental and Socioeconomic Factors for Gastric Cancer in 14 Counties of the Huai River Basin from 2014 to 2018. International Journal of Environmental Research and Public Health. 2022; 19(4):2213. https://doi.org/10.3390/ijerph19042213
Chicago/Turabian StyleLin, Yongqing, Bixiong Ye, Qin Wang, and Shaoxia Dong. 2022. "Environmental and Socioeconomic Factors for Gastric Cancer in 14 Counties of the Huai River Basin from 2014 to 2018" International Journal of Environmental Research and Public Health 19, no. 4: 2213. https://doi.org/10.3390/ijerph19042213
APA StyleLin, Y., Ye, B., Wang, Q., & Dong, S. (2022). Environmental and Socioeconomic Factors for Gastric Cancer in 14 Counties of the Huai River Basin from 2014 to 2018. International Journal of Environmental Research and Public Health, 19(4), 2213. https://doi.org/10.3390/ijerph19042213