Bandemia as an Early Predictive Marker of Bacteremia: A Retrospective Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Selection
2.2. Data Collections, Outcomes, and Definitions
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Coburn, B.; Morris, A.M.; Tomlinson, G.; Detsky, A.S. Does this adult patient with suspected bacteremia require blood cultures? JAMA 2012, 308, 502–511. [Google Scholar] [CrossRef] [PubMed]
- Leibovici, L.; Samra, Z.; Konigsberger, H.; Drucker, M.; Ashkenazi, S.; Pitlik, S.D. Long-term survival following bacteremia or fungemia. JAMA 1995, 274, 807–812. [Google Scholar] [CrossRef] [PubMed]
- Goto, M.; Al-Hasan, M.N. Overall burden of bloodstream infection and nosocomial bloodstream infection in North America and Europe. Clin. Microbiol. Infect. 2013, 19, 501–509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez-Baño, J.; López-Prieto, M.D.; Portillo, M.M.; Retamar, P.; Natera, C.; Nuño, E.; Herrero, M.; del Arco, A.; Muñoz, A.; SAEI/SAMPAC Bacteraemia Group; et al. Epidemiology and clinical features of community-acquired, healthcare-associated and nosocomial bloodstream infections in tertiary-care and community hospitals. Clin. Microbiol. Infect. 2010, 16, 1408–1413. [Google Scholar] [CrossRef]
- Søgaard, M.; Nørgaard, M.; Dethlefsen, C.; Schønheyder, H.C. Temporal Changes in the Incidence and 30-Day Mortality associated with bacteremia in hospitalized patients from 1992 through 2006: A population-based cohort study. Clin. Infect. Dis. 2011, 52, 61–69. [Google Scholar] [CrossRef]
- Lenz, R.; Leal, J.R.; Church, D.L.; Gregson, D.B.; Ross, T.; Laupland, K.B. The distinct category of healthcare associated bloodstream infections. BMC Infect. Dis 2012, 12, 85. [Google Scholar] [CrossRef] [Green Version]
- Holmbom, M.; Giske, C.G.; Fredrikson, M.; Östholm Balkhed, Å.Ö.; Claesson, C.; Nilsson, L.E.; Hoffmann, M.; Hanberger, H. 14-Year survey in a Swedish County reveals a pronounced increase in bloodstream infections (BSI). Comorbidity-An independent risk factor for both BSI and mortality. PLoS ONE 2016, 11, e0166527. [Google Scholar] [CrossRef]
- Leibovici, L.; Greenshtain, S.; Cohen, O.; Mor, F.; Wysenbeek, A.J. Bacteremia in febrile patients. A clinical model for diagnosis. Arch. Intern. Med. 1991, 151, 1801–1806. [Google Scholar] [CrossRef]
- Van Dissel, J.T.; Schijf, V.; Vogtländer, N.; Hoogendoorn, M.; van’t Wout, J. Implications of chills. Lancet 1998, 352, 374. [Google Scholar] [CrossRef]
- Stryjewski, M.E.; Kanafani, Z.A.; Chu, V.H.; Pappas, P.A.; Harding, T.; Drew, L.A.; Benjamin, D.K., Jr.; Reller, L.B.; Lee, B.A.; Corey, G.R.; et al. Staphylococcus aureus bacteremia among patients with health care-associated fever. Am. J. Med. 2009, 122, 281–289.e2. [Google Scholar] [CrossRef]
- Kim, K.S.; Kim, K.; Jo, Y.H.; Kim, T.Y.; Lee, J.H.; Lee, S.J.; Rhee, J.E.; Suh, G.J. A simple model to predict bacteremia in women with acute pyelonephritis. J. Infect. 2011, 63, 124–130. [Google Scholar] [CrossRef]
- Tokuda, Y.; Miyasato, H.; Stein, G.H.; Kishaba, T. The degree of chills for risk of bacteremia in acute febrile illness. Am. J. Med. 2005, 118, 1417. [Google Scholar] [CrossRef]
- Taniguchi, T.; Tsuha, S.; Takayama, Y.; Shiiki, S. Shaking chills and high body temperature predict bacteremia especially among elderly patients. Springerplus 2013, 2, 624. [Google Scholar] [CrossRef] [Green Version]
- Komatsu, T.; Onda, T.; Murayama, G.; Yamanouchi, M.; Inukai, M.; Sakai, A.; Kikuta, M.; Branch, J.; Aoki, M.; Tierney, L.M., Jr.; et al. Predicting bacteremia based on nurse-assessed food consumption at the time of blood culture. J. Hosp. Med. 2012, 7, 702–705. [Google Scholar] [CrossRef]
- Komatsu, T.; Takahashi, E.; Mishima, K.; Toyoda, T.; Saitoh, F.; Yasuda, A.; Matsuoka, J.; Sugita, M.; Branch, J.; Aoki, M.; et al. A simple algorithm for predicting bacteremia using food consumption and shaking chills: A prospective observational study. J. Hosp. Med. 2017, 12, 510–515. [Google Scholar] [CrossRef] [Green Version]
- Chase, M.; Klasco, R.S.; Joyce, N.R.; Donnino, M.W.; Wolfe, R.E.; Shapiro, N.I. Predictors of bacteremia in emergency department patients with suspected infection. Am. J. Emerg. Med. 2012, 30, 1691–1697. [Google Scholar] [CrossRef]
- Takeshima, T.; Yamamoto, Y.; Noguchi, Y.; Maki, N.; Gibo, K.; Tsugihashi, Y.; Doi, A.; Fukuma, S.; Yamazaki, S.; Kajii, E.; et al. Identifying patients with bacteremia in community-hospital emergency rooms: A retrospective cohort study. PLoS ONE 2016, 11, e0148078. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.C.; Wu, C.J.; Chi, C.H.; Lee, N.Y.; Chen, P.L.; Lee, H.C.; Chang, C.M.; Ko, N.Y.; Ko, W.C. Prediction of community-onset bacteremia among febrile adults visiting an emergency department: Rigor matters. Diagn. Microbiol. Infect. Dis. 2012, 73, 168–173. [Google Scholar] [CrossRef]
- Shapiro, N.I.; Wolfe, R.E.; Wright, S.B.; Moore, R.; Bates, D.W. Who Needs a Blood Culture? A Prospectively Derived and Validated Prediction Rule. J. Emerg. Med. 2008, 35, 255–264. [Google Scholar] [CrossRef]
- Jessen, M.K.; Mackenhauer, J.; Hvass, A.M.S.W.; Ellermann-Eriksen, S.; Skibsted, S.; Kirkegaard, H.; Schønheyder, H.C.; Shapiro, N.I.; CONSIDER Sepsis Network. Prediction of bacteremia in the emergency bepartment: An external validation of a clinical decision rule. Eur. J. Emerg. Med. 2016, 23, 44–49. [Google Scholar] [CrossRef]
- Poses, R.M.; Anthony, M. Availability, wishful thinking, and physicians’ diagnostic judgments for patients with suspected bacteremia. Med. Decis. Mak. 1991, 11, 159–168. [Google Scholar] [CrossRef] [PubMed]
- Harada, T.; Miyagami, T.; Kunitomo, K.; Shimizu, T. Clinical decision support systems for diagnosis in primary care: A scoping review. Int. J. Environ. Res. Public Health 2021, 18, 8435. [Google Scholar] [CrossRef] [PubMed]
- Paul, M.; Andreassen, S.; Nielsen, A.D.; Tacconelli, E.; Almanasreh, N.; Fraser, A.; Yahav, D.; Ram, R.; Leibovici, L.; TREAT Study Group. Prediction of bacteremia using TREAT, a computerized Decision-Support System. Clin. Infect. Dis. 2006, 42, 1274–1282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahmoud, E.; Al Dhoayan, M.; Bosaeed, M.; Al Johani, S.; Arabi, Y.M. Developing machine-learning prediction algorithm for bacteremia in admitted patients. Infect. Drug Resist. 2021, 14, 757–765. [Google Scholar] [CrossRef]
- Bone, R.C.; Balk, R.A.; Cerra, F.B.; Dellinger, R.P.; Fein, A.M.; Knaus, W.A.; Schein, R.M.; Sibbald, W.J. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest 1992, 101, 1644–1655. [Google Scholar] [CrossRef] [Green Version]
- Drees, M.; Kanapathippillai, N.; Zubrow, M.T. Bandemia with normal white blood cell counts associated with infection. Am. J. Med. 2012, 125, 1124.e9–1124.e15. [Google Scholar] [CrossRef] [Green Version]
- Fontanarosa, P.B.; Kaeberlein, F.J.; Gerson, L.W.; Thomson, R.B. Difficulty in predicting bacteremia in elderly emergency patients. Ann. Emerg. Med. 1992, 21, 842–848. [Google Scholar] [CrossRef]
- Seigel, T.A.; Cocchi, M.N.; Salciccioli, J.; Shapiro, N.I.; Howell, M.; Tang, A.; Donnino, M.W. Inadequacy of temperature and white blood cell count in predicting bacteremia in patients with suspected infection. J. Emerg. Med. 2012, 42, 254–259. [Google Scholar] [CrossRef]
- Mare, T.A.; Treacher, D.F.; Shankar-Hari, M.; Beale, R.; Lewis, S.M.; Chambers, D.J.; Brown, K.A. The diagnostic and prognostic significance of monitoring blood levels of immature neutrophils in patients with systemic inflammation. Crit Care 2015, 19, 57. [Google Scholar] [CrossRef] [Green Version]
- Doern, G.V.; Carroll, K.C.; Diekema, D.J.; Garey, K.W.; Rupp, M.E.; Weinstein, M.P.; Sexton, D.J. Practical guidance for clinical microbiology laboratories: A comprehensive update on the problem of blood culture contamination and a discussion of methods for addressing the problem. Clin. Microbiol. Rev. 2019, 33, e00009-19. [Google Scholar] [CrossRef]
- Hirosawa, T.; Harada, Y.; Morinaga, K.; Takase, H.; Nin, M.; Shimizu, T. Eosinopenia as a diagnostic marker of bloodstream infection in a general internal medicine setting: A cohort study. BMC Infect. Dis. 2020, 20, 85. [Google Scholar] [CrossRef] [Green Version]
- Templier, V.; Livacge, T.; Boisset, S.; Maurin, M.; Slimani, S.; Mathey, R.; Roupioz, Y. Biochips for Direct Detection and Identification of Bacteria in Blood Culture-Like Conditions. Sci. Rep. 2017, 7, 9457. [Google Scholar] [CrossRef]
- Opota, O.; Jaton, K.; Greub, G. Microbial diagnosis of bloodstream infection: Towards molecular diagnosis directly from blood. Clin. Microbiol. Infect. 2015, 21, 323–331. [Google Scholar] [CrossRef] [Green Version]
- Liesenfeld, O.; Lehman, L.; Hunfeld, K.P.; Kost, G. Molecular diagnosis of sepsis: New aspects and recent developments. Eur. J. Microbiol. Immunol. 2014, 4, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Źródłowski, T.; Sobońska, J.; Salamon, D.; McFarlane, I.M.; Ziętkiewicz, M.; Gosiewski, T. Classical Microbiological Diagnostics of Bacteremia: Are the negative results really negative? What is the laboratory result telling us about the “gold standard”? Microorganisms 2020, 8, 346. [Google Scholar] [CrossRef] [Green Version]
Bacteremia (N = 188) | No Bacteremia (N = 782) | p-Value | |
---|---|---|---|
Age > 65 (%) | 143/188 (76.1%) | 530/782 (67.8%) | 0.027 |
Men (%) | 110/188 (58.5%) | 519/782 (66.4%) | 0.043 |
Body temperature * >38.0 or <36.0 (%) | 135/180 (75.0%) | 368/735 (50.1%) | 0.001 |
White blood cell count >12,000 or <4000 cells/mm3 (%) | 100/188 (53.2%) | 313/782 (40.0%) | <0.001 |
Eosinophil count <25 cells/mm3 (%) | 135/188 (71.8%) | 379/782 (48.5%) | <0.001 |
Bandemia (%) | 79/188 (42.0%) | 72/782(9.2%) | <0.001 |
Microbiology | Isolate Number (N = 190) |
---|---|
Escherichia coli | 52 (27.4%) |
Staphylococcus aureus | 37 (19.5%) |
Klebsiella pneumonia | 26 (13.7%) |
Klebsiella oxytoca | 9 (4.7%) |
Enterococcus faecalis | 8 (4.2%) |
Coagulase-negative staphylococcus | 7 (3.7%) |
Enterobacter cloacae | 6 (3.2%) |
Pseudomonas aeruginosa | 6 (3.2%) |
Streptcoccus pneumonia | 6 (3.2%) |
Streptcoccus agalactiae | 4 (2.1%) |
Bacteroides spp. | 4 (2.1%) |
Serratia marcescens | 3 (1.6%) |
Group G streptococci | 3 (1.6%) |
Other Streptococcus spp. | 6 (3.2%) |
Miscellaneous | 13 (6.8%) |
Odds Ratio (Univariate Model) | p-Value | Odds Ratio (Multivariate Model) | p-Value | |
---|---|---|---|---|
Bandemia | 7.15 (4.91–10.50) | <0.001 | 6.13 (4.02–9.40) | <0.001 |
Age > 65 | 1.51 (1.05–2.20) | 0.028 | 1.46 (0.97–2.22) | 0.075 |
Male | 0.71 (0.52–0.99) | 0.043 | 0.86 (0.59–1.24) | 0.411 |
Body temperature >38.0 or <36.0 | 2.99 (2.09–4.36) | <0.001 | 3.22 (2.18–4.84) | <0.01 |
White blood cell count >12,000 or <4000 cells/mm3 | 1.70 (1.24–2.35) | <0.001 | 1.15 (0.79–1.66) | 0.471 |
Eosinophil count <25 cells/mm3 | 2.71 (1.92–3.86) | <0.001 | 1.99 (1.35–2.97) | 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harada, T.; Harada, Y.; Morinaga, K.; Hirosawa, T.; Shimizu, T. Bandemia as an Early Predictive Marker of Bacteremia: A Retrospective Cohort Study. Int. J. Environ. Res. Public Health 2022, 19, 2275. https://doi.org/10.3390/ijerph19042275
Harada T, Harada Y, Morinaga K, Hirosawa T, Shimizu T. Bandemia as an Early Predictive Marker of Bacteremia: A Retrospective Cohort Study. International Journal of Environmental Research and Public Health. 2022; 19(4):2275. https://doi.org/10.3390/ijerph19042275
Chicago/Turabian StyleHarada, Taku, Yukinori Harada, Kohei Morinaga, Takanobu Hirosawa, and Taro Shimizu. 2022. "Bandemia as an Early Predictive Marker of Bacteremia: A Retrospective Cohort Study" International Journal of Environmental Research and Public Health 19, no. 4: 2275. https://doi.org/10.3390/ijerph19042275
APA StyleHarada, T., Harada, Y., Morinaga, K., Hirosawa, T., & Shimizu, T. (2022). Bandemia as an Early Predictive Marker of Bacteremia: A Retrospective Cohort Study. International Journal of Environmental Research and Public Health, 19(4), 2275. https://doi.org/10.3390/ijerph19042275