Development and Testing of a Portable Virtual Reality-Based Mirror Visual Feedback System with Behavioral Measures Monitoring
Abstract
:1. Introduction
1.1. Mirror Visual Feedback
1.2. Virtual Reality
1.3. Virtual Reality Based Mirror Visual Feedback
1.4. Goals
2. Materials and Methods
2.1. Technical Aspects of the System
2.1.1. Hardware
2.1.2. Software
2.1.3. Virtual Environment
2.1.4. Interaction with the Virtual Environment
2.1.5. Motor Task
2.1.6. Configuration Parameters
- The real hand: left or right. This parameter indicates the real hand that is going to be used to perform the exercise.
- The virtual hand: left, right, or both. This parameter indicates the hand or hands that are going to be visualized in the virtual world. If the virtual hand coincides with the real one, no mirrored effect will be observed. If the virtual hand is the opposite to the real one, the mirror effect will be applied to the real hand movements to obtain the virtual hand movements. If both hands are visualized, the hand that coincides with the real one will follow the real movements and the opposite one will follow the real movements in a mirror way.
- Initial waiting period. An initial waiting period in seconds is indicated. During this initial period, no cube appears on the table, so the user has no task to perform
- Timing information for the task repetitions. For each repetition, the maximum time available to perform the task is indicated. In the initial moment of each repetition, a cube will appear on the table, and the participant will have to move it to its final position. If the user leaves the cube when it is in the final location, the task will be successful, and the cube will disappear. However, if the user leaves the cube before arriving to the target location, the cube will return to the original point, so the exercise can be tried again if there is still time available. If the maximum time to perform the task has elapsed, and the task has not been successfully finished, the cube will disappear, and the next repetition will start. A new cube will appear in the initial location.
2.1.7. Behavioral Data
- Iteration number.
- Successful iteration (Yes/No). This parameter lets us know if the current repetition task has been successfully performed.
- Reaction time(s). Time until the cube is first grabbed since its appearance.
- Performance time(s). Time that the participant needs to move the cube from its initial position to its final one. If the repetition is successful, it will be the elapsed time since the cube is grabbed for the first time in the iteration until it is left in its correct final location. If the repetition is not successful, the reaction time plus the performance time will be equal to the maximum time available to perform the task.
- Trajectory. List of coordinates (X, Y, Z) followed by the cube during its trajectory while it is held by the hand. From this data, the total length and the maximum deviations in the horizontal and vertical axes are calculated.
2.2. System Testing
2.2.1. Participants
2.2.2. Protocol
- Dominant Real, Dominant Virtual (DR_DV). This configuration corresponds to motor training without MVF with the dominant hand. The participants must perform the movements in the real world with their dominant hand. In the virtual environment, the movements are also performed with the dominant hand. The non-dominant virtual hand is not shown in the virtual environment.
- Non-Dominant Real, Non-Dominant Virtual (NDR_NDV). This configuration is analogous to the previous one (motor training without MVF), but the non-dominant hand is used to perform the task.
- Dominant Real, Non-Dominant Virtual (DR_NDV). This configuration corresponds to a VR-based MVF training. The participants must perform the movements in the real world with their dominant hand. These movements will be visualized in the virtual environment in a mirror way in the non-dominant virtual hand.
- Non-Dominant Real, Dominant Virtual (NDR_DV). This configuration is analogous to the previous one (VR-based MVF training) but, in this case, the participant must perform the movements in the real world with the non-dominant hand. These movements will be visualized in the virtual world in the dominant hand in a mirror way.
2.2.3. Statistical Analysis
3. Results
3.1. Handedness
3.2. MMSQ-Short
3.3. Embodiment (pESQ)
3.4. Positive and Adverse Reactions
3.5. Response Times
3.6. Performance Times
3.7. Trajectory Lengths
3.8. Maximum Vertical and Horizontal Deviations
3.9. Presence and Usability
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ramachandran, V.S.; Rogers-Ramachandran, D.; Cobb, S. Touching the phantom limb. Nature 1995, 377, 489–490. [Google Scholar] [CrossRef] [PubMed]
- Campo-Prieto, P.; Rodríguez-Fuentes, G. Efectividad de la terapia de espejo en el dolor del miembro fantasma. Una revisión actual de la literatura (Effectiveness of mirror therapy in phantom limb pain: A literature review). Neurología 2020. In Press. [Google Scholar] [CrossRef]
- Moseley, G.L. Graded motor imagery for pathologic pain: A randomized controlled trial. Neurology 2006, 67, 2129–2134. [Google Scholar] [CrossRef] [PubMed]
- Chan, B.L.; Charrow, A.P.; Howard, R.; Pasquina, P.F.; Heilman, K.M.; Tsao, J.W. Mirror therapy for phantom limb pain. New Engl. J. Med. 2007, 357, 2206. [Google Scholar] [CrossRef] [Green Version]
- Finn, S.B.; Perry, B.N.; Clasing, J.E.; Walters, L.S.; Jarzombek, S.L.; Curran, S.; Rouhanian, M.; Keszler, M.S.; Hussey-Andersen, L.K.; Weeks, S.R.; et al. A randomized, controlled trial of mirror therapy for upper extremity phantom limb pain in male amputees. Front. Neurol. 2017, 8, 267. [Google Scholar] [CrossRef] [Green Version]
- Darnall, B.D.; Li, H. Home-based self-delivered mirror therapy for phantom pain: A pilot study. J. Rehabil. Med. 2012, 44, 254–260. [Google Scholar] [CrossRef] [Green Version]
- Foell, J.; Bekrater-Bodmann, R.; Diers, M.; Flor, H. Mirror therapy for phantom limb pain: Brain changes and the role of body representation. Eur. J. Pain 2014, 18, 729–739. [Google Scholar] [CrossRef]
- Méndez-Rebolledo, G.; Gatica-Rojas, V.; Torres-Cueco, R.; Albornoz-Verdugo, M.; Guzmán-Muñoz, E. Update on the effects of graded motor imagery and mirror therapy on complex regional pain syndrome type 1: A systematic review. J. Back Musculoskelet. Rehabil. 2017, 30, 441–449. [Google Scholar] [CrossRef]
- Kotiuk, V.; Burianov, O.; Kostrub, O.; Khimion, L.; Zasadnyuk, I. The impact of mirror therapy on body schema perception in patients with complex regional pain syndrome after distal radius fractures. Br. J. Pain 2019, 13, 35–42. [Google Scholar] [CrossRef]
- Wittkopf, P.G.; Lloyd, D.M.; Johnson, M.I. The effect of visual feedback of body parts on pain perception: A systematic review of clinical and experimental studies. Eur. J. Pain 2018, 22, 647–662. [Google Scholar] [CrossRef] [Green Version]
- Wittkopf, P.G.; Johnson, M.I. Mirror therapy: A potential intervention for pain management. Rev. Da Assoc. Médica Bras. 2017, 63, 1000–1005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Masaeed, R.; ALBashtawy, M.; Al Ali, N.; Mohammad, K.I.; Albashtawy, B.; Fawares, F.; Alkhawaldeh, A. Effect of Mirror Therapy on Motor Function in Extremities and Daily Activities in Stroke Patients. Med. Leg. Update 2021, 21, 260–262. [Google Scholar]
- Blanco-Alonso, M.; Da Cuña-Carrera, I.; González-González, Y. Efectividad de la terapia en espejo en la rehabilitación del ictus (Effectiveness of mirror therapy in stroke rehabilitation). Arch. Neurocien. 2020, 24, 48–58. [Google Scholar] [CrossRef]
- Ghandhi, D.B.; Sterba, A.; Khatter, H.; Pandian, J.D. Mirror Therapy in Stroke Rehabilitation: Current Perspectives. Ther. Clin. Risk Manag. 2020, 16, 75–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cantero-Téllez, R.; Naughton, N.; Algar, L.; Valdes, K. Outcome measurement of hand function following mirror therapy for stroke rehabilitation: A systematic review. J. Hand Ther. 2019, 32, 277–291. [Google Scholar] [CrossRef] [PubMed]
- Dhami, S.; Kumar, N.; Kumar, N.; Patra, A.; Sharma, N.; Chauhan, A. Mirror Therapy and Repetitive Facilitation Exercise Improve the Upper Extremity Motor Recovery in Hemiparesis Patients. Physiother. Occup. Ther. J. 2019, 12, 59–67. [Google Scholar] [CrossRef]
- Louie, D.R.; Lim, S.B.; Eng, J.J. The efficacy of lower extremity mirror therapy for improving balance, gait, and motor function poststroke: A systematic review and meta-analysis. J. Stroke Cerebrovasc. Dis. 2019, 28, 107–120. [Google Scholar] [CrossRef]
- Darbois, N.; Guillaud, A.; Pinsault, N. Do robotics and virtual reality add real progress to mirror therapy rehabilitation? A scoping review. Rehabil. Res. Pract. 2018, 6412318. [Google Scholar] [CrossRef] [Green Version]
- Dunn, J.; Yeo, E.; Moghaddampour, P.; Chau, B.; Humbert, S. Virtual and augmented reality in the treatment of phantom limb pain: A literature review. NeuroRehabilitation 2017, 40, 595–601. [Google Scholar] [CrossRef]
- Longo, M.R.; Schüür, F.; Kammers, M.P.; Tsakiris, M.; Haggard, P. What is embodiment? A psychometric approach. Cognition 2008, 107, 978–998. [Google Scholar] [CrossRef] [Green Version]
- Kilteni, K.; Normand, J.M.; Sanchez-Vives, M.V.; Slater, M. Extending body space in immersive virtual reality: A very long arm illusion. PLoS ONE 2012, 7, e40867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsakiris, M. My body in the brain: A neurocognitive model of body-ownership. Neuropsychologia 2010, 48, 703–712. [Google Scholar] [CrossRef] [PubMed]
- Spanglang, B.; Normand, J.-M.; Borland, D.; Kilteni, K.; Giannopoulos, E.; Pomés, A.; González-Franco, M.; Perez-Marcos, D.M.; Arroyo-Palacios, J.; Navarro Muncunill, X.; et al. How to build an embodiment lab: Achieving body representation illusions in virtual reality. Front. Robot. AI 2014, 1, 9. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.W.; Kuo, L.C.; Lin, Y.C.; Su, F.C.; Lin, Y.A.; Hsu, H.Y. Development and testing of a virtual reality mirror therapy system for the sensorimotor performance of upper extremity: A pilot randomized controlled trial. IEEE Access 2021, 9, 14725–14734. [Google Scholar] [CrossRef]
- Osumi, M.; Ichinose, A.; Sumitani, M.; Wake, N.; Sano, Y.; Yozu, A.; Kumagaya, S.; Kuniyoshi, Y.; Morioka, S. Restoring movement representation and alleviating phantom limb pain through short-term neurorehabilitation with a virtual reality system. Eur. J. Pain 2017, 21, 140–147. [Google Scholar] [CrossRef]
- Sato, K.; Fukumori, S.; Matsusaki, T.; Maruo, T.; Ishikawa, S.; Nishie, H.; Takata, K.; Mizuhara, H.; Mizobuchi, S.; Nakatsuka, H.; et al. Non-immersive virtual reality mirror visual feedback therapy and its application for the treatment of complex regional pain syndrome: An open-label pilot study. Pain Med. 2010, 11, 622–629. [Google Scholar] [CrossRef] [Green Version]
- Bullock, K.; Won, A.S.; Bailenson, J.; Friedman, R. Virtual reality-delivered mirror visual feedback and exposure therapy for FND: A midpoint report of a randomized controlled feasibility study. J. Neuropsychiatry Clin. Neurosci. 2020, 32, 90–94. [Google Scholar] [CrossRef]
- Mazzola, S.; Prado, A.; Agrawal, S.K. An upper limb mirror therapy environment with hand tracking in virtual reality. In Proceedings of the 2020 8th IEEE RAS/EMBS International Conference for Biomedical Robotics and Biomechatronics (BioRob), New York, NY, USA, 29 November–1 December 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 752–758. [Google Scholar] [CrossRef]
- Weber, L.M.; Nilsen, D.M.; Gillen, G.; Yoon, J.; Stein, J. Immersive virtual reality mirror therapy for upper limb recovery following stroke: A pilot study. Am. J. Phys. Med. Rehabil. 2019, 98, 783–788. [Google Scholar] [CrossRef]
- Cole, J.; Crowle, S.; Austwick, G.; Henderson Slater, D. Exploratory findings with virtual reality for phantom limb pain; from stump motion to agency and analgesia. Disabil. Rehabil. 2009, 31, 846–854. [Google Scholar] [CrossRef]
- Ambron, E.; Miller, A.; Kuchenbecker, K.J.; Buxbaum, L.J.; Coslett, H.B. Immersive Low-Cost Virtual Reality Treatment for Phantom Limb Pain: Evidence from Two Cases. Front. Neurol. 2018, 19, 67. [Google Scholar] [CrossRef]
- Miclaus, R.S.; Roman, N.; Henter, R.; Caloian, S. Lower Extremity Rehabilitation in Patients with Post-Stroke Sequelae through Virtual Reality Associated with Mirror Therapy. Int. J. Environ. Res. Public Health 2021, 18, 2654. [Google Scholar] [CrossRef] [PubMed]
- Ossmy, O.; Mukamel, R. Using virtual reality to transfer motor skill knowledge from one hand to another. JoVE 2017, 127, 55965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swee, S.K.; You, L.Z.; Hang, B.W.W.; Kiang, D.K.T. Development of rehabilitation system using virtual reality. In Proceedings of the 2017 International Conference on Robotics, Automation and Sciences (ICORAS), Melaka, Malayia, 27–29 November 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Oldfield, R.C. The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia 1971, 9, 97–113. [Google Scholar] [CrossRef]
- Bryden, M.P. Measuring handedness with questionnaires. Neurospychologia 1977, 15, 617–624. [Google Scholar] [CrossRef]
- Golding, J.F. Predicting individual differences in motion sickness susceptibility by questionnaire. Personal. Individ. Differ. 2006, 41, 237–248. [Google Scholar] [CrossRef]
- Eubanks, J.C.; Moore, A.G.; Fishwick, P.A.; McMahan, R.P. A Preliminary Embodiment Short Questionnaire. Front. Virtual Real. 2021, 2, 24. [Google Scholar] [CrossRef]
- Rutledge, T.; Velez, D.; Depp, C.; McQuaid, J.R.; Wong, G.; Jones, R.C.W., III; Hampton Atkinson, J.; Giap, B.; Quan, A.; Giap, H. A virtual reality intervention for the treatment of phantom limb pain: Development and feasibility results. Pain Med. 2019, 20, 2051–2059. [Google Scholar] [CrossRef] [Green Version]
- Slater, M.; Usoh, M.; Steed, A. Depth of presence in virtual environments. Presence Teleoperators Virtual Environ. 1994, 3, 130–144. [Google Scholar] [CrossRef]
- Usoh, M.; Catena, E.; Arman, S.; Slater, M. Using presence questionnaires in reality. Presence Teleoperators Virtual Environ. 2000, 9, 497–503. [Google Scholar] [CrossRef]
- Brooke, J. SUS-A quick and dirty usability scale. Usability Eval. Ind. 1996, 189, 4–7. [Google Scholar]
- Brooke, J. SUS: A retrospective. J. Usability Stud. 2013, 8, 29–40. [Google Scholar]
- Veerbeek, J.M.; van Wegen, E.; van Peppen, R.; van der Wees, P.J.; Hendriks, E.; Rietberg, M.; Kwakkel, G. What is the evidence for physical therapy poststroke? A systematic review and meta-analysis. PLoS ONE 2014, 9, e87987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Limanowski, J.; Kirilina, E.; Blankenburg, F. Neuronal correlates of continuous manual tracking under varying visual movement feedback in a virtual reality environment. Neuroimage 2017, 146, 81–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nierula, B.; Martini, M.; Matamala-Gomez, M.; Slater, M.; Sanchez-Vives, M.V. Seeing an embodied virtual hand is analgesic contingent on colocation. J. Pain 2017, 18, 645–655. [Google Scholar] [CrossRef] [Green Version]
DR_DV | DR_NDV | NDR_DV | NDR_NDV | |
---|---|---|---|---|
pESQ | 4.75 | 4 | 4 | 4.67 |
pESQ-SL | 5 | 3 | 3 | 5 |
pESQ-A | 4.75 | 4.5 | 4.5 | 5 |
pESQ-BO | 5 | 4 | 5 | 5 |
Reactions (%) | DR_DV | DR_NDV | NDR_DV | NDR_NDV |
---|---|---|---|---|
Positive | 95 | 80 | 80 | 80 |
Fun | 55 | 55 | 45 | 60 |
Relaxing | 45 | 25 | 20 | 35 |
Challenging | 10 | 25 | 45 | 5 |
Distracting | 35 | 15 | 20 | 20 |
Others | 0 | 0 | 5 | 5 |
Adverse | 0 | 25 | 20 | 5 |
Dizziness | 0 | 10 | 10 | 5 |
Fatigue | 0 | 15 | 5 | 0 |
Anxiety | 0 | 5 | 5 | 0 |
Others | 0 | 0 | 5 | 5 |
Study | Device | Portable | Configurable | Exercise | Behavioral Information |
---|---|---|---|---|---|
Current study | Meta Quest | Yes | Yes (different mirror conditions and timings) | Moving an object | Response time, performance time, trajectory |
Lin et al. [24] | Oculus Rift + Leap Motion | No | No | Hand rehabilitation related activities | No |
Osumi et al. [25] | Oculus Rift DK2 + Kinect + Leap Motion | No | No | Reach and touch a target object | No |
Bullock et al. [27] | HTC-Vive | Yes, but with a simplified Google Cardboard version | No | Explore a virtual world where several tasks can be performed | No |
Mazzola et al. [28] | HTC Vive Pro + Leap Motion | No | No | Stack four blocks | Performance time, EMG |
Weber et al. [29] | Oculus Rift | No | Yes (avatar can be personalized) | Simple hand motion exercise, rock stacking and functional task | No |
Ossmy and Mukamel [33] | Oculus Rift DK1 + 5DT Data Glove + PlayStation Eye Camera + Rehabit-Tec | No | No | 5-digit finger sequence movement | Recorded movements from the glove can be visualized offline |
Swee et al. [34] | Mobile-based VR headset + Kinect + Leap Motion | No | No | Pick and Place. Balance. | Time upon completion |
Rutledge et al. [39] | Oculus Rift, motion sensor and pedaler | Yes (only with a compatible computer at home or with a smart-phone simplified version) | No | Simple exercises for arms and legs (e.g., clenching the fist) | No |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rey, B.; Oliver, A.; Monzo, J.M.; Riquelme, I. Development and Testing of a Portable Virtual Reality-Based Mirror Visual Feedback System with Behavioral Measures Monitoring. Int. J. Environ. Res. Public Health 2022, 19, 2276. https://doi.org/10.3390/ijerph19042276
Rey B, Oliver A, Monzo JM, Riquelme I. Development and Testing of a Portable Virtual Reality-Based Mirror Visual Feedback System with Behavioral Measures Monitoring. International Journal of Environmental Research and Public Health. 2022; 19(4):2276. https://doi.org/10.3390/ijerph19042276
Chicago/Turabian StyleRey, Beatriz, Alejandro Oliver, Jose M. Monzo, and Inmaculada Riquelme. 2022. "Development and Testing of a Portable Virtual Reality-Based Mirror Visual Feedback System with Behavioral Measures Monitoring" International Journal of Environmental Research and Public Health 19, no. 4: 2276. https://doi.org/10.3390/ijerph19042276
APA StyleRey, B., Oliver, A., Monzo, J. M., & Riquelme, I. (2022). Development and Testing of a Portable Virtual Reality-Based Mirror Visual Feedback System with Behavioral Measures Monitoring. International Journal of Environmental Research and Public Health, 19(4), 2276. https://doi.org/10.3390/ijerph19042276