Applications of Sponge Iron and Effects of Organic Carbon Source on Sulfate-Reducing Ammonium Oxidation Process
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sponge Iron Treatment and Synthetic Wastewater
2.2. Reactor Setup and Operation
2.3. Sequencing Batch Experiments
2.4. Measurements
2.5. Analysis of Microbial Community
3. Results and Discussion
3.1. Effect of Sponge Iron during Start-Up of SRAO System
3.2. Influence of Organic Carbon Source in SRAO System
3.3. Analysis of Microbial Community
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Madaleno, M.; Moutinho, V. Analysis of the new Kuznets relationship: Considering emissions of carbon, methanol and nitrous oxide greenhouse gases—Evidence from EU countries. Int. J. Environ. Res. Public Health 2021, 18, 2907. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Yang, D.; Huang, A. Leap-based greenhouse gases emissions peak and low carbon pathways in China’s tourist industry. Int. J. Environ. Res. Public Health 2021, 18, 1218. [Google Scholar] [CrossRef] [PubMed]
- Olivia, A.; Cheng, Z.Z.; Thomas, P.; Lie, S.R.; Gurney, K.R.; Liang, J.; Roeste, G.; He, L.; Yung, Y.L.; Sander, S.P. Estimating nitrous oxide (N2O) emissions for the Los Angeles Megacity using mountaintop remote sensing observations. Remote Sens. Environ. 2021, 259, 112351. [Google Scholar]
- Massara, T.M.; Malamis, S.; Guisasola, A.; Baeza, J.A.; Noutsopoulos, C.; Katsou, E. A review on nitrous oxide (N2O) emissions during biological nutrient removal from municipal wastewater and sludge reject water. Sci. Total Environ. 2017, 596–597, 106–123. [Google Scholar] [CrossRef]
- Ramírez-Melgarejo, M.; Reyes-Figueroa, A.D.; Gassó-Domingo, S.; Güereca, L.P. Analysis of empirical methods for the quantification of N2O emissions in wastewater treatment plants: Comparison of emission results obtained from the IPCC Tier 1 methodology and the methodologies that integrate operational data. Sci. Total Environ. 2020, 747, 141288. [Google Scholar] [CrossRef]
- Fdz-Polanco, F.; Fdz-Polanco, M.; Fernandez, N.; Uruena, M.A.; Villaverde, S. New process for simultaneous removal of nitrogen and Sulphur under anaerobic conditions. Water Res. 2001, 35, 1111–1114. [Google Scholar] [CrossRef]
- Liu, T.; Tian, R.; Li, Q.; Wu, N.; Quan, X. Strengthened attachment of anammox bacteria on iron-based modified carrier and its effects on anammox performance in integrated floating-film activated sludge (IFFAS) process. Sci. Total Environ. 2021, 787, 147679. [Google Scholar] [CrossRef]
- Li, J.; Zeng, W.; Liu, H.; Wu, Y.; Miao, H.H. Performances and mechanisms of simultaneous nitrate and phosphate removal in sponge iron biofilter. Bioresour. Technol. 2021, 337, 125390. [Google Scholar] [CrossRef]
- Hao, X.; Wei, J.; Van Loosdrecht, M.; Cao, D. Analyzing the mechanisms of sludge digestion enhanced by iron. Water Res. 2017, 17, 58–67. [Google Scholar] [CrossRef]
- Bi, Z.; Wanyan, D.; Li, X.; Huang, Y. Biological conversion pathways of sulfate reduction ammonium oxidation in anammox consortia. Front. Environ. Sci. Eng. 2020, 14, 38–48. [Google Scholar] [CrossRef]
- Tang, L.; Li, J.; Li, Y.; Zhang, X.; Shi, X. Mixotrophic denitrification processes based on composite filler for low carbon/nitrogen wastewater treatment. Chemosphere 2021, 286, 131781. [Google Scholar] [CrossRef]
- Kumar, M.; Lin, J.G. Co-existence of anammox and denitrification for simultaneous nitrogen and carbon removal-strategies and issues. J. Hazard. Mater. 2010, 178, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.K.; Singh, R. Modeling and statistical analysis of heat-shocked sulfate-reducers and methanogens rich consortiums for hydrogen and methane production in a bio-electrochemical cell. Int. J. Hydrog. Energy 2021, 46, 25819–25831. [Google Scholar] [CrossRef]
- Lei, Z.; Ping, Z.; He, Y.H.; Jin, R.C. Performance of sulfate-dependent anaerobic ammonium oxidation. Sci. China Ser. B Chem. 2009, 52, 86–92. [Google Scholar]
- Liu, X.; Dang, Y.; Sun, D.Z.; Holmes, D.E. Identification of optimal parameters for treatment of high-strength ammonium leachate by mixed communities of heterotrophic nitrifying/aerobic denitrifying bacteria. Bioresour. Technol. 2021, 336, 125415. [Google Scholar] [CrossRef]
- Chamchoi, N.; Nitisoravut, S.; Schmidt, J.E. Inactivation of anammox communities under concurrent operation of anaerobic ammonium oxidation (anammox) and denitrification. Bioresour. Technol. 2008, 99, 3331–3336. [Google Scholar] [CrossRef]
- Zhang, J.; Ren, L.; Zhang, D.; Li, J.; Peng, S.; Han, X.; Ding, A.; Lu, P. Reduction of no to N2 in an autotrophic up-flow bioreactor with sponge iron bed based Fe(ii) EDTA complexation. Fuel 2019, 254, 115631. [Google Scholar] [CrossRef]
- Li, J.; Wei, L.; Li, Y. Cadmium removal from wastewater by sponge iron sphere prepared by hydrogen reduction. J. Environ. Sci. 2021, 23, 114–118. [Google Scholar] [CrossRef]
- Sliekers, A.O.; Derwort, N.; Gomez, J.; Strous, M.; Kuenen, J.G.; Jetten, M. Completely autotrophic nitrogen removal over nitrite in one single reactor. Water Res. 2002, 36, 2475–2482. [Google Scholar] [CrossRef]
- Liu, L.Y.; Xie, G.J.; Xing, D.F.; Liu, B.F.; Ren, N.Q. Sulfate dependent ammonium oxidation: A microbial process linked nitrogen with sulfur cycle and potential application. Environ. Res. 2020, 192, 110282. [Google Scholar] [CrossRef]
- Liu, T.; Ou, H.; Su, K.; Hu, Z.; He, C.; Wang, W. Promoting direct interspecies electron transfer and acetoclastic methanogenesis for enhancing anaerobic digestion of butanol octanol wastewater by coupling granular activated carbon and exogenous hydrogen. Bioresour. Technol. 2021, 337, 125417. [Google Scholar] [CrossRef] [PubMed]
- Xiao, S.J.; Herbert, H.; Fang, P. Methanogenic Characteristics of Formate-Utilizing Sludge. J. Environ. Eng. 1999, 125, 596–601. [Google Scholar]
- Wei, F.; Bi, T. Water and Wastewater Monitoring and Analysis Methods, 4th ed.; China Environmental Science Press: Beijing, China, 2002; pp. 156–162. [Google Scholar]
- Nan, X.; Tan, G.; Wang, H.; Gai, X. Effect of biochar additions to soil on nitrogen leaching, microbial biomass and bacterial community structure. Eur. J. Soil Biol. 2016, 74, 1–8. [Google Scholar]
- Kartal, B.; Niftrik, L.V.; Keltjens, J.T.; Camp, H.; Jetten, M. Anammox-growth physiology, cell biology, and metabolism. Adv. Microb. Physiol. 2012, 60, 211–262. [Google Scholar] [PubMed]
- Wen, C.; Xu, X.; Fan, Y.; Xiao, C.; Ma, C. Pretreatment of water-based seed coating wastewater by combined coagulation and sponge-iron-catalyzed ozonation technology. Chemosphere 2018, 206, 238–247. [Google Scholar] [CrossRef] [PubMed]
- Gahlot, P.; Ahmed, B.; Tiwari, S.B.; Aryal, N.; Tyagi, V.K. Conductive material engineered direct interspecies electron transfer (diet) in anaerobic digestion: Mechanism and application. J. Environ. Technol. Innov. 2020, 20, 101056. [Google Scholar] [CrossRef]
- Nguyen, L.N.; Vu, M.T.; Johir, M.A.H.; Pernice, M.; Ngo, H.H.; Zdarta, J.; Jesionowski, T.; Nghiem, L.D. Promotion of direct interspecies electron transfer and potential impact of conductive materials in anaerobic digestion and its downstream processing—A critical review. Bioresour. Technol. 2021, 341, 125847. [Google Scholar] [CrossRef]
- Jiang, Y.; Qin, Y.; Yu, F.; Li, H.; Liu, K. Is cod/SO42− ratio responsible for metabolic phase-separation shift in anaerobic baffled reactor treating sulfate-laden wastewater? Int. Biodeterior. Biodegrad. 2018, 126, 37–44. [Google Scholar] [CrossRef]
- Ji, X.; Zheng, C.; Wang, Y.L.; Jin, R.C. Decoding the interspecies interaction in anammox process with inorganic feeding through metagenomic and metatranscriptomic analysis. J. Clean. Prod. 2020, 288, 125691. [Google Scholar] [CrossRef]
- Makinia, J.; Grubba, D.; Majtacz, J. Sulfate reducing ammonium oxidation (sulfammox) process under anaerobic conditions. Environ. Technol. Innov. 2021, 22, 101416. [Google Scholar]
- Zanaroli, G.; Balloi, A.; Negroni, A.; Borruso, L.; Daffonchio, D.; Fava, F. A Chloroflexi bacterium dechlorinates polychlorinated biphenyls in marine sediments under in situ-like biogeochemical conditions. J. Hazard. Mater. 2012, 209–210, 449–457. [Google Scholar] [CrossRef] [PubMed]
- Niu, Z.S.; Yan, J.; Guo, X.P.; Xu, M.; Yang, Y. Human activities can drive sulfate-reducing bacteria community in Chinese intertidal sediments by affecting metal distribution. Sci. Total Environ. 2021, 786, 147490. [Google Scholar] [CrossRef] [PubMed]
- Cai, M.H.; Luo, G.; Li, J.; Li, W.T.; Li, Y.; Li, A.M. Substrate competition and microbial function in sulfate-reducing internal circulation anaerobic reactor in the presence of nitrate. Chemosphere 2021, 280, 130937. [Google Scholar] [CrossRef] [PubMed]
- Cui, B.; Yang, Q.; Liu, X.; Wu, W.; Gu, P. Achieving partial denitrification-anammox in biofilter for advanced wastewater treatment. Environ. Int. 2020, 138, 105612. [Google Scholar] [CrossRef]
- Kim, E.; Yulisa, A.; Kim, S.; Hwang, S. Monitoring microbial community structure and variations in a full-scale petroleum refinery wastewater treatment plant. Bioresour. Technol. 2020, 306, 123178. [Google Scholar] [CrossRef]
- Wang, Q.; Zhou, G.; Qin, Y.; Wang, R.; Li, H.; Xu, F.; Du, Y.; Zhao, C.; Zhang, H.; Kong, Q. Sulfate removal performance and co-occurrence patterns of microbial community in constructed wetlands treating saline wastewater. J. Water Process Eng. 2021, 43, 102266. [Google Scholar] [CrossRef]
- Yao, J.; Wei, L.; Dong, O.D.; Lei, L.; Muhammad, A.B.; Liu, Y. Performance and granular characteristics of salt-tolerant aerobic granular reactors response to multiple hypersaline wastewater. Chemosphere 2021, 265, 129170. [Google Scholar] [CrossRef]
- Kosugi, Y.; Matsuura, N.; Liang, Q.; Yamamoto-Ikemoto, R. Nitrogen flow and microbial community in the anoxic reactor of “sulfate reduction, denitrification/anammox and partial nitrification” process. Biochem. Eng. J. 2019, 151, 107304. [Google Scholar] [CrossRef]
- Ali, M.; Okabe, S. Anammox-based technologies for nitrogen removal: Advances in process start-up and remaining issues. Chemosphere 2015, 141, 144–153. [Google Scholar] [CrossRef]
- Sun, X.; Du, L.; Hou, Y.; Cheng, S.; Zhang, X.; Liu, B. Endogenous influences on anammox and sulfocompound-oxidizing autotrophic denitrification coupling system (A/SAD) and dynamic operating strategy. Bioresour. Technol. 2018, 264, 253–260. [Google Scholar] [CrossRef]
Chemicals | Concentration (mg/L) |
---|---|
KH2PO4 | 27 |
CaCl2 | 180 |
MgSO4·7H2O | 300 |
NaHCO3 | 1250 |
NH4Cl | 125 |
K2SO4 | 444 |
H3BO3 | 0.14 |
MnCl2·4H2O | 009.9 |
CuSO4·5H2O | 2.5 |
ZnSO4·7H2O | 4.3 |
NiCl2·6H2O | 1.9 |
Na2MoO4·2H2O | 2.2 |
CoCl2·6 H2O | 24 |
EDTA | 5 |
FeSO4 | 5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Y.; Yang, S.; Wang, W.; Meng, L.; Guo, J. Applications of Sponge Iron and Effects of Organic Carbon Source on Sulfate-Reducing Ammonium Oxidation Process. Int. J. Environ. Res. Public Health 2022, 19, 2283. https://doi.org/10.3390/ijerph19042283
Zhu Y, Yang S, Wang W, Meng L, Guo J. Applications of Sponge Iron and Effects of Organic Carbon Source on Sulfate-Reducing Ammonium Oxidation Process. International Journal of Environmental Research and Public Health. 2022; 19(4):2283. https://doi.org/10.3390/ijerph19042283
Chicago/Turabian StyleZhu, Yanjun, Shidong Yang, Weizhuo Wang, Lingwei Meng, and Jingbo Guo. 2022. "Applications of Sponge Iron and Effects of Organic Carbon Source on Sulfate-Reducing Ammonium Oxidation Process" International Journal of Environmental Research and Public Health 19, no. 4: 2283. https://doi.org/10.3390/ijerph19042283
APA StyleZhu, Y., Yang, S., Wang, W., Meng, L., & Guo, J. (2022). Applications of Sponge Iron and Effects of Organic Carbon Source on Sulfate-Reducing Ammonium Oxidation Process. International Journal of Environmental Research and Public Health, 19(4), 2283. https://doi.org/10.3390/ijerph19042283