Heavy Metals and the Occurrence of Ulcerative Dermal Necrosis (UDN) in Sea Trout from the RIVER REGA, Poland—Consumer Health Assessment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Materials
2.3. Sample Preparation
2.4. Determination of Lead (Pb), Cadmium (Cd), and Mercury (Hg)
2.5. Consumer Health Risk Assessment
2.6. Statistical Analysis
3. Results and Discussion
3.1. Fish Size and Dry Mass Content in Organs and Tissues of Sea Trout
3.2. Metal Concentrations in Fish Organs Depending on Sex and Health Condition
3.3. Health Risk Assessment for Fish Consumption
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Svobodová, Z.; Lloyd, R.; Máchová, J.; Vykusová, B. Water Quality and Fish Health; EIFAC Technical Paper; FAO: Rome, Italy, 1993; Volume 54, p. 59. [Google Scholar]
- Authman, M.M.N.; Zaki, M.S.; Khallaf, E.A.; Abbas, H.H. Use of fish as bio-indicator of the effects of heavy metals pollution. J. Aquac. Res. Dev. 2015, 6, 328. [Google Scholar] [CrossRef]
- Garai, P.; Banerjee, P.; Mondal, P.; Saha, N.C. Effect of heavy metals on fishes: Toxicity and bioaccumulation. J. Clin. Toxicol. 2021, 11, 18. [Google Scholar]
- Kallio-Nyberg, I.; Saura, A.; Ahlfors, P. Sea migration pattern of two sea trout (Salmo trutta) stocks released into the Gulf of Finland. Ann. Zool. Fen. 2002, 39, 221–235. [Google Scholar]
- ICES. Sea Trout (Salmo trutta) in Subdivisions 22–32 (Baltic Sea); Report of the ICES Advisory Committee; ICES: Copenhagen, Denmark, 2019; pp. 22–32. [Google Scholar] [CrossRef]
- Ciepliński, M.; Kasprzak, M.; Grandtke, M.; Giertych, M.J.; Steliga, A. Pattern of secondary infection with Saprolegnia spp. in wild spawners of UDN-affected sea trout Salmo trutta m. trutta (L.), the Słupia River, N Poland. Oceanol. Hydrobiol. Stud. 2018, 47, 230–238. [Google Scholar] [CrossRef]
- Tkachenko, H.; Kurhalyuk, N.; Pałczyńska, K. Responses of antioxidant status in the gills of brown trout (Salmo trutta m. trutta L.) with ulcerative dermal necrosis. Balt. Cost. Zone. J. Ecol. Prot. Coastline 2011, 15, 145–158. [Google Scholar]
- Roberts, R.J. Ulcerative dermal necrosis (UDN) in wild salmonids. Fish. Res. 1993, 17, 3–14. [Google Scholar] [CrossRef]
- Bartel, R.; Bernaś, R.; Grudniewska, J.; Jesiołowski, M.; Kacperska, B.; Marczyński, A.; Pazda, R.; Pender, R.; Połomski, S.; Skóra, M.; et al. Furunculosis in salmon (Salmo salar) and sea trout (Salmo trutta trutta) in Poland in 2007 and 2008. Komun. Ryb. 2009, 110, 7–13, (In Polish with English summary). [Google Scholar]
- Pourahmad, J.; O’Brien, P.J. A comparison of hepatocyte cytotoxic mechanism for Cu2+ and Cd2+. Toxicology 2000, 143, 263–273. [Google Scholar] [CrossRef]
- Protasowicki, M. Preliminary studies on selected elements in organs of dab Limanda limanda and their relation to fish disease state. Mar. Ecol. Prog. Ser. 1991, 91, 57–60. [Google Scholar] [CrossRef]
- Henry, F.; Amara, R.; Courcot, L.; Lacouture, D.; Bertho, M.L. Heavy metals in four fish species from the French coast of the Eastern English Channel and Southern Bight of the North Sea. Environ. Int. 2004, 30, 675–683. [Google Scholar] [CrossRef]
- Rodjuk, G.N.; Chukalova, N.N.; Shenderyuk, V.V.; Bakholdina, L.P.; Chernysheva, N.L.; Sayadov, S.O. Prevalence of skin ulceration in cod (Gadus morhua callarias L.) under anthropogenic contamination in the southeastern part of the Baltic Sea. Inland Water Biol. 2012, 5, 133–139. [Google Scholar] [CrossRef]
- Järup, L. Hazards of heavy metal contamination. Br. Med. Bull. 2003, 68, 167–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- US EPA. Quantitative Risk Assessment Calculations; Environmental Protection Agency: Washington, DC, USA, 2015. Available online: https://www.epa.gov/sites/default/files/2015-05/documents/13.pdf (accessed on 10 September 2021).
- European Comission. Commission Regulation (EC) No 1881/2006. Off. J. Eur. Union 2006, 49, 5–24, as Amended for: Lead (OJ L 286/1, 10.8.2021); Cadmium (OJ L 288/13, 11.8.2021). Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:02006R1881-20220101&from=EN (accessed on 12 October 2021).
- Bartel, R. Return of salmon back to Polish waters. Ecohydrol. Hydrobiol. 2001, 1, 377–392. [Google Scholar]
- Cedro, B. Evolution of the River Rega valley near Łobez in late Pleistocene and early Holocene. Geochronometria 2007, 28, 55–59. [Google Scholar] [CrossRef] [Green Version]
- AOAC. Official Methods of Analysis, 17th ed.; AOAC International: Gaithersburg, MD, USA, 2000; Method 950.46. [Google Scholar]
- USEPA. Risk-Based Concentration Table; United States Environmental Protection Agency: Washington, DC, USA, 2000. Available online: https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables (accessed on 18 September 2021).
- European Food Safety Authority (EFSA). Lead dietary exposure in the European population. EFSA J. 2012, 10, 2831. [Google Scholar]
- European Food Safety Authority (EFSA). Cadmium dietary exposure in the European population. EFSA J. 2012, 10, 2551. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA). Panel on Contaminants in the Food Chain (CONTAM). Scientific Opinion on the risk for public health related to the presence of mercury and methylmercury in food. EFSA J. 2012, 10, 2985. [Google Scholar]
- Jezierska, B.; Witeska, M. The metal uptake and accumulation in fish living in polluted waters. In Soil and Water Pollution Monitoring, Protection and Remediation; NATO Science Series; Twardowska, I., Allen, H.E., Häggblom, M.M., Stefaniak, S., Eds.; Springer: Dordrecht, The Netherlands, 2006; Volume 69, pp. 107–114. [Google Scholar]
- Sauliute, G.; Svecevicius, G. Heavy metals (Zn, Cu, Ni, Cr, Pb, Cd) in water and body tissues of young atlantic salmon Salmo salar in two rivers of different pollution level: A comparison with fish condition parameters. Fresenius Environ. Bull. 2017, 26, 666–673. [Google Scholar]
- Vinodhini, R.; Narayanan, M. Bioaccumulation of heavy metals in organs of fresh water fish Cyprinus carpio (Common carp). Int. J. Environ. Sci. Tech. 2008, 5, 179–182. [Google Scholar] [CrossRef] [Green Version]
- Has-Schön, E.; Bogut, I.; Strelec, I. Heavy metal profile in five fish species included in human diet, domiciled in the end flow of river Neretva (Croatia). Arch. Environ. Contam. Toxicol. 2006, 50, 545–551. [Google Scholar] [CrossRef]
- Linde, A.R.; Sánchez-Galán, S.; Klein, D.; García-Vázquez, E.; Summer, K.H. Metallothionein and heavy metals in brown trout (Salmo trutta) and European eel (Anguilla anguilla): A comparative study. Ecotoxicol. Environ. Saf. 1999, 44, 168–173. [Google Scholar] [CrossRef]
- Can, E.; Yabanli, M.; Kehayias, G.; Aksu, Ö.; Kocabas, M.; Demir, V.; Kayim, M.; Kutluyer, F.; Şeker, S. Determination of bioaccumulation of heavy metals and selenium in tissues of brown trout Salmo trutta macrostigma (Dume´ril, 1858) from Munzur Stream, Tunceli, Turkey. Bull. Environ. Contam. Toxicol. 2012, 89, 1186–1189. [Google Scholar] [CrossRef] [PubMed]
- Madenjian, C.P.; Rediske, R.R.; Krabbenhoft, D.P.; Stapanian, M.A.; Chernyak, S.M.; O’Keefe, J.P. Sex differences in contaminant concentrations of fish: A synthesis. Biol. Sex Differ. 2016, 7, 42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perkins, E.J.; Griffin, B.; Hobbs, M.; Gollon, J.; Wolford, L.; Schlenk, D. Sexual differences in mortality and sublethal stress in channel catfish following a 10 week exposure to copper sulfate. Aquat. Toxicol. 1997, 37, 327–339. [Google Scholar] [CrossRef]
- Bastos, W.R.; Dórea, J.G.; Bernardi, J.V.E.; Manzatto, A.G.; Mussy, M.H.; Lauthartte, L.C.; Lacerda, L.D.; Malm, O. Sex-related mercury bioaccumulation in fish from the Madeira River, Amazon. Environ. Res. 2016, 144, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Storelli, M.M. Potential human health risks from metals (Hg, Cd, and Pb) and polychlorinated biphenyls (PCBs) via seafood consumption: Estimation of target hazard quotients (THQs) and toxic equivalents (TEQs). Food Chem. Toxicol. 2008, 46, 2782–2788. [Google Scholar] [CrossRef] [PubMed]
- Varol, M.; Sünbü, M. R Comparison of heavy metal levels of farmed and escaped farmed rainbow trout and health risk assessment associated with their consumption. Environ. Sci. Pollut. Res. 2017, 24, 23114–23124. [Google Scholar] [CrossRef]
- Makovský, J.; Spurný, P.; Mareš, J.; Hedbávný, J.; Vítek, T. Heavy metal pollution of ecosystem within the middle course of the Jihlava River. Acta Univ. Agric. et Silvic. Mendel. Brun. 2010, 53, 255–262. [Google Scholar]
- Goldman, L.R.; Shannon, M.W. and the Committee on Environmental Health. Technical Report: Mercury in the Environment: Implications for Pediatricians. Pediatrics 2001, 108, 197–205. [Google Scholar] [CrossRef] [Green Version]
- Falandysz, J.; Chwir, A.; Wyrzykowska, B. Total mercury contamination of some fish species in the firth of Vistula and the lower Vistula river, Poland. Pol. J. Environ. Stud. 2000, 9, 335–339. [Google Scholar]
- Bielak, R.; Borek, D.; Głowacka-Smolis, K.; Gustyn, J.; Kozera, A.; Kozłowska, J.; Marikin, M.; Morytz-Balska, E.; Rybak-Nguyen, E.; Safader, M.; et al. Statistical Yearbook of the Republic of Poland (GUS); Statistical Publishing Establishment: Warsaw, Poland, 2019. Available online: https://stat.gov.pl (accessed on 28 December 2019).
- European Food Safety Authority (EFSA). Scientific Committee Statement on the benefits of fish/seafood consumption compared to the risks of methylmercury in fish/seafood. EFSA J. 2015, 13, 3982. [Google Scholar]
- Staszowska, A.; Skałecki, P.; Florek, M.; Litwińczuk, A. Influence of fish species and environment on lead content and estimation of lead uptake from muscle tissue. Zywn. -Nauk. Technol. JA 2013, 6, 60–68. (In Polish) [Google Scholar]
- Kumar, A.; Kumar, A.; Jha, S.K. Human health risk assessment of heavy metals in major carp (Labeo rohita) of Mahananda river in Northern India. Emer. Life Sci. Res. 2020, 6, 34–49. [Google Scholar] [CrossRef]
- Marzec, Z.; Koch, W.; Marzec, A.; Żukiewicz-Sobczak, W. Dietary exposure to cadmium, lead and nickel among students from south-east Poland. Ann. Agric. Environ. Med. 2014, 21, 825–828. [Google Scholar] [CrossRef] [Green Version]
- Dadar, M.; Adel, M.; Nasrollahzadeh, S.H.; Fakhri, Y. Trace element concentration and its risk assessment in common fish (Clupeonella cultriventris caspia Bordin, 1904) from southern basin of Caspian Sea. Toxin. Rev. 2017, 36, 222–227. [Google Scholar]
- Barone, G.; Storelli, A.; Garofalo, R.; Busco, V.P.; Quaglia, N.C.; Centrone, G.; Storelli, M.M. Assessment of mercury and cadmium via seafood consumption in Italy: Estimated dietary intake (EWI) and target hazard quotient (THQ). Food Addit. Contam. Part A 2015, 32, 1277–1286. [Google Scholar] [CrossRef]
- Ruiz-Guzmán, J.A.; Marrugo-Negrete, J.L.; Díez, S. Human exposure to mercury through fish consumption: Risk assessment of riverside inhabitants of the Urrá Reservoir, Colombia. Hum. Ecol. Risk Assess. 2014, 20, 1151–1163. [Google Scholar] [CrossRef]
- Jędruch, A.; Bełdowska, M.; Ziółkowska, M. The role of benthic macrofauna in the trophic transfer of mercury in a low-diversity temperate coastal ecosystem (Puck Lagoon, southern Baltic Sea). Environ. Monit. Assess. 2019, 191, 137–162. [Google Scholar] [CrossRef] [Green Version]
- Djedjibegovic, J.; Marjanovic, A.; Tahirovic, D.; Caklovica, K.; Turalic, A.; Lugusic, A.; Omeragic, E.; Sober, M.; Caklovica, F. Heavy metals in commercial fish and seafood products and risk assessment in adult population in Bosnia and Herzegovina. Sci. Rep. 2020, 10, 13238. [Google Scholar] [CrossRef]
Sea Trout | n | Weight (g) | Length (cm) 1 |
---|---|---|---|
± SD (Min–Max) | ± SD (Min–Max) | ||
female (f) | |||
healthy (fH) | 20 | 1779.0 a ± 368.9 (1385.0–2615.0) | 58.8 a ± 3.3 (55.5–65.5) |
unhealthy (fUDN) | 20 | 1769.5 a ± 219.5 (1480.0–2140.0) | 56.6 b ± 3.5 (52.0–64.0) |
male (m) healthy(mH) | 0 2 | ||
unhealthy (mUDN) | 20 | 1724.0 a ± 444.0 (1190.0–2540.0) | 55.8 b ± 4.0 (50.0–61.0) |
all groups | 60 | 1756.5 1 ± 363.6 (1190.0–2615.0) | 56.9 ± 3.8 (50.0–65.5) |
Organ | Dry Matter (%) | ||
---|---|---|---|
fH | fUDN | mUDN | |
± SD | ± SD | ± SD | |
liver | 19.7 a ± 0.9 | 18.8 a ± 1.6 | 21.6 b ± 3.1 |
kidney | 19.0 a ± 2.0 | 16.1 b ± 2.3 | 17.1 b ± 1.7 |
gonads | 37.2 a ± 2.8 | 36.0 a ± 2.0 | 28.1 b ± 2.3 |
muscles | 21.0 a ± 1.8 | 21.1 a ± 1.6 | 20.8 a ± 1.2 |
gills | 17.0 a ± 2.1 | 17.7 a ± 1.7 | 15.6 b ± 1.9 |
Group | Metal | Liver | Kidney | Gonads | Gills | Muscle |
---|---|---|---|---|---|---|
(Min–Max) | ||||||
fH | Pb | 0.033 a | 0.028 a,c | 0.009 b | 0.017 b,c | 0.010 b |
(0.024–0.046) | (0.019–0.039) | (0.005–0.013) | (0.009–0.034) | (0.006–0.021) | ||
Cd | 0.076 a | 0.089 a | 0.002 b | 0.005 b | 0.004 b | |
(0.057–0.096) | (0.055–0.117) | (n.d.–0.005) | (0.002–0.011) | (n.d.–0.005) | ||
T-Hg | 0.059 a | 0.096 b | 0.004 b | 0.039 d | 0.060 a | |
(0.051–0.069) | (0.077–0.135) | (n.d.–0.008) | (0.032–0.049) | (0.048–0.095) | ||
Me-Hg | 0.050 | |||||
(0.040–0.079) | ||||||
fUDN | Pb | 0.04 a,c | 0.052 a | 0.018 b | 0.030 b,c | 0.016 b |
(0.029–0.061) | (0.035–0.077) | (0.011–0.025) | (0.024–0.049) | (0.007–0.035) | ||
Cd | 0.059 a | 0.122 b | 0.004 c | 0.005 c | 0.002 c | |
(0.042–0.113) | (0.084–0.141) | (n.d.–0.023) | (0.002–0.015) | (n.d.–0.005) | ||
T-Hg | 0.102 a | 0.095 a | 0.009 c | 0.054 d | 0.080 c | |
(0.070–0.195) | (0.077–0.182) | (0.002–0.017) | (0.029–0.072) | (0.056–0.131) | ||
Me-Hg | 0.067 | |||||
(0.047–0.10) | ||||||
mUDN | Pb | 0.042 a | 0.035 a | 0.020 b | 0.029 a,b | 0.027 a,b |
(0.023–0.069) | (0.024–0.056) | (0.015–0.041) | (0.017–0.059) | (0.016–0.053) | ||
Cd | 0.060 a | 0.096 b | 0.002 c | 0.006 c | 0.002 c | |
(0.047–0.135) | (0.065–0.163) | (n.d.–0.008) | (0.002–0.009) | (n.d.–0.006) | ||
T-Hg | 0.067 a | 0.077 a | 0.014 b | 0.034 c | 0.069 a | |
(0.040–0.093) | (0.046–0.122) | (n.d.–0.028) | (0.023–0.050) | (0.049–0.102) | ||
Me-Hg | 0.058 | |||||
(0.04.085) |
Pb | Cd | T-Hg | Me-Hg | |
---|---|---|---|---|
Mean (Min–Max) | ||||
EDI (µg/kg bw) | 0.006 | 0.002 | 0.037 | 0.031 |
(0.004–0.013) | (n.d.–0.003) | (0.029–0.058) | (0.025–0.049) | |
EWI (µg/kg bw) | 0.042 | 0.014 | 0.259 | 0.215 |
(0.028–0.091) | (n.d.–0.021) | (0.203–0.406) | (0.172–0.340) | |
Percentage of | ||||
BMDL01 | 0.4 (0.3–0.9) | |||
BMDL10 | 1.0 (0.6–2.1) | |||
TWI | 0.56 (n.d.–0.84) | 16.5 (13.2–26.1) | ||
MPF (kg) 2 | ||||
Daily | 10.7 | |||
4.2 | ||||
Weekly | 56.3 | 1.8 | ||
THQ | 0.002 | 0.002 | 0.368 | 0.306 |
(0.001–0.004) | (n.d.–0.003) | (0.294–0.582) | (0.294–0.485) | |
HI | 0.372 | |||
%THQ 3 | 0.54 | 0.54 | 98.92 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rajkowska-Myśliwiec, M.; Protasowicki, M.; Tański, A.; Watrak, S. Heavy Metals and the Occurrence of Ulcerative Dermal Necrosis (UDN) in Sea Trout from the RIVER REGA, Poland—Consumer Health Assessment. Int. J. Environ. Res. Public Health 2022, 19, 2296. https://doi.org/10.3390/ijerph19042296
Rajkowska-Myśliwiec M, Protasowicki M, Tański A, Watrak S. Heavy Metals and the Occurrence of Ulcerative Dermal Necrosis (UDN) in Sea Trout from the RIVER REGA, Poland—Consumer Health Assessment. International Journal of Environmental Research and Public Health. 2022; 19(4):2296. https://doi.org/10.3390/ijerph19042296
Chicago/Turabian StyleRajkowska-Myśliwiec, Monika, Mikołaj Protasowicki, Adam Tański, and Sandra Watrak. 2022. "Heavy Metals and the Occurrence of Ulcerative Dermal Necrosis (UDN) in Sea Trout from the RIVER REGA, Poland—Consumer Health Assessment" International Journal of Environmental Research and Public Health 19, no. 4: 2296. https://doi.org/10.3390/ijerph19042296
APA StyleRajkowska-Myśliwiec, M., Protasowicki, M., Tański, A., & Watrak, S. (2022). Heavy Metals and the Occurrence of Ulcerative Dermal Necrosis (UDN) in Sea Trout from the RIVER REGA, Poland—Consumer Health Assessment. International Journal of Environmental Research and Public Health, 19(4), 2296. https://doi.org/10.3390/ijerph19042296