Assessment of Fish Quality Based on the Content of Heavy Metals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling and Sample Preparation
2.2. Element Analysis (Copper, Iron, Manganese and Zinc)
2.3. Noncarcinogenic Target Hazard Quotient (THQ)
- Efr—the exposure frequency (365 days/year);
- ED—the exposure duration (70 years);
- FiR—the fish ingestion rate (g/person/day);
- C—the average concentration of mercury in foodstuffs (μg/g wet weight);
- RfD—the Oral reference dose (mg/kg/day) of Zn, Cu, Fe and Mn (RfD = 3.00 × 10−1, 4.00 × 10−2, 7.00 × 10−1 and 1.4 × 10−1) (US EPA 2017);
- BW—the average body weight of local residents (60 kg) [29];
- TA—the average exposure time (365 days/year × ED).
2.4. The Combined Risk of Many Metals
THQ(Zn) + THQ(Cu) + THQ(Fe) + THQ(Mn)
TTHQ (foodstuff 5) + TTHQ (foodstuff 6) + TTHQ (foodstuff 7) + TTHQ (foodstuff 8) +
TTHQ (foodstuff 9) + TTHQ (foodstuff 10)
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Statistical Yearbook of Agriculture; 2020; p. 322. Available online: https://stat.gov.pl/en/topics/statistical-yearbooks/statistical-yearbooks/statistical-yearbook-of-agriculture-2020,6,15.html (accessed on 25 November 2021). (In Polish)
- Available online: https://ec.europa.eu/oceans-and-fisheries/facts-and-figures/facts-and-figures-common-fisheries-policy/consumption_en (accessed on 15 December 2021).
- Kieliszewska, M. Światowy rynek ryb i owoców morza. In Rynek Ryb—Stan i Perspektywy. Analizy Rynku; Hryszko, K., Ed.; Instytut Ekonomiki Rolnictwa I Gospodarki Żywnościowej—Państwowy Instytut Badawczy: Gdynia, Poland, 2020; Volume 31, pp. 11–16. (In Polish) [Google Scholar]
- Wall, R.; Ross, R.P.; Fitzgerald, G.F.; Stanton, C. Fatty acids from fish: The anti-inflammatory potential of long-chain omega-3 fatty acids. Nutr. Rev. 2010, 68, 280–289. [Google Scholar] [CrossRef] [PubMed]
- Gladyshev, M.I.; Glushchenko, L.A.; Makhutova, O.N.; Rudchenko, A.E.; Shulepina, S.P.; Dubovskaya, O.P.; Zuev, I.; Kolmakov, V.I.; Sushchik, N.N. Comparative Analysis of Content of Omega-3 Polyunsaturated Fatty Acids in Food and Muscle Tissue of Fish from Aquaculture and Natural Habitats. Contemp. Probl. Ecol. 2018, 11, 297–308. [Google Scholar] [CrossRef]
- Ismail, H.M. The role of omega-3 fatty acids in cardiac protection: An overview. Front. Biosci. 2005, 10, 1079–1088. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, M.; Bradford, C. Omega-3, Omega-6 and Omega-9 Fatty Acids: Implications for Cardiovascular and Other Diseases. J. Glycom. Lipidom. 2014, 4, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Bowen, K.J.; Harris, W.S.; Kris-Etherton, P.M. Omega-3 Fatty Acids and Cardiovascular Disease: Are There Benefits? Curr. Treat. Options Cardiovasc. Med. 2016, 18, 69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salvador, A.M.; García-Maldonado, E.; Gallego-Narbón, A.; Zapatera, B.; Vaquero, M.P. Fatty Acid Profile and Cardiometabolic Markers in Relation with Diet Type and Omega-3 Supplementation in Spanish Vegetarians. Nutrients 2019, 11, 1659. [Google Scholar] [CrossRef] [Green Version]
- Schneedorferová, I.; Tomčala, A.; Valterová, I. Effect of heat treatment on the n-3/n-6 ratio and content of polyunsaturated fatty acids in fish tissues. Food Chem. 2015, 176, 205–211. [Google Scholar] [CrossRef]
- Jia, Y.; Wang, L.; Cao, J.; Lin, W.; Yang, Z. Trace elements in four freshwater fish from a mine-impacted river: Spatial distribution, species-specific accumulation, and risk assessment. Environ. Sci. Pollut. Res. 2018, 25, 8861–8870. [Google Scholar] [CrossRef]
- Łuczyńska, J.; Paszczyk, B. Health Risk Assessment of Heavy Metals and Lipid Quality Indexes in Freshwater Fish from Lakes of Warmia and Mazury Region, Poland. Int. J. Environ. Res. Public Health 2019, 16, 3780. [Google Scholar] [CrossRef] [Green Version]
- Pietrzak-Fiecko, R.; Parol, J. Chloroorganic insecticides in the fat of different assortment of rainbow trout (Oncorhynchus mykiss) meat. Bull. Vet. Inst. Pulawy 2014, 58, 597–602. [Google Scholar] [CrossRef] [Green Version]
- Georgieva, E.; Yancheva, V.; Stoyanova, S.; Velcheva, I.; Iliev, I.; Vasileva, T.; Bivolarski, V.; Petkova, E.; László, B.; Nyeste, K.; et al. Which Is More Toxic? Evaluation of the Short-Term Toxic Effects of Chlorpyrifos and Cypermethrin on Selected Biomarkers in Common Carp (Cyprinus carpio, Linnaeus 1758). Toxics 2021, 9, 125. [Google Scholar] [CrossRef] [PubMed]
- Stoyanova, S.; Nyeste, K.; Georgieva, E.; Uchikov, P.; Velcheva, I.; Yancheva, V. Toxicological impact of a neonicotinoid insecticide and an organophosphorus fungicide on bighead carp (Hypophthalmichthys nobilis Richardson, 1845) gills: A comparative study. North West. J. Zool. 2020, 16, e191401. [Google Scholar]
- Betts, J.T.; Mendoza Espinoza, J.F.; Dans, A.J.; Jordan, C.A.; Mayer, J.L.; Urquhart, G.R. Fishing with Pesticides Affects River Fisheries and Community Health in the Indio Maíz Biological Reserve, Nicaragua. Sustainability 2020, 12, 10152. [Google Scholar] [CrossRef]
- Nyeste, K.; Dobrocsi, P.; Czeglédi, I.; Czédli, H.; Harangi, S.; Baranyai, E.; Simon, E.; Nagy, S.A.; Antal, L. Age and diet-specific trace element accumulation patterns in different tissues of chub (Squalius cephalus): Juveniles are useful bioindicators of recent pollution. Ecol. Indic. 2019, 101, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Brzozowska, A. Składniki mineralne. In Żywienie Człowieka. Podstawy Nauki o Żywieniu; Gawęcki, J., Hryniewiecki, L., Eds.; PWN: Warsaw, Poland, 1998; pp. 23–40. (In Polish) [Google Scholar]
- Nieder, R.; Benbi, D.K.; Reichl, F.X. Microelements and Their Role in Human Health. In Soil Components and Human Health; Springer: Dordrecht, Germany, 2018. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA). Dietary Reference Values for Nutrients Summary Report. EFSA Support. Public 2017, 14, e15121. [Google Scholar] [CrossRef] [Green Version]
- Marín-Guirao, L.; Lloret, J.; Marin, A. Carbon and nitrogen stable isotopes and metal concentration in food webs from a mining-impacted coastal lagoon. Sci. Total Environ. 2008, 393, 118–130. [Google Scholar] [CrossRef]
- Lall, S.P.; Kaushik, S.J. Nutrition and Metabolism of Minerals in Fish. Animals 2021, 11, 2711. [Google Scholar] [CrossRef]
- Han, S.; Auger, C.; Castonguay, Z.; Appanna, V.P.; Thomas, S.C.; Appanna, V.D. The unravelling of metabolic dysfunctions linked to metal-associated diseases by blue native polyacrylamide gel electrophoresis. Anal. Bioanal. Chem. 2013, 405, 1821–1831. [Google Scholar] [CrossRef]
- Manea, D.N.; Ienciu, A.A.; Ştef, R.; Şmuleac, I.L.; Gergen, I.I.; Nica, D.V. Health Risk Assessment of Dietary Heavy Metals Intake from Fruits and Vegetables Grown in Selected Old Mining Areas—A Case Study: The Banat Area of Southern Carpathians. Int. J. Environ. Res. Public Health 2020, 17, 5172. [Google Scholar] [CrossRef]
- Serviere-Zaragoza, E.; Lluch-Cota, S.E.; Mazariegos-Villarreal, A.; Balart, E.F.; Valencia-Valdez, H.; Méndez-Rodríguez, L.C. Cadmium, Lead, Copper, Zinc, and Iron Concentration Patterns in Three Marine Fish Species from Two Different Mining Sites inside the Gulf of California, Mexico. Int. J. Environ. Res. Public Health. 2021, 18, 844. [Google Scholar] [CrossRef]
- Whiteside, P.; Miner, B. Pye. Unicam Atomic Absorption Data Book; Pye Unicam LTD: Cambridge, UK, 1984. [Google Scholar]
- Ahmed, K.; Baki, M.A.; Kundu, G.K.; Islam, S.; Islam, M.; Hossain, M. Human health risks from heavy metals in fish of Buriganga river, Bangladesh. SpringerPlus 2016, 5, 1697. [Google Scholar] [CrossRef] [Green Version]
- US EPA. Regional Screening Level (RSL) Summary Table; US EPA: Washington, DC, USA, 2017.
- Polak-Juszczak, L.; Nermer, T. Methylmercury and Total Mercury in Eels, Anguilla anguilla, from Lakes in Northeastern Poland: Health Risk Assessment. EcoHealth 2016, 13, 582–590. [Google Scholar] [CrossRef] [PubMed]
- Saha, N.; Zaman, M.R. Evaluation of possible health risks of heavy metals by consumption of foodstuffs available in the central market of Rajshahi City, Bangladesh. Environ. Monit. Assess. 2013, 185, 3867–3878. [Google Scholar] [CrossRef] [PubMed]
- Prashanth, L.; Kattapagari, K.K.; Chitturi, R.T.; Baddam, V.R.R.; Prasad, L.K. A review on role of essential trace elements in health and disease. J. Dr. NTR Univ. Health Sci. 2015, 4, 75–85. [Google Scholar] [CrossRef]
- Sauliute, G.; Svecevicius, G. Heavy metal interactions during accumulation via direct route in fish: A review. Zool. Ecol. 2015, 25, 77–86. [Google Scholar] [CrossRef]
- Ali, H.; Khan, E. Bioaccumulation of non-essential hazardous heavy metals and metalloids in freshwater fish. Risk to human health. Environ. Chem. Lett. 2018, 16, 903–917. [Google Scholar] [CrossRef]
- Garai, P.; Banerjee, P.; Mondal, P.; Chandra Saha, N. Effect of heavy metals on fishes: Toxicity and bioaccumulation. J. Toxicol. Clin. Toxicol. 2021, 11, S18. [Google Scholar]
- Jovanović, D.A.; Marković, R.V.; Teodorović, V.B.; Šefer, D.S.; Krstić, M.P.; Radulović, S.B.; Ćirić, J.; Janjić, J.M.; Baltić, M.Ž. Determination of heavy metals in muscle tissue of six fish species with different feeding habits from the Danube River, Belgrade—public health and environmental risk assessment. Environ. Sci. Pollut. Res. 2017, 24, 11383–11391. [Google Scholar] [CrossRef]
- Kosicka-Gębska, M.; Ładecka, Z. Conditions and trends of fish consumption in Poland. Stow. Ekon. Rol. Agrobiz. Rocz. Naukowe 2012, 14, 238–244. (In Polish) [Google Scholar]
- Rejman, K.; Kowrygo, B.; Janowska, M. Consumers’ choices in the market for fish, seafood and its products against the background of the situation in the fish branch. Handel Wewnętrzny 2015, 3, 216–226. (In Polish) [Google Scholar]
- Villéger, S.; Brosse, S.; Mouchet, M.; Mouillot, D.; Vanni, M.J. Functional ecology of fish: Current approaches and future challenges. Aquat. Sci. 2017, 79, 783–801. [Google Scholar] [CrossRef]
- Winemiller, K. Fish ecology. In Encyclopedia of Environmental Biology; Academic Press: San Diego, CA, USA, 1995; Volume 2, pp. 49–65. [Google Scholar]
- Jezierska, B.; Witeska, M. The metal uptake and accumulation in fish living in polluted waters. In Soil and Water Pollution Monitoring, Protection and Remediation; Springer: Dordrecht, The Netherlands, 2006; Volume 69, pp. 107–114. [Google Scholar] [CrossRef]
- Jakimska, A.; Konieczka, P.; Skóra, K.; Namieśnik, J. Bioaccumulation of metals in tissues of marine animals, Part II: Metal concentrations in animal tissues. Pol. J. Environ. Stud. 2011, 20, 1127–1146. [Google Scholar]
- Järv, L.; Kotta, J.; Simm, M. Relationship between biological characteristics of fish and their contamination with trace metals: A case study of perchPerca fluviatilisL. in the Baltic Sea. Proc. Estonian Acad. Sci. 2013, 62, 193–201. [Google Scholar] [CrossRef]
- Merciai, R.; Guasch, H.; Kumar, A.; Sabater, S.; García-Berthou, E. Trace metal concentration and fish size: Variation among fish species in a Mediterranean river. Ecotoxicol. Environ. Saf. 2014, 107, 154–161. [Google Scholar] [CrossRef]
- Rakocevic, J.; Sukovic, D.; Maric, D. Distribution and relationships of eleven trace elements in muscle of six fish species from Skadar Lake (Montenegro). Turk. J. Fish. Aquat. Sci. 2018, 18, 647–657. [Google Scholar] [CrossRef]
- Łuczyńska, J.; Tońska, E.; Paszczyk, B.; Łuczyński, M.J. The relationship between biotic factors and the content of chosen heavy metals (Zn, Fe, Cu and Mn) in six wild freshwater fish species collected from two lakes (Łańskie and Pluszne) located in northeastern Poland. Iran. J. Fish. Sci. 2020, 19, 421–442. [Google Scholar]
- Saah, S.A.; Adu-Poku, D.; Boadi, N.O. Heavy metal contamination and water quality of selected fish ponds at Sunyani, Ghana: A comparison with WHO standards. Chem. Int. 2021, 7, 181–187. [Google Scholar] [CrossRef]
- FAO. Compilation of Legal Limits for Hazardous Substances in Fish and FISHERY Products; FAO Fishery Circular No. 464; FAO: Rome, Italy, 1983; pp. 5–100. Available online: http://www.fao.org/docrep/014/q5114e/q5114e.pdf (accessed on 25 November 2021).
- FAO; WHO. Evaluation of Certain Food Additives and the Contaminants Mercury, Lead and Cadmium; WHO Technical Report Series, No. 505; WHO: Geneva, Switzerland, 1989. Available online: https://apps.who.int/iris/bitstream/10655/40985/WHO_TRS_505.pdf (accessed on 25 November 2021).
- Tanır, Ö.Z. Determination of heavy metals in some tissues of four fish species from the Karasu River (Erzincan, Turkey) for public consumption. Oceanol. Hydrobiol. Stud. 2021, 50, 232–246. [Google Scholar] [CrossRef]
- Anonymous. By-Law on Toxins, Metals, Metalloids and Other Harmful Substances in Food; Narodne Novine No. 16/05; Ministry of Health and Social Care, Republic of Croatia: Zagreb, Croatia, 2005.
- MAFF. Monitoring and surveillance of non-radioactive contaminants in the aquatic environment and activities regulating the disposal of wastes at sea. In Aquatic Environment Monitoring Report No. 52; Center for Environment, Fisheries and Aquaculture Science: Lowestoft, UK, 2000. [Google Scholar]
- Bobrowska-Korczak, B.; Stawarska, A.; Szterk, A.; Ofiara, K.; Czerwonka, M.; Giebułtowicz, J. Determination of Pharmaceuticals, Heavy Metals, and Oxysterols in Fish Muscle. Molecules 2021, 26, 1229. [Google Scholar] [CrossRef]
- Rožič, P.Ž.; Dolenec, T.; Baždarić, B.; Karamarko, V.; Kniewald, G.; Dolenec, M. Element levels in cultured and wild sea bass (Dicentrarchus labrax) and gilthead sea bream (Sparus aurata) from the Adriatic Sea and potential risk assessment. Environ. Geochem. Health 2014, 36, 19–39. [Google Scholar] [CrossRef]
- Mert, R.; Alaş, A.; Bulut, S.; Özcan, M.M. Determination of heavy metal contents in some freshwater fishes. Environ. Monit. Assess. 2014, 186, 8017–8022. [Google Scholar] [CrossRef] [PubMed]
- Bat, L.; Sezgin, M.; Ustun, F.; Sahin, F. Heavy metal concentrations in ten species of fishes caught in Sinop coastal waters of the Black Sea, Turkey. Turk. J. Fish. Aquat. Sci. 2012, 12, 371–376. [Google Scholar] [CrossRef]
- Polak-Juszczak, L. Trace metals in flounder, Platichthys flesus (Linnaeus, 1758), and sediments from the Baltic Sea and the Portuguese Atlantic coast. Environ. Sci. Pollut. Res. 2013, 20, 7424–7432. [Google Scholar] [CrossRef] [PubMed]
- Perugini, M.; Visciano, P.; Manera, M.; Zaccaroni, A.; Olivieri, V.; Amorena, M. Heavy metal (As, Cd, Hg, Pb, Cu, Zn, Se) concentrations in muscle and bone of four commercial fish caught in the central Adriatic Sea, Italy. Environ. Monit. Assess. 2014, 186, 2205–2213. [Google Scholar] [CrossRef] [PubMed]
- Yazdi, R.B.; Ebrahimpour, M.; Mansouri, B.; Rezaei, M.R.; Babaei, H. Contamination of Metals in Tissues of Ctenopharyngodon idella and Perca fluviatilis, from Anzali Wetland, Iran. Bull. Environ. Contam. Toxicol. 2012, 89, 831–835. [Google Scholar] [CrossRef] [PubMed]
- Elnabris, K.J.; Muzyed, S.K.; El-Ashgar, N.M. Heavy metal concentrations in some commercially important fishes and their contribution to heavy metals exposure in Palestinian people of Gaza Strip (Palestine). J. Assoc. Arab Univ. Basic Appl. Sci. 2013, 13, 44–51. [Google Scholar] [CrossRef] [Green Version]
- Türkmen, M.; Türkmen, A.; Tepe, Y. Comparison of Metals in Tissues of Fish from Paradeniz Lagoon in the Coastal Area of Northern East Mediterranean. Bull. Environ. Contam. Toxicol. 2011, 87, 381–385. [Google Scholar] [CrossRef]
- Abubakar, A.; Uzairu, A.; Ekwumemgbo, P.A.; Okunola, O.J. Risk Assessment of Heavy Metals in Imported Frozen Fish Scomber scombrus Species Sold in Nigeria: A Case Study in Zaria Metropolis. Adv. Toxicol. 2015, 2015, 303245. [Google Scholar] [CrossRef] [Green Version]
- Rubio, C.; Jalilli, A.; Gutiérrez, A.J.; González-Weller, D.; Hernandez, F.; Melon, E.; Burgos, A.; Revert, C.; Hardisson, A. Trace Elements and Metals in Farmed Sea Bass and Gilthead Bream from Tenerife Island, Spain. J. Food Prot. 2011, 74, 1938–1943. [Google Scholar] [CrossRef]
- Wojtasik, A.; Woźniak, A.; Stoś, K.; Jarosz, M. Minerals. In Nutrition Standards for the Population of Poland and Their Application; Jarosz, M., Ed.; Narodowy Instytut Zdrowia Publicznego: Warsaw, Poland, 2020; pp. 273–315. (In Polish) [Google Scholar]
- Budijono; Hasbi, M. Heavy Metal Contamination in Kotopanjang Dam, Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2021, 695, 012018. [Google Scholar] [CrossRef]
- Zapata, F.C.C.; Villanueva, M.C.; Esquivel, R.A.P.; Payano, I.G.U. Bioaccumulation of heavy metals in Oncorhynchus mykiss for export at production centers in the Peruvian Central Highlands. Ambient. Agua 2017, 12, 527–542. [Google Scholar] [CrossRef]
- Kalyoncu, L.; Kalyoncu, H.; Arslan, G. Determination of heavy metals and metals levels in five fish species from Işıklı Dam Lake and Karacaören Dam Lake (Turkey). Environ. Monit. Assess. 2012, 184, 2231–2235. [Google Scholar] [CrossRef] [PubMed]
- Saygı, Y.; Yiğit, S.A. Assessment of Metal Concentrations in Two Cyprinid Fish Species (Leuciscus cephalus and Tinca tinca) Captured from Yeniçağa Lake, Turkey. Bull. Environ. Contam. Toxicol. 2012, 89, 86–90. [Google Scholar] [CrossRef] [PubMed]
- Fidan, A.F.; Ciğerci, İ.H.; Konuk, M.; Küçükkurt, I.; Aslan, R.; Dündar, Y. Determination of some heavy metal levels and oxidative status in Carassius carassius L., 1758 from Eber Lake. Environ. Monit. Assess. 2008, 147, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Yousif, R.; Choudhary, M.I.; Ahmed, S.; Ahmed, Q. Review: Bioaccumulation of heavy metals in fish and other aquatic organisms from Karachi Coast, Pakistan. Nusant. Biosci. 2021, 13, 73–84. [Google Scholar] [CrossRef]
- Makedonski, L.; Peycheva, K.; Stancheva, M. Comparison of heavy metal concentration of some marine fishes from Black and Aegean Seas. Ovidius Univ. Ann. Ser. Chem. 2015, 26, 20–26. [Google Scholar] [CrossRef] [Green Version]
- Lounas, R.; Kasmi, H.; Chernai, S.; Amarni, N.; Ghebriout, L.; Hamdi, B. Heavy metal concentrations in wild and farmed gilthead sea bream from southern Mediterranean Sea—Human health risk assessment. Environ. Sci. Pollut. Res. 2021, 28, 30732–30742. [Google Scholar] [CrossRef]
- Kalantzi, I.; Pergantis, S.A.; Black, K.; Shimmield, T.; Papageorgiou, N.; Tsapakis, M.; Karakassis, I. Metals in tissues of seabass and seabream reared in sites with oxic and anoxic substrata and risk assessment for consumers. Food Chem. 2016, 194, 659–670. [Google Scholar] [CrossRef]
- Marengo, M.; Durieux, E.D.; Ternengo, S.; Lejeune, P.; Degrange, E.; Pasqualini, V.; Gobert, S. Comparison of elemental composition in two wild and cultured marine fish and potential risks to human health. Ecotoxicol. Environ. Saf. 2018, 158, 204–212. [Google Scholar] [CrossRef] [Green Version]
- Łuczyńska, J.; Paszczyk, B.; Łuczyński, M.J. Fish as a bioindicator of heavy metals pollution in aquatic ecosystem of Pluszne Lake, Poland, and risk assessment for consumer’s health. Ecotoxicol. Environ. Saf. 2018, 153, 60–67. [Google Scholar] [CrossRef]
Species | Cu | Fe | Mn | Zn | |
---|---|---|---|---|---|
Crucian carp (Carassius carassius L.) | x | 0.77 a | 6.95 a | 0.12 b | 19.52 a |
SD | 0.06 | 1.19 | 0.02 | 5.14 | |
Flounder (Platichthys flesus L.) | x | 0.26 b | 1.02 c | 0.03 c | 4.09 b |
SD | 0.05 | 0.25 | 0.01 | 0.35 | |
Gilthead seabream (Sparus aurata L.) | x | 0.24 b | 0.78 d | 0.03 c | 4.01 b |
SD | 0.07 | 0.25 | 0.01 | 0.38 | |
Mackerel (Scomber scombrus L.) | x | 0.35 b | 1.83 b | 0.02 c | 3.03 b |
SD | 0.10 | 0.50 | 0.01 | 0.28 | |
Blue grenadier (Macruronus novaezelandiae Hector) | x | 0.36 b | 1.16 c | 0.03 c | 2.98 b |
SD | 0.08 | 0.19 | 0.00 | 0.15 | |
Perch (Perca fluviatilis L.) | x | 0.23 b | 1.55 b | 0.08 c | 3.07 b |
SD | 0.02 | 0.01 | 0.01 | 0.18 | |
Rainbow trout (Oncorhynchus mykiss Walb.) | x | 0.27 b | 1.77 b | 0.07 c | 4.93 b |
SD | 0.04 | 0.27 | 0.01 | 0.69 | |
Tench (Tinca tinca L.) | x | 0.23 b | 1.65 b | 0.09 c | 3.33 b |
SD | 0.05 | 0.41 | 0.02 | 0.43 | |
Tilapia (Oreochromis niloticus L.) | x | 0.16 c | 1.06 c | 0.05 c | 3.05 b |
SD | 0.03 | 0.24 | 0.02 | 0.32 | |
Walleye pollock (Gadus chalcogrammus Pallas) | x | 0.29 c | 1.11 c | 0.27 a | 3.27 b |
SD | 0.04 | 0.22 | 0.07 | 0.30 |
Species | Cu | Fe | Mn | Zn | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A | B | C | D | E | F | A | B | C | D | E | F | A | B | C | D | E | F | A | B | C | D | E | F | |
Crucian carp (Carassius carassius L.) | 12.9 | 12.9 | 12.9 | 12.9 | 12.9 | 12.9 | 8.7 | 7.0 | 10.4 | 5.8 | 10.4 | 10.4 | 0.8 | 1.1 | 0.8 | 1.0 | 0.8 | 1.0 | 26.6 | 32.5 | 26.6 | 36.6 | 26.6 | 36.6 |
Flounder (Platichthys flesus L.) | 4.4 | 4.4 | 4.4 | 4.4 | 4.4 | 4.4 | 1.3 | 1.0 | 1.5 | 0.9 | 1.5 | 1.5 | 0.2 | 0.3 | 0.2 | 0.3 | 0.2 | 0.3 | 5.6 | 6.8 | 5.6 | 7.7 | 5.6 | 7.7 |
Gilthead bream (Sparus aurata L.) | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 1.0 | 0.8 | 1.2 | 0.6 | 1.2 | 1.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 5.5 | 6.7 | 5.5 | 7.5 | 5.5 | 7.5 |
Mackerel (Scomber scombrus L.) | 5.9 | 5.9 | 5.9 | 5.9 | 5.9 | 5.9 | 2.3 | 1.8 | 2.7 | 1.5 | 2.7 | 2.7 | 0.1 | 0.2 | 0.1 | 0.2 | 0.1 | 0.2 | 4.1 | 5.0 | 4.1 | 5.7 | 4.1 | 5.7 |
Blue grenadier (Macruronus novaezelandiae Hector) | 5.9 | 5.9 | 5.9 | 5.9 | 5.9 | 5.9 | 1.4 | 1.2 | 1.7 | 1.0 | 1.7 | 1.7 | 0.2 | 0.3 | 0.2 | 0.3 | 0.2 | 0.3 | 4.1 | 5.0 | 4.1 | 5.6 | 4.1 | 5.6 |
Perch (Perca fluviatilis L.) | 3.9 | 3.9 | 3.9 | 3.9 | 3.9 | 3.9 | 1.9 | 1.5 | 2.3 | 1.3 | 2.3 | 2.3 | 0.5 | 0.7 | 0.5 | 0.6 | 0.5 | 0.6 | 4.2 | 5.1 | 4.2 | 5.8 | 4.2 | 5.8 |
Rainbow trout (Oncorhynchus mykiss Walb.) | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 2.2 | 1.8 | 2.7 | 1.5 | 2.7 | 2.7 | 0.5 | 0.7 | 0.5 | 0.6 | 0.5 | 0.6 | 6.7 | 8.2 | 6.7 | 9.2 | 6.7 | 9.2 |
Tench (Tinca tinca L.) | 3.8 | 3.8 | 3.8 | 3.8 | 3.8 | 3.8 | 2.1 | 1.6 | 2.5 | 1.4 | 2.5 | 2.5 | 0.6 | 0.8 | 0.6 | 0.7 | 0.6 | 0.7 | 4.5 | 5.6 | 4.5 | 6.2 | 4.5 | 6.2 |
Tilapia (Oreochromis niloticus L.) | 2.7 | 2.7 | 2.7 | 2.7 | 2.7 | 2.7 | 1.3 | 1.1 | 1.6 | 0.9 | 1.6 | 1.6 | 0.4 | 0.5 | 0.3 | 0.4 | 0.3 | 0.4 | 4.2 | 5.1 | 4.2 | 5.7 | 4.2 | 5.7 |
Walleye pollock (Gadus chalcogrammus Pallas) | 4.8 | 4.8 | 4.8 | 4.8 | 4.8 | 4.8 | 1.4 | 1.1 | 1.7 | 0.9 | 1.7 | 1.7 | 1.8 | 2.5 | 1.7 | 2.2 | 1.7 | 2.2 | 4.5 | 5.4 | 4.5 | 6.1 | 4.5 | 6.1 |
Species | Cu | Fe | Mn | Zn | |||
---|---|---|---|---|---|---|---|
THQ | TTHQ | HI | |||||
Crucian carp (Carassius carassius L.) | 0.0112 | 0.0058 | 0.0005 | 0.0377 | 0.0551 | ||
Flounder (Platichthys flesus L.) | 0.0038 | 0.0008 | 0.0001 | 0.0079 | 0.0127 | ||
Gilthead seabream (Sparus aurata L.) | 0.0035 | 0.0006 | 0.0001 | 0.0077 | 0.0120 | ||
Mackerel (Scomber scombrus L.) | 0.0051 | 0.0015 | 0.0001 | 0.0059 | 0.0126 | ||
Blue grenadier (Macruronus novaezelandiae Hector) | 0.0052 | 0.0010 | 0.0001 | 0.0058 | 0.0120 | 0.164 | |
Perch (Perca fluviatilis L.) | 0.0033 | 0.0013 | 0.0003 | 0.0059 | 0.0109 | ||
Rainbow trout (Oncorhynchus mykiss Walb.) | 0.0039 | 0.0015 | 0.0003 | 0.0095 | 0.0152 | ||
Tench (Tinca tinca L.) | 0.0033 | 0.0014 | 0.0004 | 0.0064 | 0.0115 | ||
Tilapia (Oreochromis niloticus L.) | 0.0024 | 0.0009 | 0.0002 | 0.0059 | 0.0094 | ||
Walleye pollock (Gadus chalcogrammus Pallas) | 0.0040 | 0.0009 | 0.0011 | 0.0063 | 0.0125 | ||
TDHQ | 0.0456 | 0.0156 | 0.0032 | 0.0991 | |||
RfD (mg/kg/day) | 4.00 × 10−2 | 7.00 × 10−1 | 1.4 × 10−1 | 3.00 × 10−1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Łuczyńska, J.; Pietrzak-Fiećko, R.; Purkiewicz, A.; Łuczyński, M.J. Assessment of Fish Quality Based on the Content of Heavy Metals. Int. J. Environ. Res. Public Health 2022, 19, 2307. https://doi.org/10.3390/ijerph19042307
Łuczyńska J, Pietrzak-Fiećko R, Purkiewicz A, Łuczyński MJ. Assessment of Fish Quality Based on the Content of Heavy Metals. International Journal of Environmental Research and Public Health. 2022; 19(4):2307. https://doi.org/10.3390/ijerph19042307
Chicago/Turabian StyleŁuczyńska, Joanna, Renata Pietrzak-Fiećko, Aleksandra Purkiewicz, and Marek Jan Łuczyński. 2022. "Assessment of Fish Quality Based on the Content of Heavy Metals" International Journal of Environmental Research and Public Health 19, no. 4: 2307. https://doi.org/10.3390/ijerph19042307
APA StyleŁuczyńska, J., Pietrzak-Fiećko, R., Purkiewicz, A., & Łuczyński, M. J. (2022). Assessment of Fish Quality Based on the Content of Heavy Metals. International Journal of Environmental Research and Public Health, 19(4), 2307. https://doi.org/10.3390/ijerph19042307