Associations between Metal Exposures and Cognitive Function in American Older Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. CERAD Modules
2.3. The DSST Module
2.4. Analysis of Metal Concentrations
2.5. Statistical Analyses
3. Results
3.1. Overview of the Study Population
3.2. Metal Concentrations and Performance on Cognitive Tests
4. Discussion
4.1. Risk Factors from Demographics
4.2. Selenium
4.3. Lead and Cadmium
4.4. Arsenic and Tungsten
4.5. Mercury Compounds
4.6. Limitations in Our Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Needleman, H.L.; Gunnoe, C.; Leviton, A.; Reed, R.; Peresie, H.; Maher, C.; Barrett, P. Deficits in psychologic and classroom performance of children with elevated dentine lead levels. N. Engl. J. Med. 1979, 300, 689–695. [Google Scholar] [CrossRef] [PubMed]
- Lanphear, B.P.; Dietrich, K.; Auinger, P.; Cox, C. Cognitive deficits associated with blood lead concentrations <10 microg/dL in US children and adolescents. Public Health Rep. 2000, 115, 521–529. [Google Scholar] [CrossRef] [PubMed]
- Canfield, R.L.; Henderson, C.R., Jr.; Cory-Slechta, D.A.; Cox, C.; Jusko, T.A.; Lanphear, B.P. Intellectual impairment in children with blood lead concentrations below 10 microg per deciliter. N. Engl. J. Med. 2003, 348, 1517–1526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Z.Q.; Cai, L.; Liu, Y.; Chen, W.; Wang, Q. Association between prenatal cadmium exposure and cognitive development of offspring: A systematic review. Environ. Poll. 2019, 254, 9. [Google Scholar] [CrossRef]
- Grandjean, P.; Weihe, P.; White, R.F.; Debes, F.; Araki, S.; Yokoyama, K.; Murata, K.; Sorensen, N.; Dahl, R.; Jorgensen, P.J. Cognitive deficit in 7-year-old children with prenatal exposure to methylmercury. Neurotoxicol. Teratol. 1997, 19, 417–428. [Google Scholar] [CrossRef]
- Debes, F.; Weihe, P.; Grandjean, P. Cognitive deficits at age 22 years associated with prenatal exposure to methylmercury. Cortex 2016, 74, 358–369. [Google Scholar] [CrossRef] [Green Version]
- Rosado, J.L.; Ronquillo, D.; Kordas, K.; Rojas, O.; Alatorre, J.; Lopez, P.; Garcia-Vargas, G.; Del Carmen Caamano, M.; Cebrian, M.E.; Stoltzfus, R.J. Arsenic exposure and cognitive performance in Mexican schoolchildren. Environ. Health Perspect. 2007, 115, 1371–1375. [Google Scholar] [CrossRef] [Green Version]
- Wasserman, G.A.; Liu, X.H.; Parvez, F.; Ahsan, H.; Factor-Litvak, P.; Kline, J.; Van Geen, A.; Slavkovich, V.; Lolacono, N.J.; Levy, D.; et al. Water arsenic exposure and intellectual function in 6-year-old children in Araihazar, Bangladesh. Environ. Health Perspect. 2007, 115, 285–289. [Google Scholar] [CrossRef]
- Vahter, M.; Skroder, H.; Rahman, S.M.; Levi, M.; Hamadani, J.D.; Kippler, M. Prenatal and childhood arsenic exposure through drinking water and food and cognitive abilities at 10 years of age: A prospective cohort study. Environ. Int. 2020, 139, 11. [Google Scholar] [CrossRef]
- Yang, W.; Vuong, A.M.; Xie, C.; Dietrich, K.N.; Karagas, M.R.; Lanphear, B.P.; Braun, J.M.; Yolton, K.; Chen, A. Maternal cadmium exposure and neurobehavior in children: The HOME study. Environ. Res. 2020, 186, e109583. [Google Scholar] [CrossRef]
- Shih, R.A.; Glass, T.A.; Bandeen-Roche, K.; Carlson, M.C.; Bolla, K.I.; Todd, A.C.; Schwartz, B.S. Environmental lead exposure and cognitive function in community-dwelling older adults. Neurology 2006, 67, 1556–1562. [Google Scholar] [CrossRef]
- Bandeen-Roche, K.; Glass, T.A.; Bolla, K.I.; Todd, A.C.; Schwartz, B.S. Cumulative lead dose and cognitive function in older adults. Epidemiology 2009, 20, 831–839. [Google Scholar] [CrossRef] [Green Version]
- Weisskopf, M.G.; Wright, R.O.; Schwartz, J.; Spiro, A., 3rd; Sparrow, D.; Aro, A.; Hu, H. Cumulative lead exposure and prospective change in cognition among elderly men: The VA Normative Aging Study. Am. J. Epidemiol. 2004, 160, 1184–1193. [Google Scholar] [CrossRef] [Green Version]
- Khalil, N.; Morrow, L.A.; Needleman, H.; Talbott, E.O.; Wilson, J.W.; Cauley, J.A. Association of cumulative lead and neurocognitive function in an occupational cohort. Neuropsychology 2009, 23, 10–19. [Google Scholar] [CrossRef] [Green Version]
- Weuve, J.; Korrick, S.A.; Weisskopf, M.G.; Ryan, L.M.; Schwartz, J.; Nie, H.; Grodstein, F.; Hu, H. Cumulative exposure to lead in relation to cognitive function in older women. Environ. Health Perspect. 2009, 117, 574–580. [Google Scholar] [CrossRef]
- Farooqui, Z.; Bakulski, K.M.; Power, M.C.; Weisskopf, M.G.; Sparrow, D.; Spiro, A., 3rd; Vokonas, P.S.; Nie, L.H.; Hu, H.; Park, S.K. Associations of cumulative Pb exposure and longitudinal changes in Mini-Mental Status Exam scores, global cognition and domains of cognition: The VA Normative Aging Study. Environ. Res. 2017, 152, 102–108. [Google Scholar] [CrossRef] [Green Version]
- Ciesielski, T.; Bellinger, D.C.; Schwartz, J.; Hauser, R.; Wright, R.O. Associations between cadmium exposure and neurocognitive test scores in a cross-sectional study of US adults. Environ. Health 2013, 12, 13. [Google Scholar] [CrossRef] [Green Version]
- O’Bryant, S.E.; Edwards, M.; Menon, C.V.; Gong, G.; Barber, R. Long-term low-level arsenic exposure is associated with poorer neuropsychological functioning: A Project FRONTIER study. Int. J. Environ. Res. Public Health 2011, 8, 861–874. [Google Scholar] [CrossRef]
- Edwards, M.; Johnson, L.; Mauer, C.; Barber, R.; Hall, J.; O’Bryant, S. Regional specific groundwater arsenic levels and neuropsychological functioning: A cross-sectional study. Int. J. Environ. Health Res. 2014, 24, 546–557. [Google Scholar] [CrossRef] [Green Version]
- Yokoo, E.M.; Valente, J.G.; Grattan, L.; Schmidt, S.L.; Platt, I.; Silbergeld, E.K. Low level methylmercury exposure affects neuropsychological function in adults. Environ. Health 2003, 2, 8. [Google Scholar] [CrossRef] [Green Version]
- Shahar, A.; Patel, K.V.; Semba, R.D.; Bandinelli, S.; Shahar, D.R.; Ferrucci, L.; Guralnik, J.M. Plasma Selenium is Positively Related to Performance in Neurological Tasks Assessing Coordination and Motor Speed. Movement Disord. 2010, 25, 1909–1915. [Google Scholar] [CrossRef] [Green Version]
- Hadrup, N.; Ravn-Haren, G. Acute human toxicity and mortality after selenium ingestion: A review. J. Trace Elem. Med. Biol. 2020, 58, 5. [Google Scholar] [CrossRef]
- Avery, J.C.; Hoffmann, P.R. Selenium, Selenoproteins, and Immunity. Nutrients 2018, 10, 20. [Google Scholar] [CrossRef] [Green Version]
- Akbaraly, N.T.; Hininger-Favier, I.; Carriere, I.; Arnaud, J.; Gourlet, V.; Roussel, A.M.; Berr, C. Plasma selenium over time and cognitive decline in the elderly. Epidemiology 2007, 18, 52–58. [Google Scholar] [CrossRef] [Green Version]
- Dominiak, A.; Wilkaniec, A.; Wroczyński, P.; Adamczyk, A. Selenium in the Therapy of Neurological Diseases. Where is it Going? Curr. Neuropharmacol. 2016, 14, 282–299. [Google Scholar] [CrossRef] [Green Version]
- Williams, G.R.; Bassett, J.H.D. Local control of thyroid hormone action: Role of type 2 deiodinase. J. Endocrinol. 2011, 209, 261–272. [Google Scholar] [CrossRef] [Green Version]
- Olivieri, O.; Girelli, D.; Stanzial, A.M.; Rossi, L.; Bassi, A.; Corrocher, R. Selenium, zinc, and thyroid hormones in healthy subjects: Low T3/T4 ratio in the elderly is related to impaired selenium status. Biol. Trace Elem. Res. 1996, 51, 31–41. [Google Scholar] [CrossRef]
- Bégin, M.E.; Langlois, M.F.; Lorrain, D.; Cunnane, S.C. Thyroid Function and Cognition during Aging. Curr. Gerontol. Geriatr. Res. 2008, 2008, 474868. [Google Scholar] [CrossRef] [Green Version]
- National Health and Nutrition Examination Survey. Available online: https://www.cdc.gov/nchs/nhanes/index.htm (accessed on 15 October 2019).
- Lee, D.H.; Steffes, M.; Jacobs, D.R. Positive associations of serum concentration of polychlorinated biphenyls or organochlorine pesticides with self-reported arthritis, especially rheumatoid type, in women. Environ. Health Perspect. 2007, 115, 883–888. [Google Scholar] [CrossRef] [PubMed]
- Jaeger, J. Digit Symbol Substitution Test: The Case for Sensitivity over Specificity in Neuropsychological Testing. J. Clin. Psychopharmacol. 2018, 38, 513–519. [Google Scholar] [CrossRef]
- Barnes, D.E.D.; Yaffe, K.P. The projected effect of risk factor reduction on Alzheimer’s disease prevalence. Lancet Neurol. 2011, 10, 819–828. [Google Scholar] [CrossRef] [Green Version]
- Beeri, M.S.; Schmeidler, J.; Sano, M.; Wang, J.; Lally, R.; Grossman, H.; Silverman, J.M. Age, gender, and education norms on the CERAD neuropsychological battery in the oldest old. Neurology 2006, 67, 1006–1010. [Google Scholar] [CrossRef] [PubMed]
- Lindenberger, U. Human cognitive aging: Corriger la fortune? Science 2014, 346, 572–578. [Google Scholar] [CrossRef] [PubMed]
- Hamson, D.K.; Roes, M.M.; Galea, L.A.M. Sex Hormones and Cognition: Neuroendocrine Influences on Memory and Learning. Compr. Physiol. 2016, 6, 1295–1337. [Google Scholar] [CrossRef] [Green Version]
- Li, R.N.; Singh, M. Sex differences in cognitive impairment and Alzheimer’s disease. Front. Neuroendocrinol. 2014, 35, 385–403. [Google Scholar] [CrossRef] [Green Version]
- Hill, C.H. Interrelationships of selenium with other trace elements. Fed. Proc. 1975, 34, 2096–2100. [Google Scholar]
- Dauplais, M.; Lazard, M.; Blanquet, S.; Plateau, P. Neutralization by Metal Ions of the Toxicity of Sodium Selenide. PLoS ONE 2013, 8, 9. [Google Scholar] [CrossRef] [Green Version]
- Zwolak, I. The Role of Selenium in Arsenic and Cadmium Toxicity: An Updated Review of Scientific Literature. Biol. Trace Elem. Res. 2020, 193, 44–63. [Google Scholar] [CrossRef] [Green Version]
- Kryscio, R.J.; Abner, E.L.; Caban-Holt, A.; Lovell, M.; Goodman, P.; Darke, A.K.; Yee, M.; Crowley, J.; Schmitt, F.A. Association of Antioxidant Supplement Use and Dementia in the Prevention of Alzheimer’s Disease by Vitamin E and Selenium Trial (PREADViSE). J. Am. Med. Assoc. Neurol. 2017, 74, 567–573. [Google Scholar] [CrossRef]
- Cardoso, B.R.; Roberts, B.R.; Malpas, C.B.; Vivash, L.; Genc, S.; Saling, M.M.; Desmond, P.; Steward, C.; Hicks, R.J.; Callahan, J.; et al. Supranutritional Sodium Selenate Supplementation Delivers Selenium to the Central Nervous System: Results from a Randomized Controlled Pilot Trial in Alzheimer’s Disease. Neurotherapeutics 2019, 16, 192–202. [Google Scholar] [CrossRef] [Green Version]
- Skroder, H.M.; Hamadani, J.D.; Tofail, F.; Persson, T.A.; Vahter, M.E.; Kippler, M.J. Selenium status in pregnancy influences children’s cognitive function at 1.5 years of age. Clin. Nutr. 2015, 34, 923–930. [Google Scholar] [CrossRef]
- Polanska, K.; Hanke, W.; Krol, A.; Gromadzinska, J.; Kuras, R.; Janasik, B.; Wasowicz, W.; Mirabella, F.; Chiarotti, F.; Calamandrei, G. Micronutrients during pregnancy and child psychomotor development: Opposite effects of Zinc and Selenium. Environ. Res. 2017, 158, 583–589. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.C.; Xu, Y.; Chen, Y.M.; Li, J.; Zhao, F.; Zheng, G.; Jing, J.F.; Ke, T.; Chen, J.Y.; Luo, W.J. The effect of sodium selenite on lead induced cognitive dysfunction. Neurotoxicology 2013, 36, 82–88. [Google Scholar] [CrossRef]
- Chuang, H.Y.; Kuo, C.H.; Chiu, Y.W.; Ho, C.K.; Chen, C.J.; Wu, T.N. A case-control study on the relationship of hearing function and blood concentrations of lead, manganese, arsenic, and selenium. Sci. Total Environ. 2007, 387, 79–85. [Google Scholar] [CrossRef]
- Yan, X.; Liu, K.; Sun, X.; Qin, S.; Wu, M.; Qin, L.; Wang, Y.; Li, Z.; Zhong, X.; Wei, X. A cross-sectional study of blood selenium concentration and cognitive function in elderly Americans: National Health and Nutrition Examination Survey 2011–2014. Ann. Hum. Biol. 2020, 47, 610–619. [Google Scholar] [CrossRef]
- Akbaraly, N.T.; Arnaud, J.; Hininger-Favier, I.; Gourlet, V.; Roussel, A.M.; Berr, C. Selenium and mortality in the elderly: Results from the EVA study. Clin. Chem. 2005, 51, 2117–2123. [Google Scholar] [CrossRef] [Green Version]
- Berr, C.; Nicole, A.; Godin, J.; Ceballos-Picot, I.; Thevenin, M.; Dartigues, J.F.; Alperovitch, A. Selenium and oxygen-metabolizing enzymes in elderly community residents: A pilot epidemiological study. J. Am. Geriatr. Soc. 1993, 41, 143–148. [Google Scholar] [CrossRef]
- Reuben, A.; Caspi, A.; Belsky, D.W.; Broadbent, J.; Harrington, H.; Sugden, K.; Houts, R.M.; Ramrakha, S.; Poulton, R.; Moffitt, T.E. Association of Childhood Blood Lead Levels With Cognitive Function and Socioeconomic Status at Age 38 Years and With IQ Change and Socioeconomic Mobility Between Childhood and Adulthood. J. Am. Med. Assoc. 2017, 317, 1244–1251. [Google Scholar] [CrossRef]
- Power, M.C.; Korrick, S.; Tchetgen, E.J.T.; Nie, L.H.; Grodstein, F.; Hu, H.; Weuve, J.; Schwartz, J.; Weisskopf, M.G. Lead exposure and rate of change in cognitive function in older women. Environ. Res. 2014, 129, 69–75. [Google Scholar] [CrossRef] [Green Version]
- Zhou, T.; Guo, J.Q.; Zhang, J.M.; Xiao, H.X.; Qi, X.J.; Wu, C.H.; Chang, X.L.; Zhang, Y.B.; Liu, Q.; Zhou, Z.J. Sex-Specific Differences in Cognitive Abilities Associated with Childhood Cadmium and Manganese Exposures in School-Age Children: A Prospective Cohort Study. Biol. Trace Elem. Res. 2020, 193, 89–99. [Google Scholar] [CrossRef]
- Kippler, M.; Bottai, M.; Georgiou, V.; Koutra, K.; Chalkiadaki, G.; Kampouri, M.; Kyriklaki, A.; Vafeiadi, M.; Fthenou, E.; Vassilaki, M.; et al. Impact of prenatal exposure to cadmium on cognitive development at preschool age and the importance of selenium and iodine. Eur. J. Epidemiol. 2016, 31, 1123–1134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richter, P.; Faroon, O.; Pappas, R.S. Cadmium and Cadmium/Zinc Ratios and Tobacco-Related Morbidities. Int. J. Environ. Res. Public Health 2017, 14, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yolton, K.; Dietrich, K.; Auinger, P.; Lanphear, B.P.; Hornung, R. Exposure to environmental tobacco smoke and cognitive abilities among US children and adolescents. Environ. Health Perspect. 2005, 113, 98–103. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Li, Z.Y.; Yang, X.B.; Yang, L.; He, M.; Zhang, H.Y.; Wei, X.; Qin, J.; Li, X.Y.; Lu, G.D.; et al. Relation between cadmium body burden and cognitive function in older men: A cross-sectional study in China. Chemosphere 2020, 250, 7. [Google Scholar] [CrossRef]
- Li, H.Y.; Wang, Z.H.; Fu, Z.; Yan, M.M.; Wu, N.J.; Wu, H.Y.; Yin, P. Associations between blood cadmium levels and cognitive function in a cross-sectional study of US adults aged 60 years or older. BMJ Open 2018, 8, 10. [Google Scholar] [CrossRef]
- Hughes, M.F. Arsenic toxicity and potential mechanisms of action. Toxicol. Lett. 2002, 133, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Chattopadhyay, S.; Bhaumik, S.; Chaudhury, A.N.; Das Gupta, S. Arsenic induced changes in growth development and apoptosis in neonatal and adult brain cells in vivo and in tissue culture. Toxicol. Lett. 2002, 128, 73–84. [Google Scholar] [CrossRef]
- Carroll, C.R.; Noonan, C.; Garroutte, E.M.; Navas-Acien, A.; Verney, S.P.; Buchwald, D. Low-level inorganic arsenic exposure and neuropsychological functioning in American Indian elders. Environ. Res. 2017, 156, 74–79. [Google Scholar] [CrossRef]
- Karim, Y.; Siddique, A.; Hossen, F.; Rahman, M.; Mondal, V.; Ul Banna, H.; Hasibuzzaman, M.M.; Hosen, Z.; Islam, M.S.; Sarker, M.K.; et al. Dose-dependent relationships between chronic arsenic exposure and cognitive impairment and serum brain-derived neurotrophic factor. Environ. Int. 2019, 131, 9. [Google Scholar] [CrossRef]
- Wasel, O.; Freeman, J.L. Comparative Assessment of Tungsten Toxicity in the Absence or Presence of Other Metals. Toxics 2018, 6, 16. [Google Scholar] [CrossRef] [Green Version]
- McInturf, S.M.; Bekkedal, M.Y.N.; Wilfong, E.; Arfsten, D.; Gunasekar, P.G.; Chapman, G.D. Neurobehavioral effects of sodium tungstate exposure on rats and their progeny. Neurotoxicol. Teratol. 2008, 30, 455–461. [Google Scholar] [CrossRef]
- Chang, J.W.; Pai, M.C.; Chen, H.L.; Guo, H.R.; Su, H.J.; Lee, C.C. Cognitive function and blood methylmercury in adults living near a deserted chloralkali factory. Environ. Res. 2008, 108, 334–339. [Google Scholar] [CrossRef]
- Shumway, R.H.; Azari, R.S.; Kayhanian, M. Statistical Approaches to Estimating Mean Water Quality Concentrations with Detection Limits. Environ. Sci. Technol. 2002, 36, 3345–3353. [Google Scholar] [CrossRef]
Variables | n (3042) | CERAD Immediate Recall Mean Scores (95% CI) | p Value 2 |
---|---|---|---|
Age categories, years old | |||
60–69 | 1615 | 19.65 (19.42, 19.87) | |
≥70 | 1427 | 17.47 (17.29, 17.73) | <0.001 2 |
Sex | |||
Male | 1474 | 18.02 (17.55, 18.02) | |
Female | 1568 | 19.42 (19.17, 19.67) | <0.001 2 |
Race/Ethnicity | |||
Non-Hispanic Asian | 251 | 18.49 (17.78, 19.20) | |
Mexican American | 277 | 17.73 (17.13, 18.32) | |
Other Hispanic | 311 | 17.43 (16.93, 17.92) | |
Non-Hispanic Black | 733 | 18.53 (18.18, 18.88) | |
Non-Hispanic White | 1424 | 19.16 (18.92, 19.41) | ref |
Other race and multi-race | 46 | 17.94 (16.77, 19.10) | <0.001 3 |
Education | |||
≤High school graduate | 1519 | 17.43 (17.19, 17.67) | |
≥Some college | 1523 | 19.82 (19.59, 20.06) | <0.001 2 |
Diabetes | |||
Yes | 727 | 17.89 (17.53, 18.24) | |
No | 2315 | 18.86 (18.66, 19.06) | <0.001 2 |
Depression | |||
Yes | 250 | 17.29 (16.70, 17.88) | |
No | 2792 | 18.74 (18.57, 18.93) | <0.001 2 |
Smoking per day | |||
Non-smoker | 2661 | 18.63 (18.46, 18.82) | ref |
<1 pack | 289 | 18.47 (17.93, 19.01) | |
1–2 pack | 84 | 19.04 (18.06, 20.00) | |
≥2 pack | 8 | 18.63 (16.58, 20.70) | 0.82 3 |
Alcohol per day | |||
No alcohol | 1382 | 17.87 (17.60, 18.13) | ref |
1–4 glasses | 1564 | 19.35 (19.12, 19.59) | |
≥5 glasses | 96 | 17.76 (16.97, 18.55) | <0.001 3 |
CERAD Immediate Recall | CERAD Delayed Recall | Digit Symbol Substitution | ||||
---|---|---|---|---|---|---|
β (95% CI) | p Value | β (95% CI) | p Value | β (95% CI) | p Value | |
Cadmium, µg/L (n = 2031) | −0.54 (−0.90, −0.17) | <0.01 | −0.19 (−0.37, −0.01) | 0.04 | −2.29 (−3.41, −1.16) | <0.01 |
Lead, µg/L (n = 2146) | −0.58 (−0.91, −0.24) | <0.01 | −0.19 (−0.35, −0.02) | 0.03 | −1.08 (−2.12, −0.05) | 0.04 |
Manganese, µg/L (n = 2146) | −0.16 (−0.73, 0.42) | 0.59 | 0.24 (−0.05, 0.52) | 0.10 | 0.63 (−1.14, 2.39) | 0.48 |
Selenium, µg/L (n = 2146) | 2.68 (1.06, 4.30) | <0.01 | 0.87 (0.06, 1.67) | 0.04 | 8.38 (3.40, 13.36) | <0.01 |
Total mercury, µg/L (n = 2036) | 0.20 (−0.03, 0.42) | 0.09 | 0.06 (−0.05, 0.17) | 0.29 | 0.56 (−0.12,1.25) | 0.11 |
Inorganic mercury, µg/L (n = 648) | 0.58 (−0.31, 1.47) | 0.20 | −0.33 (−0.76, 0.09) | 0.12 | −2.35 (−5.07, 0.36) | 0.09 |
Methylmercury, µg/L (n = 1939) | 0.11 (−0.09, 0.31) | 0.28 | 0.07 (−0.03, 0.17) | 0.17 | 0.21 (−0.40, 0.83) | 0.50 |
CERAD Immediate Recall | CERAD Delayed Recall | Digit Symbol Substitution | ||||
---|---|---|---|---|---|---|
β (95% CI) | p Value | β (95% CI) | p Value | β (95% CI) | p Value | |
Total Arsenic, µg/L (n = 1141) | 0.02 (−0.22, 0.64) | 0.86 | −0.06 (−0.18, 0.06) | 0.35 | 0.27 (−0.47, 1.00) | 0.48 |
Arsenous Acid, µg/L (n = 462) | −0.42 (−1.20, 0.37) | 0.30 | −0.10 (−0.49, 0.29) | 0.61 | 2.19 (−0.29, 4.68) | 0.08 |
Arsenobetaine, µg/L (n = 649) | 0.09 (−0.20, 0.37) | 0.56 | −0.02 (−0.16, 0.12) | 0.83 | 0.84 (−0.03, 1.72) | 0.06 |
Arsenocholine, µg/L (n = 133) | 0.37 (−0.57, 1.30) | 0.44 | 0.07 (−0.35, 0.50) | 0.74 | −0.02 (−2.69, 2.65) | 0.99 |
Dimethylarsinic Acid, µg/L (n = 907) | −0.20 (−0.65, 0.25) | 0.39 | −0.23 (−0.46, −0.01) | 0.04 | −1.31 (−2.69, 0.07) | 0.06 |
Monomethylarsonic Acid, µg/L (n = 541) | −0.90 (−1.48, −0.33) | <0.01 | −0.37 (−0.66, −0.08) | 0.01 | −0.48 (−2.21, 1.25) | 0.59 |
Barium, µg/L (n = 1096) | −0.06 (−0.34, 0.22) | 0.68 | −0.03 (−0.17, 0.11) | 0.72 | 0.50 (−0.36, 1.36) | 0.25 |
Cadmium, µg/L (n = 1064) | −0.31 (−0.63, 0.001) | 0.05 | −0.06 (−0.22, 0.10) | 0.46 | −1.42 (−2.38, −0.46) | <0.01 |
Cobalt, µg/L (n = 1100) | 0.11 (−0.23, 0.45) | 0.52 | 0.06 (−0.11, 0.22) | 0.52 | 0.26 (−0.76, 1.27) | 0.62 |
Cesium, µg/L (n = 1103) | 0.05 (−0.36, 0.46) | 0.82 | −0.005 (−0.21, 0.20) | 0.97 | −0.27 (−1.52, 1.00) | 0.68 |
Molybdenum, µg/L (n = 1103) | −0.13 (−0.44, 0.18) | 0.41 | −0.06 (−0.21, 0.10) | 0.47 | −0.06 (−1.01, 0.88) | 0.89 |
Manganese, µg/L (n = 531) | 0.06 (−0.64, 0.77) | 0.86 | −0.01 (−0.37, 0.35) | 0.96 | 0.35 (−1.84, 2.55) | 0.75 |
Lead, µg/dL (n = 1093) | −0.26 (−0.58, 0.06) | 0.12 | −0.03 (−0.19, 0.13) | 0.71 | −1.03 (−2.01, −0.06) | 0.04 |
Antimony, µg/L (n = 725) | −0.56 (−1.13, 0.01) | 0.06 | −0.27 (−0.56, 0.03) | 0.08 | −1.30 (−3.10, 0.50) | 0.16 |
Tin, µg/L (n = 1022) | −0.16 (−0.41, 0.08) | 0.20 | −0.08 (−0.20, 0.05) | 0.22 | −0.68 (−1.44, 0.08) | 0.08 |
Strontium, µg/L (n = 1099) | 0.05 (−0.32, 0.41) | 0.81 | 0.08 (−0.10, 0.26) | 0.39 | 0.70 (−0.42, 1.82) | 0.22 |
Thallium, µg/L (n = 1092) | 0.12 (−0.30, 0.54) | 0.58 | 0.09 (−0.12, 0.30) | 0.38 | 0.49 (−0.79, 1.77) | 0.45 |
Tungsten, µg/L (n = 888) | −0.38 (−0.75, −0.01) | 0.04 | −0.19 (−0.38, −0.004) | 0.05 | −0.47 (−1.62, 0.68) | 0.42 |
Uranium, µg/L (n = 864) | −0.11 (−0.49, 0.26) | 0.55 | −0.12 (−0.31, 0.07) | 0.22 | 0.34 (−1.11, 1.45) | 0.55 |
Stratified 60s Years Old Group (n = 984) | Stratified ≥ 70s Years Old Group (n = 851) | |||
---|---|---|---|---|
β (95% CI) | p Value | β (95% CI) | p Value | |
Lead, µg/L | −0.37 (−0.87, 0.13) | 0.14 | −0.85 (−1.44, −0.27) | <0.01 |
Cadmium, µg/L | −0.53 (−1.05, −0.01) | 0.05 | −0.68 (−1.32, −0.04) | 0.04 |
Selenium, µg/L | 2.62 (0.22, 5.03) | 0.03 | 3.44 (0.68, 6.21) | 0.01 |
Methylmercury, µg/L | 0.03 (−0.24, 0.31) | 0.80 | 0.16 (−0.17, 0.48) | 0.34 |
Percentage of CERAD Immediate Recall Score: Estimated Value Based on Model | Estimated CERAD Immediate Recall Score | Selenium (µg/L) | Lead (µg/L) | Cadmium (µg/L) | Methylmercury (µg/L) |
---|---|---|---|---|---|
Aged 60–69 years old, (n = 984) | |||||
10% | 17.03 | 190.31 | 29.72 | 0.60 | 1.91 |
25% | 18.09 | 190.44 | 18.90 | 0.69 | 1.69 |
50% | 19.54 | 198.67 | 17.38 | 0.58 | 2.06 |
75% | 20.88 | 206.39 | 15.18 | 0.49 | 2.28 |
90% | 22.00 | 191.83 | 15.54 | 0.51 | 2.10 |
Aged 70–89 years old, (n = 851) | |||||
10% | 14.69 | 184.47 | 25.22 | 0.65 | 1.28 |
25% | 15.98 | 190.75 | 23.57 | 0.65 | 2.17 |
50% | 17.46 | 196.98 | 17.83 | 0.49 | 1.77 |
75% | 18.83 | 200.66 | 16.96 | 0.49 | 2.10 |
90% | 19.80 | 198.97 | 15.30 | 0.51 | 1.86 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sasaki, N.; Carpenter, D.O. Associations between Metal Exposures and Cognitive Function in American Older Adults. Int. J. Environ. Res. Public Health 2022, 19, 2327. https://doi.org/10.3390/ijerph19042327
Sasaki N, Carpenter DO. Associations between Metal Exposures and Cognitive Function in American Older Adults. International Journal of Environmental Research and Public Health. 2022; 19(4):2327. https://doi.org/10.3390/ijerph19042327
Chicago/Turabian StyleSasaki, Nozomi, and David O. Carpenter. 2022. "Associations between Metal Exposures and Cognitive Function in American Older Adults" International Journal of Environmental Research and Public Health 19, no. 4: 2327. https://doi.org/10.3390/ijerph19042327
APA StyleSasaki, N., & Carpenter, D. O. (2022). Associations between Metal Exposures and Cognitive Function in American Older Adults. International Journal of Environmental Research and Public Health, 19(4), 2327. https://doi.org/10.3390/ijerph19042327