Sensing Technology Applications in the Mining Industry—A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Research Results
3.2. Prior Analysis
3.3. Sensing Technology
- Implemented: existing technology that used a traditional approach to solve a specific problem;
- Trial: existing technology using a novel approach to solve a particular problem;
- Prototype: technology developed by the authors, laboratory tested and validated, and, at a minimum, tested in the real ground.
3.4. Study Limitations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Menolotto, M.; Komaris, D.; Tedesco, S.; O’Flynn, B.; Walsh, M. Motion Capture Technology in Industrial Applications: A Systematic Review. Sensors 2020, 20, 5687. [Google Scholar] [CrossRef] [PubMed]
- Ostroukh, A.; Vasiliev, Y.; Kotliarskiy, E.; Sarychev, I. Connected Quarry Machines Digital Systems. ARPN J. Eng. Appl. Sci. 2019, 14, 135–140. [Google Scholar]
- Li, X.; Li, D.; Wan, J.; Vasilakos, A.V.; Lai, C.F.; Wang, S. A review of industrial wireless networks in the context of Industry 4.0. Wirel. Netw. 2017, 23, 23–41. [Google Scholar] [CrossRef]
- Zhou, N.; Liu, T.; Wen, B.; Gong, C.; Wei, G.; Su, Z. Recent Advances in the Construction of Flexible Sensors for Biomedical Applications. Biotechnol. J. 2020, 15, 2000094. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.; Xie, X.; Parlikad, A.K.; Schooling, J.M.; Konstantinou, E. Moving from Building Information Models to Digital Twins for Operation and Maintenance. Proc. Inst. Civ. Eng. Smart Infrastruct. Constr. 2020, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Alwis, L.S.M.; Bremer, K.; Roth, B. Fiber optic sensors embedded in textile-reinforced concrete for smart structural health monitoring: A review. Sensors 2021, 21, 4948. [Google Scholar] [CrossRef]
- Brzozowski, K.; Ryguła, A.; Maczyński, A. The use of low-cost sensors for air quality analysis in road intersections. Transp. Res. Part D Transp. Environ. 2019, 77, 198–211. [Google Scholar] [CrossRef]
- Benocci, R.; Roman, H.E.; Zambon, G. Optimized Sensors Network and Dynamical Maps for Monitoring Traffic Noise in a Large Urban Zone. Appl. Sci. 2021, 11, 8363. [Google Scholar] [CrossRef]
- Chilamkuri, K.; Kone, V. Monitoring of Varadhi Road Bridge Using Accelerometer Sensor. In Materials Today: Proceedings; Elsevier: Amsterdam, The Netherlands, 2020; Volume 33, pp. 367–371. [Google Scholar]
- Castillo-Mingorance, J.M.; Sol-Sánchez, M.; Moreno-Navarro, F.; Rubio-Gámez, M.C. A Critical Review of Sensors for the Continuous Monitoring of Smart and Sustainable Railway Infrastructures. Sustainability 2020, 12, 9428. [Google Scholar] [CrossRef]
- Kalinowski, P.; Długosz, O.; Kamiński, P. Digital Twin of the Mining Shaft and Hoisting System as an Opportunity to Improve the Management Processes of Shaft Infrastructure Diagnostics and Monitoring. In Data Science, Data Visualization, and Digital Twins; IntechOpen: London, UK, 2022; Volume i, p. 13. [Google Scholar]
- Jha, A.; Tukkaraja, P. Monitoring and assessment of underground climatic conditions using sensors and GIS tools. Int. J. Min. Sci. Technol. 2020, 30, 495–499. [Google Scholar] [CrossRef]
- Akkaş, M.A. Using wireless underground sensor networks for mine and miner safety. Wirel. Networks 2018, 24, 17–26. [Google Scholar] [CrossRef]
- Asadzadeh, A.; Arashpour, M.; Li, H.; Ngo, T.; Bab-Hadiashar, A.; Rashidi, A. Sensor-based safety management. Autom. Constr. 2020, 113, 103128. [Google Scholar] [CrossRef]
- Patri, A.; Nayak, A.; Jayanthu, S. Wireless Communication Systems for Underground Mines–A Critical Appraisal. IJETT 2013, 4, 3149–3153. [Google Scholar]
- Liu, T.; Wei, Y.; Song, G.; Hu, B.; Li, L.; Jin, G.; Wang, J.; Li, Y.; Song, C.; Shi, Z.; et al. Fibre optic sensors for coal mine hazard detection. Measurement 2018, 124, 211–223. [Google Scholar] [CrossRef]
- Yao, Y.; Yan, M.; Bao, Y. Measurement of cable forces for automated monitoring of engineering structures using fiber optic sensors: A review. Autom. Constr. 2021, 126, 103687. [Google Scholar] [CrossRef]
- Minhas, U.I.; Naqvi, I.H.; Qaisar, S.; Ali, K.; Shahid, S.; Aslam, M.A. A WSN for Monitoring and Event Reporting in Underground Mine Environments. IEEE Syst. J. 2018, 12, 485–496. [Google Scholar] [CrossRef]
- Han, S.; Ren, X.; Lu, J.; Dong, J. An Orientation Navigation Approach Based on INS and Odometer Integration for Underground Unmanned Excavating Machine. IEEE Trans. Veh. Technol. 2020, 69, 10772–10786. [Google Scholar] [CrossRef]
- Moridi, M.A.; Kawamura, Y.; Sharifzadeh, M.; Chanda, E.K.; Wagner, M.; Jang, H.; Okawa, H. Development of underground mine monitoring and communication system integrated ZigBee and GIS. Int. J. Min. Sci. Technol. 2015, 25, 811–818. [Google Scholar] [CrossRef] [Green Version]
- Mansouri, S.S.; Kanellakis, C.; Kominiak, D.; Nikolakopoulos, G. Deploying MAVs for autonomous navigation in dark underground mine environments. Robot. Auton. Syst. 2020, 126, 103472. [Google Scholar] [CrossRef]
- Ranjan, A.; Sahu, H.B.; Misra, P. Modeling and measurements for wireless communication networks in underground mine environments. Measurement 2020, 149, 106980. [Google Scholar] [CrossRef]
- Pishgar, M.; Issa, S.F.; Sietsema, M.; Pratap, P.; Darabi, H. REDECA: A Novel Framework to Review Artificial Intelligence and Its Applications in Occupational Safety and Health. Int. J. Environ. Res. Public Health 2021, 18, 6705. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.; The PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. PLOS Med. 2021, 18, e1003583. [Google Scholar] [CrossRef] [PubMed]
- Wohlin, C. Claes Guidelines for Snowballing in Systematic Literature Studies and a Replication in Software Engineering. In Proceedings of the 18th International Conference on Evaluation and Assessment in Software Engineering—EASE ’14, London, UK, 13–14 May 2014; ACM Press: New York, NY, USA, 2014; pp. 1–10. [Google Scholar]
- Higgins, J.; Altman, D.; Gøtzsche, P.; Jüni, P.; Moher, D.; Oxman, A.; Savović, J.; Schulz, K.; Weeks, L.; Sterne, J.A.C.; et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 2011, 343, d5928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, L.; Mingyue, R.; Guoying, M. Application of Internet of Things Technology on Predictive Maintenance System of Coal Equipment. Procedia Eng. 2017, 174, 885–889. [Google Scholar] [CrossRef]
- Wang, Y.; Zheng, G.; Wang, X. Development and application of a goaf-safety monitoring system using multi-sensor information fusion. Tunn. Undergr. Space Technol. 2019, 94, 103112. [Google Scholar] [CrossRef]
- Zhang, C.; Fu, Y.; Deng, F.; Wei, B.; Wu, X. Methane Gas Density Monitoring and Predicting Based on RFID Sensor Tag and CNN Algorithm. Electronics 2018, 7, 69. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Yang, X. An Automatic Online Disaster Monitoring Network: Network Architecture and a Case Study Monitoring Slope Stability. Int. J. Online Eng. 2018, 14, 4–19. [Google Scholar] [CrossRef]
- Park, S.; Choi, Y. Bluetooth beacon-based mine production management application to support ore haulage operations in underground mines. Sustainability 2021, 13, 2281. [Google Scholar] [CrossRef]
- Fantini, A.; Fiorucci, M.; Martino, S.; Paciello, A. Investigating Rock Mass Failure Precursors Using a Multi-sensor Monitoring System: Preliminary Results from a Test-Site (Acuto, Italy). Procedia Eng. 2017, 191, 188–195. [Google Scholar] [CrossRef]
- Lanciano, C.; Salvini, R. Monitoring of strain and temperature in an open pit using brillouin distributed optical fiber sensors. Sensors 2020, 20, 1924. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mastrorocco, G.; Salvini, R.; Vanneschi, C. Fracture mapping in challenging environment: A 3D virtual reality approach combining terrestrial LiDAR and high definition images. Bull. Eng. Geol. Environ. 2018, 77, 691–707. [Google Scholar] [CrossRef] [Green Version]
- Jo, B.W.; Khan, R.M.A. An Internet of Things System for Underground Mine Air Quality Pollutant Prediction Based on Azure Machine Learning. Sensors 2018, 18, 930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y.; Baek, J.; Choi, Y. Smart helmet-based personnel proximity warning system for improving underground mine safety. Appl. Sci. 2021, 11, 4342. [Google Scholar] [CrossRef]
- Jung, J.; Choi, Y. Measuring transport time of mine equipment in an underground mine using a bluetooth beacon system. Minerals 2017, 7, 1. [Google Scholar] [CrossRef] [Green Version]
- Naruse, H.; Uehara, H.; Deguchi, T.; Fujihashi, K.; Onishi, M.; Espinoza, R.; Guzman, C.; Pardo, C.; Ortega, C.; Pinto, M. Application of a distributed fibre optic strain sensing system to monitoring changes in the state of an underground mine. Meas. Sci. Technol. 2007, 18, 3202–3210. [Google Scholar] [CrossRef]
- Ghosh, D.; Samanta, B.; Chakravarty, D. Multi sensor data fusion for 6D pose estimation and 3D underground mine mapping using autonomous mobile robot. Int. J. Image Data Fusion 2017, 8, 173–187. [Google Scholar] [CrossRef]
- Ziętek, B.; Banasiewicz, A.; Zimroz, R.; Szrek, J.; Gola, S. A portable environmental data-monitoring system for air hazard evaluation in deep underground mines. Energies 2020, 13, 6331. [Google Scholar] [CrossRef]
- Yuval; Magen Molho, H.; Zivan, O.; Broday, D.M.; Raz, R. Application of a sensor network of low cost optical particle counters for assessing the impact of quarry emissions on its vicinity. Atmos. Environ. 2019, 211, 29–37. [Google Scholar] [CrossRef]
- Carabassa, V.; Montero, P.; Crespo, M.; Padró, J.C.; Pons, X.; Balagué, J.; Brotons, L.; Alcañiz, J.M. Unmanned aerial system protocol for quarry restoration and mineral extraction monitoring. J. Environ. Manag. 2020, 270, 110717. [Google Scholar] [CrossRef]
- Boubanga-Tombet, S.; Huot, A.; Vitins, I.; Heuberger, S.; Veuve, C.; Eisele, A.; Hewson, R.; Guyot, E.; Marcotte, F.; Chamberland, M. Thermal infrared hyperspectral imaging for mineralogy mapping of a mine face. Remote Sens. 2018, 10, 1518. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, H.; Choi, Y.; Bui, X.-N.; Nguyen-Thoi, T. Predicting blast-induced ground vibration in open-pit mines using vibration sensors and support vector regression-based optimization algorithms. Sensors 2020, 20, 132. [Google Scholar] [CrossRef] [Green Version]
- Wajs, J. First experience with Remote Sensing methods and selected sensors in the monitoring of mining areas—A case study of the Belchatow open cast mine. In E3S Web of Conferences; EDP Sciences: Ulis, France, 2018; Volume 29, p. 23. [Google Scholar] [CrossRef] [Green Version]
- Nascimento, F.S.; Gastauer, M.; Souza-Filho, P.W.M.; Nascimento, W.R.; Santos, D.C.; Costa, M.F. Land cover changes in open-cast mining complexes based on high-resolution remote sensing data. Remote Sens. 2020, 12, 611. [Google Scholar] [CrossRef] [Green Version]
- Padró, J.-C.C.; Carabassa, V.; Balagué, J.; Brotons, L.; Alcañiz, J.M.; Pons, X. Monitoring opencast mine restorations using Unmanned Aerial System (UAS) imagery. Sci. Total Environ. 2019, 657, 1602–1614. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, Q.L.; Cao, X.C.; Le, V.C.; Nguyen, N.B.; Dang, A.T.; Le, Q.T.; Bui, X.-N. 3D spatial interpolation methods for open-pit mining air quality with data acquired by small UAV based monitoring system. Inżynieria Miner. 2020, 1, 263–273. [Google Scholar] [CrossRef]
- Nikolakis, N.; Kantaris, G.; Bourmpouchakis, K.; Alexopoulos, K. A cyber-physical system approach for enabling ventilation on-demand in an underground mining site. Procedia CIRP 2020, 97, 487–490. [Google Scholar] [CrossRef]
- Kruse, F.A.; Bedell, R.L.; Taranik, J.V.; Peppin, W.A.; Weatherbee, O.; Calvin, W.M. Mapping alteration minerals at prospect, outcrop and drill core scales using imaging spectrometry. Int. J. Remote Sens. 2012, 33, 1780–1798. [Google Scholar] [CrossRef] [Green Version]
- Thiele, S.T.; Lorenz, S.; Kirsch, M.; Cecilia Contreras Acosta, I.; Tusa, L.; Herrmann, E.; Möckel, R.; Gloaguen, R. Multi-scale, multi-sensor data integration for automated 3-D geological mapping. Ore Geol. Rev. 2021, 136, 104252. [Google Scholar] [CrossRef]
- Kirsch, M.; Lorenz, S.; Zimmermann, R.; Tusa, L.; Möckel, R.; Hödl, P.; Booysen, R.; Khodadadzadeh, M.; Gloaguen, R. Integration of Terrestrial and Drone-borne Hyperspectral and Photogrammetric Sensing Methods for Exploration Mapping and Mining Monitoring. Remote Sens. 2018, 10, 1366. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Liu, Y. Underground coal mine monitoring with wireless sensor networks. ACM Trans. Sens. Networks 2009, 5, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Hargrave, C.O.; James, C.A.; Ralston, J.C. Infrastructure-based localisation of automated coal mining equipment. Int. J. Coal Sci. Technol. 2017, 4, 252–261. [Google Scholar] [CrossRef]
- He, J.; Barton, I. Hyperspectral remote sensing for detecting geotechnical problems at Ray mine. Eng. Geol. 2021, 292, 106261. [Google Scholar] [CrossRef]
- Moridi, M.A.; Sharifzadeh, M.; Kawamura, Y.; Jang, H.D. Development of wireless sensor networks for underground communication and monitoring systems (the cases of underground mine environments). Tunn. Undergr. Space Technol. 2018, 73, 127–138. [Google Scholar] [CrossRef] [Green Version]
- Francioni, M.; Salvini, R.; Stead, D.; Coggan, J. Improvements in the integration of remote sensing and rock slope modelling. Nat. Hazards 2018, 90, 975–1004. [Google Scholar] [CrossRef] [Green Version]
- Sengupta, S.; Krishna, A.P.; Roy, I. Slope failure susceptibility zonation using integrated remote sensing and GIS techniques: A case study over Jhingurdah open pit coal mine, Singrauli coalfield, India. J. Earth Syst. Sci. 2018, 127, 82. [Google Scholar] [CrossRef] [Green Version]
- Sayab, M.; Aerden, D.; Paananen, M.; Saarela, P. Virtual structural analysis of Jokisivu open pit using “structure-from-motion” Unmanned Aerial Vehicles (UAV) photogrammetry: Implications for structurally-controlled gold deposits in Southwest Finland. Remote Sens. 2018, 10, 1296. [Google Scholar] [CrossRef] [Green Version]
- Aasen, H.; Honkavaara, E.; Lucieer, A.; Zarco-Tejada, P.J. Quantitative remote sensing at ultra-high resolution with UAV spectroscopy: A review of sensor technology, measurement procedures, and data correctionworkflows. Remote Sens. 2018, 10, 1091. [Google Scholar] [CrossRef] [Green Version]
- Mancini, F.; Dubbini, M.; Gattelli, M.; Stecchi, F.; Fabbri, S.; Gabbianelli, G. Using unmanned aerial vehicles (UAV) for high-resolution reconstruction of topography: The structure from motion approach on coastal environments. Remote Sens. 2013, 5, 6880–6898. [Google Scholar] [CrossRef] [Green Version]
- Colomina, I.; Molina, P. Unmanned aerial systems for photogrammetry and remote sensing: A review. ISPRS J. Photogramm. Remote Sens. 2014, 92, 79–97. [Google Scholar] [CrossRef] [Green Version]
- Shahbazi, M.; Théau, J.; Ménard, P. Recent applications of unmanned aerial imagery in natural resource management. GIScience Remote Sens. 2014, 51, 339–365. [Google Scholar] [CrossRef]
- Li, D.; Yang, W.; Shi, X.; Guo, D.; Long, Q.; Qiao, F.; Wei, Q. A visual-inertial localization method for unmanned aerial vehicle in underground tunnel dynamic environments. IEEE Access 2020, 8, 76809–76822. [Google Scholar] [CrossRef]
- Li, H.; Savkin, A.V.; Vucetic, B. Autonomous Area Exploration and Mapping in Underground Mine Environments by Unmanned Aerial Vehicles. Robotica 2021, 38, 442–456. [Google Scholar] [CrossRef]
- Li, M.G.; Zhu, H.; You, S.Z.; Tang, C.Q. UWB-Based Localization System Aided with Inertial Sensor for Underground Coal Mine Applications. IEEE Sens. J. 2020, 20, 6652–6669. [Google Scholar] [CrossRef]
- Sharma, M.; Maity, T. Low Cost Low Power Smart Helmet for Real-Time Remote Underground Mine Environment Monitoring. Wirel. Pers. Commun. 2018, 102, 149–162. [Google Scholar] [CrossRef]
- Chehri, A.; Fortier, P.; Tardif, P.-M. Security Monitoring Using Wireless Sensor Networks. In Proceedings of the Fifth Annual Conference on Communication Networks and Services Research (CNSR ’07), Fredericton, NB, Canada, 14–17 May 2007; pp. 13–17. [Google Scholar]
- Bado, M.F.; Casas, J.R. A review of recent distributed optical fiber sensors applications for civil engineering structural health monitoring. Sensors 2021, 21, 1818. [Google Scholar] [CrossRef]
- Mishra, D.P.; Panigrahi, D.C.; Kumar, P.; Kumar, A.; Sinha, P.K. Assessment of relative impacts of various geo-mining factors on methane dispersion for safety in gassy underground coal mines: An artificial neural networks approach. Neural Comput. Appl. 2021, 33, 181–190. [Google Scholar] [CrossRef]
- Ruff, T.M.; Hession-Kunz, D. Application of radio-frequency identification systems to collision avoidance in metal/nonmetal mines. IEEE Trans. Ind. Appl. 2001, 37, 112–116. [Google Scholar] [CrossRef]
- Baek, J.; Choi, Y. Bluetooth-beacon-based underground proximity warning system for preventing collisions inside tunnels. Appl. Sci. 2018, 8, 2271. [Google Scholar] [CrossRef] [Green Version]
- Bnouachir, H.; Chergui, M.; Machkour, N.; Zegrari, M.; Chakir, A.; Deshayes, L.; Semmar, A.; Medromi, H. Intelligent fleet management system for open pit mine. Int. J. Adv. Comput. Sci. Appl. 2020, 11, 327–332. [Google Scholar] [CrossRef]
- Dong, S.; Li, H.; Yin, Q. Building information modeling in combination with real time location systems and sensors for safety performance enhancement. Saf. Sci. 2018, 102, 226–237. [Google Scholar] [CrossRef]
- Baek, J.; Choi, Y.; Lee, C.; Jung, J. Performance comparison of bluetooth beacon and reverse RFID systems as potential tools for measuring truck travel time in open-pit mines: A simulation experiment. Geosystem Eng. 2018, 21, 43–52. [Google Scholar] [CrossRef]
- Åstrand, M.; Jakobsson, E.; Lindfors, M.; Svensson, J. A system for underground road condition monitoring. Int. J. Min. Sci. Technol. 2020, 30, 405–411. [Google Scholar] [CrossRef]
- Bilodeau, M.; Gouveia, D.; Demers, A.; Di Feo, A. 3D free fall rock size sensor. Miner. Eng. 2020, 148, 106169. [Google Scholar] [CrossRef]
- Li, J.; Liu, Y.; Xie, J.; Li, M.; Sun, M.; Liu, Z.; Jiang, S. A remote monitoring and diagnosis method based on four-layer IoT frame perception. IEEE Access 2019, 7, 144324–144338. [Google Scholar] [CrossRef]
- Dong, L.; Sun, D.; Han, G.; Li, X.; Hu, Q.; Shu, L. Velocity-Free Localization of Autonomous Driverless Vehicles in Underground Intelligent Mines. IEEE Trans. Veh. Technol. 2020, 69, 9292–9303. [Google Scholar] [CrossRef]
- Kim, H.; Choi, Y. Comparison of three location estimation methods of an autonomous driving robot for underground mines. Appl. Sci. 2020, 10, 4831. [Google Scholar] [CrossRef]
Study | Sensor Type | Connectivity | Collected Information | System Setup | Implementation |
---|---|---|---|---|---|
[39] | Extensometer | Optical fibre | Strain distribution | Brillouin-based strain sensing system constituted by: (1) optical fibre sensors, (2) Brillouin Optical Time Domain Reflectometer (BOTDR), (3) optical switch, (4) personal computer. | Trial |
[54] | Not specified | Wireless | Location | Structure-Aware Self-Adaptive (SASA) sensor system, with a beacon mechanism. | Prototype |
[51] | Hyperspectral sensor, Global Positioning System, Inertial Navigation System | Infrared | Hyperspectral images, position | A Cessna 206 was equipped with a ProSpecTIR-VS scanner. The system combined a Global Positioning System (GPS), an onboard inertial navigation system (INS) and a 10 m National Elevation Dataset (NED). | Implemented |
[28] | Not specified | Wireless | Vibration, pressure, temperature, noise | The system was composed of a state monitoring station, a coal mine monitoring centre, and a remote predictive maintenance system. | Not mentioned |
[33] | Thermometer, hygrometer, pluviometer, anemometer, optical camera | Wireless | Wind speed and direction, rock mass temperature, strain rates | The system consisted of two weather stations, one smart camera connected to an artificial intelligence system, a stress-strain geotechnical system, one seismic monitoring device, and a nano-seismic array. | Trial |
[40] | Robot | Not mentioned | (x, y, z) coordinates, yaw, pitch and roll angles | The system was composed of a robot having a differential drive mechanism. | Prototype |
[55] | Radar, laser scanner | Radar | Creep position | The system consisted of one radar sensor, three laser scanners (two of them mounted broadside to the direction of travel, and the other to scan the direction of travel), and one videocamera. | Trial |
[38] | Beacon | Bluetooth | Position | Bluetooth beacon system. It consists of RECO beacon and a Samsung Galaxy Note 3 smartphone. | Implemented |
[44] | Thermal infrared hyperspectral sensor | Infrared | Infrared hyperspectral images (data cubes), positions | The instrument was equipped with a GPS and a high-resolution digital camera. | Implemented |
[36] | Not specified | Wireless | Gases concentration, temperature | ZigBee wireless communication protocol: (1) data acquisition system, (2) data transmission, (3) data processing (quality assessment and prediction), (4) information sharing, (5) intelligent control of mine ventilators. | Implemented |
[53] | Optical sensors | Infrared | Outcrop images, hyperspectral image, radiance image, hyperspectral scan | The system was composed of a hyperspectral push broom scanner (Specim AisaFenix Terrestrial)—visible to near-infrared and shortwave infrared, a hyper-cam (Telops Hyper-Cam LW)—longwave infrared, and a drone-borne (Senop Rikola)—visible to near-infrared | Implemented (new approach) |
[35] | Optical sensors | Infrared | Absolute (x, y, z) coordinates of the point clouds, the reflectance (reflectivity) of surfaces, RGB data from the associated photographic images | The system consisted of a LiDAR using a pulse-based static terrestrial laser scanner. In addition, topographic data (GPS and TS) was used. | Implemented |
[46] | Multispectral sensor | Infrared | Multispectral images | The system was composed of two satellites: SENTINEL-1 and SENTINEL-2. | Implemented |
[31] | Surveying robot, GPS, air temperature and pressure sensor | Wireless | Air temperature, pressure, position coordinates. | Geosensor network. The system consists of a data sensing layer, a data management layer, sensor services, and an application layer. | Implemented |
[30] | Methane gas density sensor | Wireless | Radiofrequency identification (RFID) | Wireless sensor network. The system consisted of a communication section, a radio-frequency front-end section, and a digital section. | Prototype |
[48] | Optical sensor | Near-infrared | Multispectral images | Unmanned aerial system (UAS) with four spectral bands: green (GRE), red (RED), red-edge (REG) and near-infrared (NIR). | Implemented |
[29] | Tension bar stress meters, photo-elastic stress meters, stress-strain borehole stress meter | Wireless | Stress (MPa), | ZigBee wireless network. The system consists of four parts: a stress monitoring unit, a data acquisition unit, a wireless communication unit, and a database management unit. | Trial |
[42] | Optical sensor | Not mentioned | Particle number concentration (PNC) | A network of low-cost sensors composed the system. | Implemented |
[43] | Optical sensor | Not mentioned | Multispectral images | Unmanned aerial system (UAS). | Trial |
[34] | Optical fibre sensor | Not mentioned | Temperature, strain, images | Unmanned aerial system (UAS) consisting of the Inertial Navigation System (INS) with GNSS, accelerometers and gyroscopes, a video camera for remote inspection and the flight management software. Topographic monitoring system was composed of a laser distancemeter, an electronic theodolite, and a computer. | Trial |
[47] | Orbital sensors (satellite), optical sensor | Infrared | High-resolution images | The system was composed of a satellite and a LiDAR. | Trial |
[45] | Geophone sensors, vibration sensor | Not mentioned | Intensity of vibration, vibration | The system consisted of vibration sensors. | Trial |
[50] | Not specified | Wireless | Gases concentration (CO2, CO, NO2, NO, O2, SO2, H2S), temperature, humidity | The data transmission was achieved through a set of LoRa nodes. The ventilation motor control component was implemented as web applications in Java. | Prototype |
[49] | Electrochemistry sensors, laser dust sensor | Not mentioned | PM2.5, CO, CO2, and SO2 concentrations | Unmanned aerial system, where the sensors were attached to the drone. | Trial |
[41] | CO gas sensor, H2S gas sensor, temperature sensor, pressure sensor, humidity sensor | Bluetooth | Gases concentration, temperature, pressure, humidity | The system consists of four modules: sensor layers, data acquisition by the microcontroller, smartphone, and external IT infrastructure on the surface (optional). | Prototype |
[56] | Optical sensor | Not mentioned | Spectral images | The system consisted of a drone and tripod-mounted sensors. | Implemented |
[37] | Smart helmet, Bluetooth beacon | Bluetooth low energy | Not mentioned. | The system consisted of two sensors. | Prototype |
[32] | Not specified | Bluetooth | Location | The system was composed of a Bluetooth beacon and a tablet PC. | Prototype |
[52] | Hyperspectral sensor, optical sensor | Not mentioned | Hyperspectral images, outcrop scans | Unmanned aerial system combined with LiDAR. | Implemented |
Study | Methodology | Results | Other | ||||
---|---|---|---|---|---|---|---|
Task Definition | Equipment Type | Standard Application | Serve the Purpose | Sensor Precision | Reporting Quality | References Quality | |
[39] | LR | LR | UR | LR | UR | LR | HR |
[54] | LR | UR | UR | UR | LR | LR | HR |
[51] | HR | LR | UR | LR | UR | LR | HR |
[28] | HR | UR | UR | UR | UR | HR | HR |
[33] | LR | LR | UR | LR | UR | HR | HR |
[40] | LR | UR | UR | UR | UR | LR | HR |
[55] | LR | LR | UR | LR | LR | LR | HR |
[38] | LR | HR | UR | LR | UR | LR | HR |
[44] | LR | LR | UR | LR | LR | LR | LR |
[36] | LR | UR | UR | UR | LR | LR | LR |
[53] | LR | LR | UR | LR | LR | LR | LR |
[35] | LR | LR | UR | LR | LR | LR | LR |
[46] | HR | HR | UR | LR | UR | HR | HR |
[31] | HR | LR | UR | LR | LR | LR | HR |
[30] | HR | UR | UR | UR | UR | LR | LR |
[48] | LR | LR | UR | LR | LR | LR | LR |
[29] | LR | LR | UR | LR | UR | LR | HR |
[42] | LR | UR | UR | UR | UR | LR | HR |
[43] | HR | LR | UR | LR | UR | LR | LR |
[34] | LR | LR | UR | LR | UR | LR | LR |
[47] | LR | LR | UR | LR | LR | LR | LR |
[45] | LR | LR | UR | LR | UR | LR | LR |
[50] | HR | UR | UR | UR | UR | HR | LR |
[49] | HR | LR | UR | LR | UR | LR | LR |
[41] | LR | LR | UR | LR | LR | LR | LR |
[56] | LR | LR | UR | LR | LR | LR | LR |
[37] | LR | LR | UR | LR | LR | LR | LR |
[32] | LR | LR | UR | LR | UR | HR | HR |
[52] | LR | LR | UR | LR | UR | LR | LR |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duarte, J.; Rodrigues, F.; Castelo Branco, J. Sensing Technology Applications in the Mining Industry—A Systematic Review. Int. J. Environ. Res. Public Health 2022, 19, 2334. https://doi.org/10.3390/ijerph19042334
Duarte J, Rodrigues F, Castelo Branco J. Sensing Technology Applications in the Mining Industry—A Systematic Review. International Journal of Environmental Research and Public Health. 2022; 19(4):2334. https://doi.org/10.3390/ijerph19042334
Chicago/Turabian StyleDuarte, Joana, Fernanda Rodrigues, and Jacqueline Castelo Branco. 2022. "Sensing Technology Applications in the Mining Industry—A Systematic Review" International Journal of Environmental Research and Public Health 19, no. 4: 2334. https://doi.org/10.3390/ijerph19042334
APA StyleDuarte, J., Rodrigues, F., & Castelo Branco, J. (2022). Sensing Technology Applications in the Mining Industry—A Systematic Review. International Journal of Environmental Research and Public Health, 19(4), 2334. https://doi.org/10.3390/ijerph19042334