Geochemical and Statistical Analyses of Trace Elements in Lake Sediments from Qaidam Basin, Qinghai-Tibet Plateau: Distribution Characteristics and Source Apportionment
Abstract
:1. Introduction
2. Materials and methods
2.1. Study Area
2.2. Sampling and Measurements
2.3. Statistical Analysis
2.3.1. Self-Organizing Maps (SOM)
2.3.2. Positive Matrix Factorization (PMF)
3. Results and Discussion
3.1. Summary Statistics of Trace Elements Identified in Lake Sediments
Lake | V | Cr | Ni | Cu | Zn | As | Cd | Ba | Tl | Pb | U | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Dasugan Lake | Mean | 185 | 140 | 80.6 | 57.8 | 153 | 179 | 0.25 | 1127 | 1.0 | 37.5 | 60.9 |
Max | 306 | 207 | 108 | 73.8 | 210 | 235 | 0.32 | 2450 | 1.4 | 69.0 | 107 | |
Min | 114 | 93.1 | 62.4 | 39.5 | 116 | 126 | 0.16 | 661 | 0.59 | 24.4 | 15.7 | |
SD | 59.9 | 34.4 | 14.3 | 11.9 | 28.5 | 28.0 | 0.06 | 519.6 | 0.30 | 14.2 | 31.0 | |
CV(%) | 32 | 25 | 18 | 21 | 19 | 16 | 24 | 46 | 30 | 38 | 51 | |
Xiaoqaidam Lake | Mean | 489 | 391 | 205 | 204 | 499 | 229 | 0.96 | 2404 | 3.4 | 145 | 31.9 |
Max | 553 | 440 | 234 | 233 | 572 | 280 | 1.12 | 2749 | 4.1 | 167 | 47.1 | |
Min | 335 | 260 | 140 | 132 | 330 | 200 | 0.57 | 1988 | 2.6 | 109 | 19.8 | |
SD | 71.0 | 53.4 | 30.1 | 32.0 | 75.8 | 29.8 | 0.17 | 239.1 | 0.5 | 17.2 | 6.7 | |
CV(%) | 15 | 14 | 15 | 16 | 15 | 13 | 17 | 10 | 16 | 12 | 21 | |
Kreuk Lake | Mean | 365 | 285 | 148 | 138 | 338 | 201 | 0.65 | 1900 | 2.0 | 85.9 | 26.4 |
Max | 536 | 380 | 190 | 179 | 421 | 239 | 0.82 | 2346 | 2.6 | 107 | 31.9 | |
Min | 197 | 139 | 86.7 | 83.3 | 198 | 159 | 0.40 | 359 | 1.12 | 52.8 | 14.8 | |
SD | 119.2 | 91.9 | 36.8 | 35.1 | 88.2 | 28.9 | 0.16 | 666.4 | 0.59 | 22.4 | 6.5 | |
CV(%) | 33 | 32 | 25 | 25 | 26 | 14 | 24 | 35 | 30 | 26 | 24 | |
Toson Lake | Mean | 242 | 180 | 99.9 | 85.6 | 295 | 220 | 0.84 | 1491 | 2.16 | 85.6 | 31.9 |
Max | 310 | 240 | 126 | 106 | 435 | 352 | 1.22 | 2346 | 3.12 | 109 | 52.6 | |
Min | 130 | 82.7 | 57.2 | 54.0 | 196 | 144 | 0.43 | 257 | 1.40 | 64.3 | 17.5 | |
SD | 58.1 | 49.9 | 21.6 | 18.1 | 58.7 | 54.1 | 0.24 | 564.9 | 0.49 | 14.1 | 9.7 | |
CV(%) | 24 | 28 | 22 | 21 | 20 | 25 | 29 | 38 | 22 | 16 | 30 | |
Gahai Lake | Mean | 393 | 310 | 170 | 152 | 397 | 215 | 1.12 | 1876 | 3.05 | 110 | 32.9 |
Max | 459 | 356 | 197 | 178 | 462 | 312 | 1.46 | 2300 | 3.34 | 126 | 42.6 | |
Min | 276 | 209 | 105 | 87.8 | 273 | 173 | 0.52 | 1630 | 2.63 | 74.1 | 16.6 | |
SD | 62.8 | 53.7 | 34.2 | 32.5 | 68.55 | 48.9 | 0.34 | 239.1 | 0.23 | 16.7 | 8.3 | |
CV(%) | 16 | 17 | 20 | 21 | 17 | 23 | 30 | 13 | 7 | 15 | 25 | |
Xiligou Lake | Mean | 316 | 248 | 145 | 144 | 322 | 231 | 0.87 | 1499 | 2.35 | 82.7 | 130 |
Max | 493 | 384 | 204 | 213 | 452 | 280 | 1.14 | 2377 | 3.41 | 128 | 202 | |
Min | 151 | 136 | 89.2 | 81.5 | 183 | 191 | 0.57 | 711 | 1.35 | 44.0 | 48.7 | |
SD | 111.4 | 86.4 | 41.8 | 45.1 | 94.8 | 29.6 | 0.23 | 513.05 | 0.70 | 28.5 | 45.14 | |
CV(%) | 35 | 35 | 29 | 31 | 29 | 13 | 26 | 34 | 30 | 34 | 35 | |
Background values a | 71.8 | 70.1 | 29.6 | 22.2 | 80.3 | 14 | 1.37 | 411 | 0.59 | 20.9 | 2.99 | |
Taihu lake, China b | — | 87.9 | 53.9 | 59.1 | 140 | 13.6 | 1.03 | — | — | 71.7 | — | |
YR, China c | — | 77.2 | 25.9 | 46.5 | 149 | 25.9 | 0.42 | — | — | 37.8 | — | |
Rz and VK, Slovakia d Kozmalovce, Slovakia (12) | — | 62.5 | 38.9 | 230.2 | 490 | 49.1 | 2.0 | — | — | 72.4 | — | |
Reference lake, USA e | — | 65.0 | 31.0 | 58.0 | 216 | — | 0.65 | — | — | 73.0 | — | |
Qarun lake, Egypt f | — | 14.4 | 55.6 | 39.1 | 117 | — | 1.26 | — | — | 21.2 | — | |
C Coast, India g | — | 110 | 28.0 | 76.5 | 78.7 | — | 19.8 | — | — | 49.6 | — |
3.2. Correlational Analysis between Trace Elements
3.3. Self-Organizing Maps (SOM)
3.4. Source Apportionment by Positive Matrix Factorization (PMF)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, X.; Sillanpää, M.; Duo, B.U.; Gjessing, E.T. Water quality in the Tibetan Plateau: Metal contents of four selected rivers. Environ. Pollut. 2008, 156, 270–277. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Zhang, Q.; Kang, S.; Liu, Y.; Huang, J.; Liu, X.; Guo, J.; Wang, K.; Cong, Z. Distribution and enrichment of mercury in Tibetan lake waters and their relations with the natural environment. Environ. Sci. Pollut. Res. 2015, 22, 12490–12500. [Google Scholar] [CrossRef] [PubMed]
- Cheng, G.; Wu, T. Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau. J. Geophys. Res. Earth Surf. 2007, 112. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Duan, D.; Lu, J.; Luo, Y.; Wen, X.; Guo, X.; Boman, B.J. Inorganic pollution around the Qinghai-Tibet Plateau: An overview of the current observations. Sci. Total Environ. 2016, 550, 628–636. [Google Scholar] [CrossRef] [PubMed]
- Wei, P.; Shao, T.; Wang, R.; Chen, Z.; Zhang, Z.; Xu, Z.; Zhu, Y.; Li, D.; Fu, L.; Wang, F. A Study on Heavy Metals in the Surface Soil of the Region around the Qinghai Lake in Tibet Plateau: Pollution Risk Evaluation and Pollution Source Analysis. Water 2020, 12, 3277. [Google Scholar] [CrossRef]
- Wan, W.; Long, D.; Hong, Y.; Ma, Y.; Yuan, Y.; Xiao, P.; Duan, H.; Han, Z.; Gu, X. A lake data set for the Tibetan Plateau from the 1960s, 2005, and 2014. Sci. Data 2016, 3, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Guo, W.; Huo, S.; Xi, B.; Zhang, J.; Wu, F. Heavy metal contamination in sediments from typical lakes in the five geographic regions of China: Distribution, bioavailability, and risk. Ecol. Eng. 2015, 81, 243–255. [Google Scholar] [CrossRef]
- Lee, K.; Hur, S.D.; Hou, S.; Hong, S.; Qin, X.; Ren, J.; Liu, Y.; Rosman, K.J.; Barbante, C.; Boutron, C.F. Atmospheric pollution for trace elements in the remote high-altitude atmosphere in central Asia as recorded in snow from Mt. Qomolangma (Everest) of the Himalayas. Sci. Total Environ. 2008, 404, 171–181. [Google Scholar] [CrossRef]
- Zhou, Q.; Yang, N.; Li, Y.; Ren, B.; Ding, X.; Bian, H.; Yao, X. Total concentrations and sources of heavy metal pollution in global river and lake water bodies from 1972 to 2017. Glob. Ecol. Conserv. 2020, 22, e00925. [Google Scholar] [CrossRef]
- Yi, Y.; Yang, Z.; Zhang, S. Ecological risk assessment of heavy metals in sediment and human health risk assessment of heavy metals in fishes in the middle and lower reaches of the Yangtze River basin. Environ. Pollut. 2011, 159, 2575–2585. [Google Scholar] [CrossRef]
- Guo, B.; Liu, Y.; Zhang, F.; Hou, J.; Zhang, H.; Li, C. Heavy metals in the surface sediments of lakes on the Tibetan Plateau, China. Environ. Sci. Pollut. Res. 2017, 25, 3695–3707. [Google Scholar] [CrossRef] [PubMed]
- Fatoki, O.S.; Mathabatha, S. An assessment of heavy metal pollution in the East London and Port Elizabeth harbours. Water Sa 2001, 27, 233–240. [Google Scholar] [CrossRef] [Green Version]
- Vandecasteele, B.; Quataert, P.; De Vos, B.; Tack, F.M. Assessment of the pollution status of alluvial plains: A case study for the dredged sediment-derived soils along te Leie river. Arch. Environ. Contam. Toxicol. 2004, 47, 14–22. [Google Scholar] [CrossRef] [Green Version]
- Zan, F.; Huo, S.; Xi, B.; Su, J.; Li, X.; Zhang, J.; Yeager, K.M. A 100 year sedimentary record of heavy metal pollution in a shallow eutrophic lake, Lake Chaohu, China. J. Environ. Monit. 2011, 13, 2788–2797. [Google Scholar] [CrossRef] [PubMed]
- Yuan G, L.; Liu, C.; Chen, L.; Yang, Z. Inputting history of heavy metals into the inland lake recorded in sediment profiles: Poyang Lake in China. J. Hazard. Mater. 2011, 185, 336–345. [Google Scholar] [CrossRef]
- Dai, L.; Wang, L.; Li, L.; Liang, T.; Zhang, Y.; Ma, C.; Xing, B. Multivariate geostatistical analysis and source identification of heavy metals in the sediment of Poyang Lake in China. Sci. Total Environ. 2018, 621, 1433–1444. [Google Scholar] [CrossRef]
- Malferrari, D.; Brigatti, M.F.; Laurora, A.; Pini, S. Heavy metals in sediments from canals for water supplying and drainage: Mobilization and control strategies. J. Hazard. Mater. 2009, 161, 723–729. [Google Scholar] [CrossRef]
- Hiller, E.; Jurkovič, Ľ.; Šutriepka, M. Metals in the surface sediments of selected water reservoirs, Slovakia. Bull. Environ. Contam. Toxicol. 2010, 84, 635–640. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wang, L.; Liang, T.; Xiao, J.; Li, J.; Wei, H.; Dong, L. Major ion and dissolved heavy metal geochemistry, distribution, and relationship in the overlying water of Dongting Lake, China. Environ. Geochem. Health 2019, 41, 1091–1104. [Google Scholar] [CrossRef] [PubMed]
- Taylor, S.R.; McLennan, S. The geochemical evolution of the continental crust. Rev. Geophys. 1995, 33, 241–265. [Google Scholar] [CrossRef]
- Wang, L.; Dai, L.; Li, L.; Liang, T. Multivariable cokriging prediction and source analysis of potentially toxic elements (Cr, Cu, Cd, Pb, and Zn) in surface sediments from Dongting Lake, China. Ecol. Indic. 2018, 94, 312–319. [Google Scholar] [CrossRef]
- Håkanson, L. An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Bryan, G.; Langston, W. Bioavailability, accumulation and effects of heavy metals in sediments with special reference to United Kingdom estuaries: A review. Environ. Pollut. 1992, 76, 89–131. [Google Scholar] [CrossRef]
- Del Valls, T.Á.; Forja, J.; González-Mazo, E.; Gómez-Parra, A.; Blasco, J. Determining contamination sources in marine sediments using multivariate analysis. TrAC Trends Anal. Chem. 1998, 17, 181–192. [Google Scholar] [CrossRef]
- Maanan, M.; Zourarah, B.; Carruesco, C.; Aajjane, A.; Naud, J. The distribution of heavy metals in the Sidi Moussa lagoon sediments (Atlantic Moroccan Coast). J. Afr. Earth Sci. 2004, 39, 473–483. [Google Scholar] [CrossRef]
- Abrahim, G.M.S.; Parker, R.J. Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from Tamaki Estuary, Auckland, New Zealand. Environ. Monit. Assess. 2007, 136, 227–238. [Google Scholar] [CrossRef]
- Wu, J.; Lu, J.; Li, L.; Min, X.; Luo, Y. Pollution, ecological-health risks, and sources of heavy metals in soil of the northeastern Qinghai-Tibet Plateau. Chemosphere 2018, 201, 234–242. [Google Scholar] [CrossRef]
- Wang, X.; Yang, H.; Gong, P.; Zhao, X.; Wu, G.; Turner, S.; Yao, T. One century sedimentary records of polycyclic aromatic hydrocarbons, mercury and trace elements in the Qinghai Lake, Tibetan Plateau. Environ. Pollut. 2010, 158, 3065–3070. [Google Scholar] [CrossRef]
- Zhang, P. Salt Lakes in the Qaidam Basin; Science Press: Beijing, China, 1987. [Google Scholar]
- Ministry of Ecology and Environment of the People’s Republic of China; Ministry of Agriculture of the People’s Reublic of China. Measures for the Management of Soil Environment for Agricultural Land (Trial); 000014672/2017-01618; Ministry of Ecology and Environment of the People’s Republic of China; Ministry of Agriculture of the People’s Reublic of China: Beijing, China, 2017. Available online: http://www.mep.gov.cn/gkml/hbb/bl/201710/t20171009_423104.htm (accessed on 10 November 2020).
- Gómez-Carracedo, M.P.; Andrade, J.M.; Carrera, G.V.S.M.; Aires-de-Sousa, J.; Carlosena, A.; Prada, D. Combining Kohonen neuralnetworks and variable selection by classification trees to cluster road soil samples. Chemom. Intell. Lab. Syst. 2010, 102, 20–34. [Google Scholar] [CrossRef]
- Deljanin, I.; Antanasijević, D.; Urošević, M.A.; Tomašević, M.; Peric-Grujic, A.; Ristic, M. The novel approach to the biomonitor survey using one-and two-dimensional Kohonen networks. Environ. Monit. Assess. 2015, 187, 1–11. [Google Scholar] [CrossRef]
- Lan, X.; Li, F.; Zhang, C.; Dong, H.; Yang, Q.; Yu, M.; Wen, R.; Yang, Y. Ecological Risk Assessment of Thallium in Pearl River Estuary and Network Based on the SOM Model. J. Trop. Oceanogr. 2021, 40, 132–142. [Google Scholar]
- Ma, Y.; Wang, S.; Lai, Y.; Wang, W.; Hong, C.; Shi, L. Spatial variability analysis of heavy metals from the soil based on SOM. J. Shihezi Univ. Nat. Sci. 2017, 1, 102–107. [Google Scholar]
- Niu, Y.; Jiang, X.; Wang, K.; Xia, J.; Jiao, W.; Niu, Y.; Yu, H. Meta analysis of heavy metal pollution and sources in surface sediments of Lake Taihu, China. Sci. Total Environ. 2020, 700, 134509. [Google Scholar] [CrossRef] [PubMed]
- USEPA. EPA Positive Matrix Factorization (PMF) 5.0 Fundamentals and Userguide; USEPA Office of Research and Development: Washington, DC, USA, 2014. Available online: https://air-research/epa-positive-matrix-factorization-50-fundamentals-and-user-guide (accessed on 21 April 2021).
- Reff, A.; Eberly, S.I.; Bhave, P.V. Receptor Modeling of Ambient Particulate Matter Data Using Positive Matrix Factorization: Review of Existing Methods. J. Air Waste Manag. Assoc. 2007, 57, 146–154. [Google Scholar] [CrossRef] [Green Version]
- Zheng, X.; Zhang, M.; Xu, C.; Li, B. Salt Lakes in China; Science Press: Beijing, China, 2002. [Google Scholar]
- Dehairs, F.; Chesselet, R.; Jedwab, J. Discrete suspended particles of barite and the barium cycle in the open ocean. Earth Planet. Sci. Lett. 1980, 49, 528–550. [Google Scholar] [CrossRef] [Green Version]
- Dymond, J.; Suess, E.; Lyle, M. Barium in Deep-Sea Sediment: A Geochemical Proxy for Paleoproductivity. Paleoceanography 1992, 7, 163–181. [Google Scholar] [CrossRef] [Green Version]
- Pirrung, M.; Illner, P.; Matthießen, J. Biogenic barium in surface sediments of the European Nordic Seas. Mar. Geol. 2008, 250, 89–103. [Google Scholar] [CrossRef]
- Ministry of Environmental Protection of the People’s Republic of China (MEPC). Background Values of Soil Elements in China; China Environment Science Press: Beijing, China, 1990; pp. 329–455.
- Fishar, M.R.A.; Ali, M.H.H. Accumulation of trace metals in some benthic invertebrate and fish species revelant to their concentration in water and sediment of lake Qarun, Egypt. Egypt. J. Aquat. Res. 2005, 31, 289–301. [Google Scholar]
- Mahler, B.J.; Van Metre, P.C.; Callender, E. Trends in metals in urban and reference lake sediments across the United States, 1970 to 2001. Environ. Toxicol. Chem. 2006, 25, 1698–1709. [Google Scholar] [CrossRef]
- Anbuselvan, N.; Sridharan, M. Heavy metal assessment in surface sediments off Coromandel Coast of India: Implication on marine pollution. Mar. Pollut. Bull. 2018, 131, 712–726. [Google Scholar]
- Wang, L.; Han, X.; Ding, S.; Liang, T.; Zhang, Y.; Xiao, J.; Dong, L.; Zhang, H. Combining multiple methods for provenance discrimination based on rare earth element geochemistry in lake sediment. Sci. Total Environ. 2019, 672, 264–274. [Google Scholar] [CrossRef]
- Wang, Z.; Xiao, J.; Wang, L.; Liang, T.; Guo, Q.; Guan, Y.; Rinklebe, J. Elucidating the differentiation of soil heavy metals under different land uses with geographically weighted regression and self-organizing map. Environ. Pollut. 2020, 260, 114065. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Wu, J.; Lu, J.; Xu, J. Trace elements in Gobi soils of the northeastern Qinghai-Tibet Plateau. Chem. Ecol. 2020, 36, 967–981. [Google Scholar] [CrossRef]
- Fang, X.; Peng, B.; Song, Z.; Tan, C.; Wan, D.; Wang, X.; Yan, C.; Xie, Y.; Tu, X. Heavy metal contamination in bed sediments from the four inlets of Xiangjiang, Zijiang, Yuanjiang, and Lishui rivers to Dongting Lake, China. Geochimica 2019, 4, 378–394. [Google Scholar]
- Wang, L.; Zhong, B.; Liang, T.; Xing, B.; Zhu, Y. Atmospheric thorium pollution and inhalation exposure in the largest rare earth mining and smelting area in China. Sci. Total Environ. 2016, 572, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhao, Y.; Liang, D.; Deng, Y.; Pang, Y. 30+ year evolution of Cu in the surface sediment of Lake Poyang, China. Chemosphere 2017, 168, 1604–1612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Hou, S.; Hong, S.; Hur, S.-D.; Lee, K.; Wang, Y. Atmospheric pollution indicated by trace elements in snow from the northern slope of Cho Oyu range, Himalayas. Environ. Earth Sci. 2010, 63, 311–320. [Google Scholar] [CrossRef]
- Winther, M.; Slentø, E. Heavy Metal Emissions for Danish Road Transport; Aarhus University, National Environmental Research Institute: Aarhus, Denmark, 2010. [Google Scholar]
- Werkenthin, M.; Kluge, B.; Wessolek, G. Metals in European roadside soils and soil solution—A review. Environ. Pollut. 2014, 189, 98–110. [Google Scholar] [CrossRef]
- Sternbeck, J.; Sjödin, Å.; Andréasson, K. Metal emissions from road traffic and the influence of resuspension—Results from two tunnel studies. Atmos. Environ. 2002, 36, 4735–4744. [Google Scholar] [CrossRef]
- Lough, G.C.; Schauer, J.J.; Park, J.-S.; Shafer, M.M.; DeMinter, J.T.; Weinstein, J.P. Emissions ofmetals associatedwithmotor vehicle roadways. Environ. Sci. Technol. 2005, 39, 826–836. [Google Scholar] [CrossRef]
- Hjortenkrans, D.; Bergbäck, B.; Häggerud, A. New Metal Emission Patterns in Road Traffic Environments. Environ. Monit. Assess. 2006, 117, 85–98. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Zeng, C.; Zhang, F.; Zhang, Y.; Scott, C.A.; Yan, X. Traffic-related trace elements in soils along six highway segments on the Tibetan Plateau: Influence factors and spatial variation. Sci. Total Environ. 2017, 581-582, 811–821. [Google Scholar] [CrossRef] [PubMed]
- Lelieveld, J.; Crutzen, P.J.; Ramanathan, V.; Andreae, M.O.; Brenninkmeijer, C.A.M.; Campos, T.; Cass, G.R.; Dickerson, R.R.; Fischer, H.; de Gouw, J.A.; et al. The Indian Ocean Experiment: Widespread Air Pollution from South and Southeast Asia. Science 2001, 291, 1031–1036. [Google Scholar] [CrossRef] [Green Version]
- Cong, Z.; Kang, S.; Liu, X.; Wang, G. Elemental composition of aerosol in the Nam Co region, Tibetan Plateau, during summer monsoon season. Atmos. Environ. 2007, 41, 1180–1187. [Google Scholar] [CrossRef]
Element | Source Contribution Rate/% | |||
---|---|---|---|---|
Factor 1 | Factor 2 | Factor 3 | R2 | |
V | 12.1 | 28.9 | 58.9 | 0.9567 |
Cr | 12.8 | 27.4 | 59.7 | 0.9671 |
Ni | 18.5 | 29.3 | 52.2 | 0.9473 |
Cu | 16.8 | 36.6 | 46.6 | 0.9316 |
Zn | 11.3 | 37.8 | 51.0 | 0.9724 |
As | 39.0 | 1.1 | 59.9 | 0.2529 |
Cd | 11.8 | 58.2 | 30.1 | 0.8852 |
Ba | 14.7 | 11.5 | 73.9 | 0.8289 |
Tl | 10.1 | 45.7 | 44.2 | 0.8795 |
Pb | 6.1 | 42.6 | 51.4 | 0.9513 |
U | 99.8 | 0.2 | 0.0 | 0.9873 |
Total contribution rate/% | 23.0 | 29.0 | 48.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, H.; Wei, H.; Wang, Y.; Wang, L.; Qin, Z.; Li, Q.; Shan, F.; Fan, Q.; Du, Y. Geochemical and Statistical Analyses of Trace Elements in Lake Sediments from Qaidam Basin, Qinghai-Tibet Plateau: Distribution Characteristics and Source Apportionment. Int. J. Environ. Res. Public Health 2022, 19, 2341. https://doi.org/10.3390/ijerph19042341
He H, Wei H, Wang Y, Wang L, Qin Z, Li Q, Shan F, Fan Q, Du Y. Geochemical and Statistical Analyses of Trace Elements in Lake Sediments from Qaidam Basin, Qinghai-Tibet Plateau: Distribution Characteristics and Source Apportionment. International Journal of Environmental Research and Public Health. 2022; 19(4):2341. https://doi.org/10.3390/ijerph19042341
Chicago/Turabian StyleHe, Haifang, Haicheng Wei, Yong Wang, Lingqing Wang, Zhanjie Qin, Qingkuan Li, Fashou Shan, Qishun Fan, and Yongsheng Du. 2022. "Geochemical and Statistical Analyses of Trace Elements in Lake Sediments from Qaidam Basin, Qinghai-Tibet Plateau: Distribution Characteristics and Source Apportionment" International Journal of Environmental Research and Public Health 19, no. 4: 2341. https://doi.org/10.3390/ijerph19042341
APA StyleHe, H., Wei, H., Wang, Y., Wang, L., Qin, Z., Li, Q., Shan, F., Fan, Q., & Du, Y. (2022). Geochemical and Statistical Analyses of Trace Elements in Lake Sediments from Qaidam Basin, Qinghai-Tibet Plateau: Distribution Characteristics and Source Apportionment. International Journal of Environmental Research and Public Health, 19(4), 2341. https://doi.org/10.3390/ijerph19042341