Spatiotemporal Differentiation and Driving Force Analysis of the High-Quality Development of Urban Agglomerations along the Yellow River Basin
Abstract
:1. Introduction
2. Research Areas and Methods
2.1. Research Areas
2.2. Research Methods
2.2.1. Entropy Method
2.2.2. Exploratory Spatial Data Analysis
2.2.3. Geographically-Weighted Regression Model
2.3. Index System Construction and Data Source
3. Results
3.1. Analysis of the Spatiotemporal Pattern of HQD in Urban Agglomerations
3.1.1. Characteristics of Spatiotemporal Variations
- (1)
- Temporal variation characteristics
- (2)
- Spatial variation characteristics
3.1.2. Spatial Autocorrelation Analysis
- (1)
- Global spatial autocorrelation analysis
- (2)
- Local spatial autocorrelation analysis
3.2. Research on the Spatial Differentiation of Driving Factors
3.2.1. Driving Factor Analysis Framework
3.2.2. Spatial Heterogeneity of Driving Factors
- (1)
- Urbanization Rate
- (2)
- Industrial structure upgrading index
- (3)
- Proportion of R&D expenditure
- (4)
- Internet penetration rate
- (5)
- Proportion of the urban construction area
- (6)
- Proportion of days reaching air standard
4. Conclusions
5. Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jiang, W.; Gao, W.; Gao, X.; Ma, M.; Zhou, M.; Du, K.; Ma, X. Spatio-temporal heterogeneity of air pollution and its key influencing factors in the Yellow River Economic Belt of China from 2014 to 2019. J. Environ. Manag. 2021, 296, 113172. [Google Scholar] [CrossRef]
- Fang, C.L. Spatial organization pattern and high quality development of urban agglomeration in the Yellow River Basin. Econ. Geogr. 2020, 40, 1–8. (In Chinese) [Google Scholar]
- Ma, H.T.; Xu, S.F. High quality development evaluation and spatial pattern differentiation of urban agglomerations in the Yellow River Basin. Econ. Geogr. 2020, 40, 11–18. (In Chinese) [Google Scholar]
- Wohlfart, C.; Kuenzer, C.; Chen, C.; Liu, G. Social-ecological challenges in the Yellow River basin (China): A review. Environ. Earth Sci. 2016, 75. [Google Scholar] [CrossRef]
- Howard, E. Tomorrow: A Peaceful Path to Real Reform; Ebenezer Howard: London, UK, 1898. [Google Scholar]
- Geddes, P. Cities in Evolution; Harper & Row: New York, NY, USA, 1915. [Google Scholar]
- Gottmann, J. Megalopolis or the urbanization of the northeastern seaboard. Econ. Geogr. 1957, 33, 189–200. [Google Scholar] [CrossRef]
- Schneider, A.; Mertes, C.M. Expansion and growth in Chinese cities, 1978–2010. Environ. Res. Lett. 2014, 9. [Google Scholar] [CrossRef]
- Heng, Q. Navigating China’s Economic Development in the New Era from High-Speed to High-Quality Growth. China Q. Int. Strateg. Stud. 2018, 4, 177–192. [Google Scholar] [CrossRef]
- Gu, W.; Wang, J.; Hua, X.; Liu, Z. Entrepreneurship and high-quality economic development: Based on the triple bottom line of sustainable development. Int. Entrep. Manag. J. 2021, 17, 1–27. [Google Scholar] [CrossRef]
- Zhou, B.; Zeng, X.; Jiang, L.; Xue, B. High-quality Economic Growth under the Influence of Technological Innovation Preference in China: A Numerical Simulation from the Government Financial Perspective. Struct. Chance Econ. Dyn. 2020, 54, 163–172. [Google Scholar] [CrossRef]
- Chen, L.; Ye, W.; Huo, C.; James, K. Environmental Regulations, the Industrial Structure, and High-Quality Regional Economic Development: Evidence from China. Land 2020, 9, 517. [Google Scholar] [CrossRef]
- Huang, X.H.; Cai, B.Q.; Li, Y.L. Evaluation Index System and Measurement of High-quality Development in China. Rev. Cercet. Si Interv. Soc. 2020, 68, 163–178. [Google Scholar] [CrossRef]
- Li, B.; Tian, C.; Shi, Z.; Han, Z. Evolution and Differentiation of High-Quality Development of Marine Economy: A Case Study from China. Complexity 2020, 2020, 5624961. [Google Scholar] [CrossRef]
- Chen, B.; Chen, G.Q. Emergy-based energy and material metabolism of the Yellow River basin. Commun. Nonlinear Sci. Numer. Simul. 2009, 14, 923–934. [Google Scholar] [CrossRef]
- Feng, M.; Guo, H.X. Research on the Evaluation of High-Quality Economic Development Based on Factor Analysis. J. Sci. Ind. Res. 2019, 78, 827–830. [Google Scholar]
- Chen, Y.; Zhu, M.; Lu, J.; Zhou, Q.; Ma, W. Evaluation of ecological city and analysis of obstacle factors under the background of high-quality development: Taking cities in the Yellow River Basin as examples. Ecol. Indic. 2020, 118, 106771. [Google Scholar] [CrossRef]
- Fang, C.L.; Yu, D.L. Urban agglomeration: An evolving concept of an emerging phenomenon. Landsc. Urban Plan. 2017, 162, 126–136. [Google Scholar] [CrossRef]
- Zheng, S.Q.; Du, R. How does urban agglomeration integration promote entrepreneurship in China? Evidence from regional human capital spillovers and market integration. Cities 2020, 97, 102529. [Google Scholar] [CrossRef]
- Niu, F.Q.; Yang, X.Y.; Wang, F. Urban Agglomeration Formation and Its Spatiotemporal Expansion Process in China: From the Perspective of Industrial Evolution. Chin. Geogr. Sci. 2020, 30, 532–543. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Cui, Y. Evaluating the coordinated development of economic, social and environmental benefits of urban public transportation infrastructure: Case study of four Chinese autonomous municipalities. Transp. Policy 2018, 66, 116–126. [Google Scholar] [CrossRef]
- Jiang, X.; Fu, W.; Li, G.L. Can the improvement of living environment stimulate urban Innovation?—Analysis of high-quality innovative talents and foreign direct investment spillover effect mechanism. J. Clean. Prod. 2020, 255, 120212. [Google Scholar] [CrossRef]
- Jahanger, A. Influence of FDI characteristics on high-quality development of China’s economy. Environ. Sci. Pollut. Res. 2021, 28, 18977–18988. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.M.; Zhang, M.L.; Sun, W.W. Expansion Analysis of Yangtze River Delta Urban Agglomeration Using DMSP/OLS Nighttime Light Imagery for 1993 to 2012. ISPRS Int. J. Geo-Inf. 2018, 7, 52. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.J.; Wang, M.Y. Spatial-temporal characteristics and determinants of land urbanization quality in China: Evidence from 285 prefecture-level cities. Sustain. Cities Soc. 2018, 38, 70–79. [Google Scholar] [CrossRef]
- Lu, B.; Brunsdon, C.; Charlton, M.; Harris, P. Geographically weighted regression with parameter-specific distance metrics. Int. J. Geogr. Inf. Sci. 2017, 31, 982–998. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.P.; Li, M.H.; Zeman, Z. Study on Chinese technical economy and global social responsibility. J. Phys. Conf. Ser. 2019, 1187, 052092. [Google Scholar] [CrossRef]
- Hu, H.Q.; Ma, Y.; Wu, S.J. Fuzzy comprehensive evaluation on high-quality development of China’s rural economy based on entropy weight. J. Intell. Fuzzy Syst. 2020, 38, 7531–7539. [Google Scholar] [CrossRef]
- Fan, Y.P.; Fang, C.L.; Zhang, Q. Coupling coordinated development between social economy and ecological environment in Chinese provincial capital cities-assessment and policy implications. J. Clean. Prod. 2019, 229, 289–298. [Google Scholar] [CrossRef]
- Chen, J.; Zhou, Q. City size and urban labor productivity in China: New evidence from spatial city-level panel data analysis. Econ. Syst. 2017, 41, 165–178. [Google Scholar] [CrossRef]
- He, Y.; Choi, B.R. China’s Outward Foreign Direct Investment Patterns: Evidence from Asian Financial Markets. J. Asia Financ. Econ. Bus. 2020, 7, 157–168. [Google Scholar] [CrossRef]
- Jiang, J.; Luo, L.; Xu, P.; Wang, P. How does social development influence life expectancy? A geographically weighted regression analysis in China. Public Health 2018, 163, 95–104. [Google Scholar] [CrossRef]
- Wei, C.Z.; Taubenbock, H.; Blaschke, T. Measuring urban agglomeration using a city-scale dasymetric population map: A study in the Pearl River Delta, China. Habitat Int. 2017, 59, 32–43. [Google Scholar] [CrossRef] [Green Version]
- Shen, Y.L.; Yao, L. PM2.5, Population Exposure and Economic Effects in Urban Agglomerations of China Using Ground-Based Monitoring Data. Int. J. Environ. Res. Public Health 2017, 14, 716. [Google Scholar] [CrossRef] [Green Version]
- Han, F.; Xie, R.; Fang, J.Y. Urban agglomeration economies and industrial energy efficiency. Energy 2018, 162, 45–59. [Google Scholar] [CrossRef]
- Li, Z.; Sun, L.; Geng, Y.; Dong, H.; Ren, J.; Liu, Z.; Tian, X.; Yabar, H.; Higano, Y. Examining industrial structure changes and corresponding carbon emission reduction effect by combining input-output analysis and social network analysis: A comparison study of China and Japan. J. Clean. Prod. 2017, 162, 61–70. [Google Scholar] [CrossRef] [Green Version]
- Liu, K.; Jiang, H.; Zhou, Q. Spatial Analysis of Industrial Green Development and Sustainable Cities in the Yellow River Basin. Discret. Dyn. Nat. Soc. 2021, 2021, 5529153. [Google Scholar] [CrossRef]
- Jokanović, B.; Lalic, B.; Milovančević, M.; Simeunović, N.; Marković, D. Economic development evaluation based on science and patents. Phys. A-Stat. Mech. Appl. 2017, 481, 141–145. [Google Scholar] [CrossRef]
- Chen, J.; Wei, H.; Li, N.; Chen, S.; Qu, W.; Zhang, Y. Exploring the Spatial-Temporal Dynamics of the Yangtze River Delta Urban Agglomeration Based on Night-Time Light Remote Sensing Technology. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 5369–5383. [Google Scholar] [CrossRef]
- Yu, X.; Wu, Z.; Zheng, H.; Li, M.; Tan, T. How urban agglomeration improve the emission efficiency? A spatial econometric analysis of the Yangtze River Delta urban agglomeration in China. J. Environ. Manag. 2020, 260, 110061. [Google Scholar] [CrossRef]
- Xiong, Y.; Chen, Y.; Peng, F.; Li, J.; Yan, X. Analog simulation of urban construction land supply and demand in Chang-Zhu-Tan Urban Agglomeration based on land intensive use. J. Geogr. Sci. 2019, 29, 1346–1362. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Jiang, W.; Wang, W.; Lei, X.; Deng, Y. Exploring spatial-temporal change and gravity center movement of construction land in the Chang-Zhu-Tan urban agglomeration. J. Geogr. Sci. 2019, 29, 1363–1380. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Li, Y.P.; Gao, P.P.; Xia, B.C. A Mamdani fuzzy inference approach for assessing ecological security in the Pearl River Delta urban agglomeration, China. Ecol. Indic. 2018, 94, 386–396. [Google Scholar] [CrossRef]
- He, C.; Chen, T.; Mao, X.; Zhou, Y. Economic transition, urbanization and population redistribution in China. Habitat Int. 2016, 51, 39–47. [Google Scholar] [CrossRef]
- Ertugrul, H.M.; Cetin, M.; Seker, F.; Dogan, E. The impact of trade openness on global carbon dioxide emissions: Evidence from the top ten emitters among developing countries. Ecol. Indic. 2016, 67, 543–555. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Wang, J.; Wang, T.; Zhang, T. Urbanization, economic growth, and environmental pollution Partial differential analysis based on the spatial Durbin model. Manag. Environ. Qual. 2019, 30, 483–494. [Google Scholar] [CrossRef]
- Su, Z.; Wen, G.; Rui, H. A Comparative Study of Polarization Effects of Regional Innovation in China—Calculation Based on TW Index. In Proceedings of the 4th International Conference on Social Science and Higher Education (ICSSHE), Sanya, China, 28–30 September 2018; pp. 711–714. [Google Scholar]
- Wang, D.; Zhou, T.; Wang, M.M. Information and communication technology (ICT), digital divide and urbanization: Evidence from Chinese cities. Technol. Soc. 2021, 64, 101516. [Google Scholar] [CrossRef]
Target Layer | Criterion Layer | Index Layer | Unit | Attribute | Entropy Weight in 2009 | Entropy Weight in 2018 |
---|---|---|---|---|---|---|
Innovative development | Innovation input | X1: Proportion of science expenditure in the general public budget | % | + | 0.0369 | 0.0357 |
X2: Proportion of education expenditure in the general public budget | % | + | 0.0214 | 0.0305 | ||
Innovation output | X3: Number of patents granted per 10,000 people | 1 | + | 0.0978 | 0.0381 | |
Coordinated development | Regional coordination | X4: Proportion of regional GDP | % | + | 0.0537 | 0.0500 |
X5: Per capita disposable income of urban residents | 10,000 CNY | + | 0.0435 | 0.1031 | ||
Urban and rural coordination | X6: Urban–rural income ratio | % | − | 0.0276 | 0.0336 | |
X7: Urban–rural consumption ratio | % | − | 0.0271 | 0.0217 | ||
Green development | Urban greening | X8: Green coverage rate in built-up areas | % | + | 0.0343 | 0.0223 |
X9: Acreage of park and greenbelt | + | 0.0768 | 0.0793 | |||
Pollution discharge | X10: Wastewater discharge per 10,000 CNY of industrial output value | ton | − | 0.0206 | 0.0268 | |
X11: emissions per 10,000 CNY of industrial output value | ton | − | 0.0266 | 0.0303 | ||
X12: Smoke and dust emissions per 10,000 CNY of total industrial output value | ton | − | 0.0262 | 0.0252 | ||
Green governance | X13: Treatment rate of urban domestic sewage | % | + | 0.0328 | 0.0198 | |
X14: Harmless disposal rate of garbage | % | + | 0.0413 | 0.0185 | ||
X15: Comprehensive utilisation rate of industrial solid waste | % | + | 0.0419 | 0.0374 | ||
Opening development | Trade opening | X16: Foreign trade dependence | % | + | 0.0665 | 0.0903 |
Investment opening | X17: Foreign capital dependence | % | + | 0.0368 | 0.0599 | |
Tourism opening | X18: Proportion of total tourism income | % | + | 0.0513 | 0.0447 | |
X19: Proportion of arrivals | % | + | 0.0425 | 0.0437 | ||
Sharing development | Urban roads | X20: Actual urban road area at the end of the year | + | 0.0686 | 0.0552 | |
Public transportation | X21: Proportion of highway passenger traffic in total population | % | + | 0.0503 | 0.0475 | |
Cultural sharing | X22: Volume of books in public libraries | Volume | + | 0.0493 | 0.0540 | |
Medical security | X23: Number of doctors | person | + | 0.0262 | 0.0325 |
Year | Moran’s I | E(I) | V(I) | Z(I) | P(I) |
---|---|---|---|---|---|
2009 | 0.1004 | −0.0145 | 0.0002 | 8.0809 | 0.0000 |
2010 | 0.0957 | −0.0145 | 0.0002 | 7.7210 | 0.0000 |
2011 | 0.0906 | −0.0145 | 0.0002 | 7.3606 | 0.0000 |
2012 | 0.0799 | −0.0145 | 0.0002 | 6.6130 | 0.0000 |
2013 | 0.0722 | −0.0145 | 0.0002 | 6.0690 | 0.0000 |
2014 | 0.0481 | −0.0145 | 0.0002 | 4.4079 | 0.0000 |
2015 | 0.0464 | −0.0145 | 0.0002 | 4.2911 | 0.0000 |
2016 | 0.0437 | −0.0145 | 0.0002 | 4.1296 | 0.0000 |
2017 | 0.0389 | −0.0145 | 0.0002 | 3.7712 | 0.0002 |
2018 | 0.0371 | −0.0145 | 0.0002 | 3.6394 | 0.0003 |
Driving Factors | Index | Formula |
---|---|---|
Population size | Urbanisation rate | Urban population/total population |
Industrial structure | Indexes of advanced industrial structure | Tertiary industry/secondary industry |
Science and technology | Ratio of R&D expenditure | R&D expenditure/GDP |
Informatisation level | Internet penetration rate | Number of internet users/total number of households at the end of the year |
Urban construction | Proportion of urban construction area | Urban construction land area/urban area |
Environmental quality | Proportion of days reaching air standard | Air standard days/360 days |
Variable | VIF | T | CI |
---|---|---|---|
Urbanisation rate | 1.783 | 0.561 | 3.386 |
Industrial structure upgrading index | 1.116 | 0.896 | 3.575 |
Proportion of R&D expenditure | 1.485 | 0.673 | 7.055 |
Internet penetration rate | 1.727 | 0.579 | 13.247 |
Proportion of urban construction area | 1.332 | 0.751 | 17.684 |
Proportion of days reaching air standard | 1.331 | 0.751 | 21.999 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Miao, Q.; Zhou, Q. Spatiotemporal Differentiation and Driving Force Analysis of the High-Quality Development of Urban Agglomerations along the Yellow River Basin. Int. J. Environ. Res. Public Health 2022, 19, 2484. https://doi.org/10.3390/ijerph19042484
Chen Y, Miao Q, Zhou Q. Spatiotemporal Differentiation and Driving Force Analysis of the High-Quality Development of Urban Agglomerations along the Yellow River Basin. International Journal of Environmental Research and Public Health. 2022; 19(4):2484. https://doi.org/10.3390/ijerph19042484
Chicago/Turabian StyleChen, Yu, Qianqian Miao, and Qian Zhou. 2022. "Spatiotemporal Differentiation and Driving Force Analysis of the High-Quality Development of Urban Agglomerations along the Yellow River Basin" International Journal of Environmental Research and Public Health 19, no. 4: 2484. https://doi.org/10.3390/ijerph19042484
APA StyleChen, Y., Miao, Q., & Zhou, Q. (2022). Spatiotemporal Differentiation and Driving Force Analysis of the High-Quality Development of Urban Agglomerations along the Yellow River Basin. International Journal of Environmental Research and Public Health, 19(4), 2484. https://doi.org/10.3390/ijerph19042484