Projecting Lifetime Health Outcomes and Costs Associated with the Ambient Fine Particulate Matter Exposure among Adult Women in Korea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Markov Model
2.2. Target Population
2.3. Input Data
2.4. Sensitivity Analysis
3. Results
3.1. Input Data
3.2. Base-Case Analysis
3.3. One-Way Sensitivity Analysis
3.4. Probabilistic Sensitivity Analysis
3.5. Model Validation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Ambient Air Pollution: A Global Assessment of Exposure and Burden of Disease; World Health Organization: Geneva, Switzerland, 2016.
- Rojas-Rueda, D.; Alsufyani, W.; Herbst, C.; AlBalawi, S.; Alsukait, R.; Alomran, M. Ambient particulate matter burden of disease in the Kingdom of Saudi Arabia. Environ. Res. 2021, 197, 111036. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.H.; Kabir, E.; Kabir, S. A review on the human health impact of airborne particulate matter. Environ. Int. 2015, 74, 136–143. [Google Scholar] [CrossRef] [PubMed]
- Burden of Disease from Ambient Air Pollution for 2012; World Health Organization: Geneva, Switzerland, 2014.
- Air Quality Guideline Global Update 2005; World Health Organization: Geneva, Switzerland, 2005.
- Concentration of Fine Particulate Matter in 2020; Ministry of Envrironment: Sejong, Korea, 2021. Available online: https://apps.who.int/iris/handle/10665/250141 (accessed on 14 August 2021).
- Lee, D.; Choi, J.-Y.; Myoung, J.; Kim, O.; Park, J.; Shin, H.-J.; Ban, S.-J.; Park, H.-J.; Nam, K.-P. Analysis of a Severe PM2.5 Episode in the Seoul Metropolitan Area in South Korea from 27 February to 7 March 2019: Focused on Estimation of Domestic and Foreign Contribution. Atmosphere 2019, 10, 756. [Google Scholar] [CrossRef] [Green Version]
- Cohen, A.J.; Brauer, M.; Burnett, R.; Anderson, H.R.; Frostad, J.; Estep, K.; Balakrishnan, K.; Brunekreef, B.; Dandona, L.; Dandona, R.; et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: An analysis of data from the Global Burden of Diseases Study 2015. Lancet 2017, 389, 1907–1918. [Google Scholar] [CrossRef] [Green Version]
- Jaganathan, S.; Jaacks, L.M.; Magsumbol, M.; Walia, G.K.; Sieber, N.L.; Shivasankar, R.; Dhillon, P.K.; Hameed, S.S.; Schwartz, J.; Prabhakaran, D. Association of Long-Term Exposure to Fine Particulate Matter and Cardio-Metabolic Diseases in Low- and Middle-Income Countries: A Systematic Review. Int. J. Environ. Res. Public Health 2019, 16, 2541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ni, L.; Chuang, C.-C.; Zuo, L. Fine particulate matter in acute exacerbation of COPD. Front. Physiol. 2015, 6, 294. [Google Scholar] [CrossRef] [Green Version]
- Pelucchi, C.; Negri, E.; Gallus, S.; Boffetta, P.; Tramacere, I.; La Vecchia, C. Long-term particulate matter exposure and mortality: A review of European epidemiological studies. BMC Public Health 2009, 9, 453. [Google Scholar] [CrossRef]
- Zhang, M.; Song, Y.; Cai, X.; Zhou, J. Economic assessment of the health effects related to particulate matter pollution in 111 Chinese cities by using economic burden of disease analysis. J. Environ. Manag. 2008, 88, 947–954. [Google Scholar] [CrossRef]
- Hwang, I.; Kim, C.; Son, W. Benefits of Management Policy of Seoul on Airborne Particulate Matter; The Seoul Institute: Seoul, Korea, 2019. [Google Scholar]
- Correia, A.W.; Pope, C.A., 3rd; Dockery, D.W.; Wang, Y.; Ezzati, M.; Dominici, F. Effect of air pollution control on life expectancy in the United States: An analysis of 545 U.S. counties for the period from 2000 to 2007. Epidemiology 2013, 24, 23–31. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Chen, R.; Sera, F.; Vicedo-Cabrera, A.M.; Guo, Y.; Tong, S.; Coelho, M.; Saldiva, P.H.N.; Lavigne, E.; Matus, P.; et al. Ambient Particulate Air Pollution and Daily Mortality in 652 Cities. N. Engl. J. Med. 2019, 381, 705–715. [Google Scholar] [CrossRef]
- Stanaway, J.D.; Afshin, A.; Gakidou, E.; Lim, S.S.; Abate, D.; Abate, K.H.; Abbafati, C.; Abbasi, N.; Abbastabar, H.; Abd-Allah, F.; et al. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1923–1994. [Google Scholar]
- Lee, J.; Han, A.R.; Choi, D.; Lim, K.M.; Bae, S. Modeling lifetime costs and health outcomes attributable to secondhand smoke exposure at home among Korean adult women. BMJ Open 2017, 7, e013292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Briggs, A.; Sculpher, M. An introduction to Markov modelling for economic evaluation. Pharmacoeconomics 1998, 13, 397–409. [Google Scholar] [CrossRef] [PubMed]
- Sonnenberg, F.A.; Beck, J.R. Markov models in medical decision making: A practical guide. Med. Decis. Mak. 1993, 13, 322–338. [Google Scholar] [CrossRef] [PubMed]
- Hamra, G.B.; Guha, N.; Cohen, A.; Laden, F.; Raaschou-Nielsen, O.; Samet, J.M.; Vineis, P.; Forastiere, F.; Saldiva, P.; Yorifuji, T.; et al. Outdoor particulate matter exposure and lung cancer: A systematic review and meta-analysis. Environ. Health Perspect. 2014, 122, 906–911. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Lu, X.; Liu, F.; Liang, F.; Huang, K.; Yang, X.; Xiao, Q.; Chen, J.; Liu, X.; Cao, J.; et al. Chronic Effects of High Fine Particulate Matter Exposure on Lung Cancer in China. Am. J. Respir. Crit. Care Med. 2020, 202, 1551–1559. [Google Scholar] [CrossRef]
- Wang, Y.; Eliot, M.N.; Wellenius, G.A. Short-term changes in ambient particulate matter and risk of stroke: A systematic review and meta-analysis. J. Am. Heart Assoc. 2014, 3, e000983. [Google Scholar] [CrossRef] [Green Version]
- Zhu, W.; Cai, J.; Hu, Y.; Zhang, H.; Han, X.; Zheng, H.; Wu, J. Long-term exposure to fine particulate matter relates with incident myocardial infarction (MI) risks and post-MI mortality: A meta-analysis. Chemosphere 2021, 267, 128903. [Google Scholar] [CrossRef]
- Kim, J.; Rhee, C.K.; Yoo, K.H.; Kim, Y.S.; Lee, S.W.; Park, Y.B.; Lee, J.H.; Oh, Y.; Lee, S.D.; Kim, Y.; et al. The health care burden of high grade chronic obstructive pulmonary disease in Korea: Analysis of the Korean Health Insurance Review and Assessment Service data. Int. J. Chronic Obstr. Pulm. Dis. 2013, 8, 561. [Google Scholar]
- Kim, S.Y.; Kim, S.G.; Park, J.H.; Park, E.C. Costs of initial cancer care and its affecting factors. J. Prev. Med. Public Health 2009, 42, 243–250. [Google Scholar] [CrossRef]
- Ward, S.; Jones, M.L.; Pandor, A.; Holmes, M.; Ara, R.; Ryan, A.; Yeo, W.; Payne, N. A systematic review and economic evaluation of statins for the prevention of coronary events. Health Technol. Assess. 2017, 11, 1–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bae, S.; Lee, S.; Bae, E.Y.; Jang, S. Korean guidelines for pharmacoeconomic evaluation (second and updated version): Consensus and compromise. Pharmacoeconomics 2013, 31, 257–267. [Google Scholar] [CrossRef] [PubMed]
- Weinstein, M.C. Recommendations of the Panel on Cost-Effectiveness in Health and Medicine. JAMA J. Am. Med. Assoc. 1996, 276, 1253–1258. [Google Scholar] [CrossRef]
- Lipsett, M.J.; Ostro, B.D.; Reynolds, P.; Goldberg, D.; Hertz, A.; Jerrett, M.; Smith, D.F.; Garcia, C.; Chang, E.T.; Bernstein, L. Long-term exposure to air pollution and cardiorespiratory disease in the California teachers study cohort. Am. J. Respir. Crit. Care Med. 2011, 184, 828–835. [Google Scholar] [CrossRef]
- Miller, K.A.; Siscovick, D.S.; Sheppard, L.; Shepherd, K.; Sullivan, J.H.; Anderson, G.L.; Kaufman, J.D. Long-Term Exposure to Air Pollution and Incidence of Cardiovascular Events in Women. N. Engl. J. Med. 2007, 356, 447–458. [Google Scholar] [CrossRef]
- Higgins, J.P.; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M.J.; Welch, V.A. Cochrane Handbook for Systematic Reviews of Interventions; John Wiley & Sons: Hoboken, NJ, USA, 2019. [Google Scholar]
- Consumer Price Index. Available online: https://kosis.kr/statHtml/statHtml.do?orgId=101&tblId=DT_1J17135&vw_cd=MT_ZTITLE&list_id=P2_6&seqNo=&lang_mode=ko&language=kor&obj_var_id=&itm_id=&conn_path=MT_ZTITLE (accessed on 14 August 2021).
- Seoul Money Brokerage (Exchange Rate Statistics). Available online: http://www.smbs.biz/Eng/ExRate/StdExRate.jsp (accessed on 14 August 2021).
- Korea National Health and Nutrition Examination Survey (KNHANES VI-2); Ministry of Health, Welfare and Family Affairs: Sejong, Korea, 2015.
- Beelen, R.; Stafoggia, M.; Raaschou-Nielsen, O.; Andersen, Z.J.; Xun, W.W.; Katsouyanni, K.; Dimakopoulou, K.; Brunekreef, B.; Weinmayr, G.; Hoffmann, B.; et al. Long-term Exposure to Air Pollution and Cardiovascular Mortality An Analysis of 22 European Cohorts. Epidemiology 2014, 25, 368–378. [Google Scholar] [CrossRef]
- Cramer, J.; Jorgensen, J.T.; Hoffmann, B.; Loft, S.; Brauner, E.V.; Prescott, E.; Ketzel, M.; Hertel, O.; Brandt, J.; Jensen, S.S.; et al. Long-Term Exposure to Air Pollution and Incidence of Myocardial Infarction: A Danish Nurse Cohort Study. Environ. Health Perspect. 2020, 128, 57003. [Google Scholar] [CrossRef] [PubMed]
- Gharibvand, L.; Shavlik, D.; Ghamsary, M.; Beeson, W.L.; Soret, S.; Knutsen, R.; Knutsen, S.F. The Association between Ambient Fine Particulate Air Pollution and Lung Cancer Incidence: Results from the AHSMOG-2 Study. Environ. Health Perspect. 2017, 125, 378–384. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Zhang, Z.; Lau, A.K.H.; Lin, C.Q.; Chuang, Y.C.; Chan, J.; Jiang, W.K.; Tam, T.; Yeoh, E.-K.; Chan, T.-C.; et al. Effect of long-term exposure to fine particulate matter on lung function decline and risk of chronic obstructive pulmonary disease in Taiwan: A longitudinal, cohort study. Lancet Planet. Health 2018, 2, e114–e125. [Google Scholar] [CrossRef]
- Pun, V.C.; Kazemiparkouhi, F.; Manjourides, J.; Suh, H.H. Long-Term PM2.5 Exposure and Respiratory, Cancer, and Cardiovascular Mortality in Older US Adults. Am. J. Epidemiol. 2017, 186, 961–969. [Google Scholar] [CrossRef] [PubMed]
- Turner, M.C.; Krewski, D.; Pope, C.A., 3rd; Chen, Y.; Gapstur, S.M.; Thun, M.J. Long-term ambient fine particulate matter air pollution and lung cancer in a large cohort of never-smokers. Am. J. Respir. Crit. Care Med. 2011, 184, 1374–1381. [Google Scholar] [CrossRef]
- Cause of Death Statistics. Available online: https://kosis.kr/statHtml/statHtml.do?orgId=101&tblId=DT_1B34E07&conn_path=I3 (accessed on 16 October 2021).
- Construction of National Surveillance System for Cardiovascular and Cerebrovascular Diseases; Health Insurance Review and Assessment Services: Wonju, Korea, 2006.
- Trippoli, S.; Vaiani, M.; Lucioni, C.; Messori, A.; Quality-of-life Study Group of the Master 2 Project in Pharmacoeconomics. Quality of Life and Utility in Patients with Non-Small Cell Lung Cancer. Pharmacoeconomics 2001, 19, 855–863. [Google Scholar] [CrossRef]
- Hwang, I.; Shin, D.W.; Kang, K.H.; Yang, H.K.; Kim, S.Y.; Park, J.H. Medical Costs and Healthcare Utilization among Cancer Decedents in the Last Year of Life in 2009. Cancer Res. Treat 2016, 48, 365–375. [Google Scholar] [CrossRef] [Green Version]
- Clinical and Economic Evaluation of Statin Medication in Korea; Health Insurance Review and Assessment Service: Wonju, Korea, 2009.
- Kim, J.; Henderson, R.A.; Pocock, S.J.; Clayton, T.; Sculpher, M.J.; Fox, K.A.; Investigators, R.-T. Health-related quality of life after interventional or conservative strategy in patients with unstable angina or non-ST-segment elevation myocardial infarction: One-year results of the third Randomized Intervention Trial of unstable Angina (RITA-3). J. Am. Coll. Cardiol. 2005, 45, 221–228. [Google Scholar] [CrossRef]
- Darlington, A.S.; Dippel, D.W.; Ribbers, G.M.; van Balen, R.; Passchier, J.; Busschbach, J.J. Coping strategies as determinants of quality of life in stroke patients: A longitudinal study. Cerebrovasc. Dis. 2007, 23, 401–407. [Google Scholar] [CrossRef]
- Kang, K.S.; Na, S.O.; Yu, Y.B.; Shin, J.H. The Quality of Life in COPD Patients according to Gender: Based on the 4th Korea National Health and Nutrition Examination Survey. J. Korean Acad. Community Health Nurs. 2015, 26, 61–68. [Google Scholar] [CrossRef] [Green Version]
- Sun, D.; Cao, M.; Li, H.; He, S.; Chen, W. Cancer burden and trends in China: A review and comparison with Japan and South Korea. Chin. J. Cancer Res. 2020, 32, 129–139. [Google Scholar] [CrossRef]
- Huang, K.; Liang, F.; Yang, X.; Liu, F.; Li, J.; Xiao, Q.; Chen, J.; Liu, X.; Cao, J.; Shen, C.; et al. Long term exposure to ambient fine particulate matter and incidence of stroke: Prospective cohort study from the China-PAR project. BMJ 2019, 367, l6720. [Google Scholar] [CrossRef] [Green Version]
- Lifetable. Available online: https://kosis.kr/statHtml/statHtml.do?orgId=101&tblId=DT_1B41&conn_path=I3 (accessed on 9 August 2021).
- Yin, H.; Pizzol, M.; Xu, L. External costs of PM2.5 pollution in Beijing, China: Uncertainty analysis of multiple health impacts and costs. Environ. Pollut. 2017, 226, 356–369. [Google Scholar] [CrossRef]
- Lim, Y.H.; Oh, J.; Han, C.; Bae, H.J.; Kim, S.; Jang, Y.; Ha, E.; Hong, Y.C. Long-term exposure to moderate fine particulate matter concentrations and cause-specific mortality in an ageing society. Int. J. Epidemiol. 2021, 49, 1792–1801. [Google Scholar] [CrossRef]
- Kim, T.-Y.; Kim, H.; Yi, S.-M.; Cheong, J.-P.; Heo, J. Short-term Effects of Ambient PM2.5 and PM2.5–10 on Mortality in Major Cities of Korea. Aerosol Air Qual. Res. 2018, 18, 1853–1862. [Google Scholar] [CrossRef]
- Ran, J.; Schooling, C.M.; Han, L.; Sun, S.; Zhao, S.; Zhang, X.; Chan, K.P.; Guo, F.; Lee, R.S.; Qiu, Y.; et al. Long-term exposure to fine particulate matter and dementia incidence: A cohort study in Hong Kong. Environ. Pollut. 2021, 271, 116303. [Google Scholar] [CrossRef]
- Karimi, A.; Shirmardi, M.; Hadei, M.; Birgani, Y.T.; Neisi, A.; Takdastan, A.; Goudarzi, G. Concentrations and health effects of short- and long-term exposure to PM2.5, NO2, and O3 in ambient air of Ahvaz city, Iran (2014–2017). Ecotoxicol. Environ. Saf. 2019, 180, 542–548. [Google Scholar] [CrossRef]
- Liang, F.; Xiao, Q.; Gu, D.; Xu, M.; Tian, L.; Guo, Q.; Wu, Z.; Pan, X.; Liu, Y. Satellite-based short- and long-term exposure to PM2.5 and adult mortality in urban Beijing, China. Environ. Pollut. 2018, 242 Pt A, 492–499. [Google Scholar] [CrossRef]
- Ohlwein, S.; Kappeler, R.; Kutlar Joss, M.; Kunzli, N.; Hoffmann, B. Health effects of ultrafine particles: A systematic literature review update of epidemiological evidence. Int. J. Public Health 2019, 64, 547–559. [Google Scholar] [CrossRef]
- Weichenthal, S. Selected physiological effects of ultrafine particles in acute cardiovascular morbidity. Environ. Res. 2012, 115, 26–36. [Google Scholar] [CrossRef]
Step | Search Strategy |
---|---|
#1 | woman or female |
#2 | particulate matter or PM2.5 |
Lung Cancer | |
#3 | lung cancer or lung carcinoma |
#4 | #1 and #2 and #3 |
#5 | #1 and #2 and #3 and (relative risk or hazard ratio) and (incidence rate or prevalence or mortality) |
#6 | Filters: English, Korean, Adult: 19+ years |
Myocardial Infarction | |
#3 | myocardial infarction or cardiovascular disease or ischemic heart disease or coronary heart disease |
#4 | #1 and #2 and #3 |
#5 | #1 and #2 and #3 and (relative risk or hazard ratio) and (incidence rate or prevalence or mortality) |
#6 | Filters: English, Korean, Adult: 19+ years |
Stroke | |
#3 | stroke or cerebrovascular disease or cerebral hemorrhage or cerebral infarction |
#4 | #1 and #2 and #3 |
#5 | #1 and #2 and #3 and (relative risk or hazard ratio) and (incidence rate or prevalence or mortality) |
#6 | Filters: English, Korean, Adult: 19+ years |
COPD | |
#3 | chronic obstructive pulmonary disease or COPD |
#4 | #1 and #2 and #3 |
#5 | #1 and #2 and #3 and (relative risk or hazard ratio) and (incidence rate or prevalence or mortality) |
#6 | Filters: English, Korean, Adult: 19+ years |
Variables | Distribution |
---|---|
Relative risks | |
Lung cancer incidence | Lognormal |
Lung cancer mortality | Lognormal |
MI incidence | Lognormal |
MI mortality | Lognormal |
Stroke incidence | Lognormal |
Stroke mortality | Lognormal |
COPD incidence | Lognormal |
COPD mortality | Lognormal |
Utilities | |
Lung cancer, first year | Beta |
Lung cancer, second year | Beta |
MI | Beta |
Post MI | Beta |
Stroke | Beta |
Post stroke | Beta |
COPD | Beta |
Health care costs | |
Lung cancer, first year | Gamma |
Lung cancer, second year | Gamma |
Lung cancer death | Gamma |
Non-fatal MI | Gamma |
Post MI | Gamma |
CHD death | Gamma |
Non-fatal stroke | Gamma |
Post stroke | Gamma |
CVD death | Gamma |
COPD | Gamma |
COPD death | Gamma |
Disease | Age | Ref | Relative Risk | Ref | ||
---|---|---|---|---|---|---|
Lung cancer | Incidence rate | 40–49 50–59 60–69 70– | 0.0001 0.0003 0.0007 0.0014 | [34] | 1.42 (1.02–1.98) | [37] |
Mortality rate | - | 0.2109 | [41] | 1.27 (1.03–1.56) | [40] | |
Myocardial infarction | Incidence rate | 45 55 65 75 85 | 0.0004 0.0013 0.0033 0.006 0.0085 | [42] | 1.22 (1.04–1.44) | [36] |
Mortality rate | 45 55 65 75 85 | 0.0168 0.0324 0.0618 0.1152 0.2076 | [42] | 1.20 (1.02–1.41) | [29] | |
Stroke | Incidence rate | 45 55 65 75 85 | 0.0011 0.0029 0.0076 0.0158 0.025 | [42] | 1.28 (1.02–1.61) | [30] |
Mortality rate | 45 55 65 75 85 | 0.0046 0.0112 0.0263 0.0604 0.1295 | [42] | 1.34 (0.94–1.91) | [35] | |
COPD | Incidence rate | 40–49 50–59 60–69 70– | 0.008 0.024 0.114 0.136 | [34] | 1.08 (1.04–1.11) | [38] |
Mortality rate | 75 85 | 0.0002 0.0009 | [41] | 1.169 (1.136–1.203) | [39] |
State | Cost, Year 2020 (USD) | Ref | Utility | Ref |
---|---|---|---|---|
Lung cancer, first year | 19,495 | [25] | 0.61 | [43] |
Lung cancer, second year | 6180 | [25] | 0.50 | [43] |
Lung cancer death | 17,089 | [44] | - | |
Non-fatal MI | 7026 | [45] | 0.71 | [46] |
Post MI | 1156 | [45] | 0.75 | [46] |
CHD death | 1494 | [45] | - | |
Non-fatal stroke | 7260 | [45] | 0.63 | [47] |
Post stroke | 941 | [45] | 0.72 | [47] |
CVD death | 2062 | [45] | - | |
COPD | 809 | [24] | 0.8 | [48] |
COPD death | 2577 | [24] | - |
Parameters | PM2.5 Exposure | Cost (USD) | QALYs | Incremental Cost (USD) | Difference (%) | Incremental QALYs | Difference (%) |
---|---|---|---|---|---|---|---|
Discount rate (%) | |||||||
0 | Standard | 36,013 | 32.08 | ||||
Increased | 38,589 | 30.64 | 2575 | 7.2% | −1.44 | −4.5% | |
3 | Standard | 14,353 | - | ||||
Increased | 15,753 | - | 1400 | 9.8% | −0.51 | −2.7% | |
5 | Standard | 8367 | - | ||||
Increased | 9309 | - | 942 | 11.3% | −0.28 | −1.9% | |
7 | Standard | 5152 | - | ||||
Increased | 5800 | - | 648 | 12.6% | −0.16 | −1.4% | |
Time horizon (years) | |||||||
5 | Standard | 158 | 4.75 | ||||
Increased | 189 | 4.74 | 31 | 20.0% | 0.00 | −0.1% | |
10 | Standard | 573 | 9.31 | ||||
Increased | 679 | 9.29 | 106 | 18.5% | −0.02 | −0.2% | |
20 | Standard | 2349 | 17.55 | ||||
Increased | 2751 | 17.43 | 402 | 17.1% | −0.12 | −0.7% | |
40 | Standard | 7274 | 28.70 | ||||
Increased | 8254 | 27.89 | 980 | 13.5% | −0.81 | −2.8% | |
Relative risk for Lung Cancer incidence | |||||||
Lower bound of 95% CI | Standard | 8367 | 32.08 | ||||
Increased | 8515 | 31.57 | 148 | 1.76% | −0.52 | −1.61% | |
Upper bound of 95% CI | Standard | 8367 | 32.08 | ||||
Increased | 10,264 | 29.52 | 1897 | 22.68% | −2.56 | −7.97% | |
Relative risk for Lung Cancer mortality | |||||||
Lower bound of 95% CI | Standard | 8367 | 32.08 | ||||
Increased | 9553 | 30.77 | 1186 | 14.18% | −1.31 | −4.09% | |
Upper bound of 95% CI | Standard | 8367 | 32.08 | ||||
Increased | 9093 | 30.53 | 726 | 8.68% | −1.55 | −4.84% | |
Relative risk for Myocardial Infarction incidence | |||||||
Lower bound of 95% CI | Standard | 8367 | 32.08 | ||||
Increased | 9287 | 30.66 | 920 | 11.00% | −1.42 | −4.42% | |
Upper bound of 95% CI | Standard | 8367 | 32.08 | ||||
Increased | 9338 | 30.62 | 971 | 11.60% | −1.47 | −4.57% | |
Relative risk for Myocardial Infarction mortality | |||||||
Lower bound of 95% CI | Standard | 8367 | 32.08 | ||||
Increased | 9318 | 30.67 | 951 | 11.37% | −1.41 | −4.41% | |
Upper bound of 95% CI | Standard | 8367 | 32.08 | ||||
Increased | 9301 | 30.62 | 934 | 11.16% | −1.46 | −4.56% | |
Relative risk for Stroke incidence | |||||||
Lower bound of 95% CI | Standard | 8367 | 32.08 | ||||
Increased | 9240 | 30.71 | 873 | 10.43% | −1.37 | −4.28% | |
Upper bound of 95% CI | Standard | 8367 | 32.08 | ||||
Increased | 9405 | 30.56 | 1038 | 12.40% | −1.52 | −4.75% | |
Relative risk for Stroke mortality | |||||||
Lower bound of 95% CI | Standard | 8367 | 32.08 | ||||
Increased | 9337 | 30.74 | 970 | 11.60% | −1.34 | −4.17% | |
Upper bound of 95% CI | Standard | 8367 | 32.08 | ||||
Increased | 9272 | 30.51 | 905 | 10.82% | −1.57 | −4.89% | |
Relative risk for COPD incidence | |||||||
Lower bound of 95% CI | Standard | 8367 | 32.08 | ||||
Increased | 9193 | 30.71 | 826 | 9.88% | −1.37 | −4.27% | |
Upper bound of 95% CI | Standard | 8367 | 32.08 | ||||
Increased | 9393 | 30.59 | 1026 | 12.27% | −1.49 | −4.64% | |
Relative risk for COPD mortality | |||||||
Lower bound of 95% CI | Standard | 8367 | 32.08 | ||||
Increased | 9309 | 30.64 | 942 | 11.26% | −1.44 | −4.48% | |
Upper bound of 95% CI | Standard | 8367 | 32.08 | ||||
Increased | 9310 | 30.64 | 943 | 11.27% | −1.44 | −4.49% |
Statistic | Costs (USD) | QALYs | ||
---|---|---|---|---|
Increased Exposure to PM2.5 | Standard Exposure to PM2.5 | Increased Exposure to PM2.5 | Standard Exposure to PM2.5 | |
Mean | 9352 | 8367 | 30.59 | 32.05 |
Std Deviation | 1064 | 928 | 2.74 | 2.89 |
Minimum | 5570 | 5382 | 18.78 | 19.75 |
2.50% | 7410 | 6682 | 23.91 | 24.96 |
10% | 8020 | 7201 | 26.65 | 27.83 |
Median | 9304 | 8322 | 31.20 | 32.79 |
90% | 10,743 | 9587 | 33.54 | 35.07 |
97.50% | 11,583 | 10,316 | 34.20 | 35.46 |
Maximum | 14,045 | 12,628 | 35.39 | 35.88 |
Lung Cancer Mortality (Case/Person per Year) | ||
---|---|---|
Li et al. (2020) | Model | |
Increased exposure to PM2.5 | 0.007734 | 0.005607 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, G.; Kim, Y.; Shin, G.; Bae, S. Projecting Lifetime Health Outcomes and Costs Associated with the Ambient Fine Particulate Matter Exposure among Adult Women in Korea. Int. J. Environ. Res. Public Health 2022, 19, 2494. https://doi.org/10.3390/ijerph19052494
Choi G, Kim Y, Shin G, Bae S. Projecting Lifetime Health Outcomes and Costs Associated with the Ambient Fine Particulate Matter Exposure among Adult Women in Korea. International Journal of Environmental Research and Public Health. 2022; 19(5):2494. https://doi.org/10.3390/ijerph19052494
Chicago/Turabian StyleChoi, Gyeyoung, Yujeong Kim, Gyeongseon Shin, and SeungJin Bae. 2022. "Projecting Lifetime Health Outcomes and Costs Associated with the Ambient Fine Particulate Matter Exposure among Adult Women in Korea" International Journal of Environmental Research and Public Health 19, no. 5: 2494. https://doi.org/10.3390/ijerph19052494
APA StyleChoi, G., Kim, Y., Shin, G., & Bae, S. (2022). Projecting Lifetime Health Outcomes and Costs Associated with the Ambient Fine Particulate Matter Exposure among Adult Women in Korea. International Journal of Environmental Research and Public Health, 19(5), 2494. https://doi.org/10.3390/ijerph19052494