Predictive Analysis of Healthcare-Associated Blood Stream Infections in the Neonatal Intensive Care Unit Using Artificial Intelligence: A Single Center Study
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Statistical Analysis
3.2. Predictive Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Suetens, C.; Latour, K.; Kärki, T.; Ricchizzi, E.; Kinross, P.; Moro, M.L.; Jans, B.; Hopkins, S.; Hansen, S.; Lyytikäinen, O.; et al. Prevalence of healthcare-associated infections, estimated incidence and composite antimicrobial resistance index in acute care hospitals and long-term care facilities: Results from two European point prevalence surveys, 2016 to 2017. Eurosurveillance 2018, 23, 1800516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orsido, T.T.; Asseffa, N.A.; Berheto, T.M. Predictors of Neonatal mortality in Neonatal intensive care unit at referral Hospital in Southern Ethiopia: A retrospective cohort study. BMC Pregnancy Childbirth 2019, 19, 83. [Google Scholar] [CrossRef] [PubMed]
- Serretiello, E.; Santella, B.; Folliero, V.; Iervolino, D.; Santoro, E.; Manente, R.; Dell’Annunziata, F.; Sperlongano, R.; Crudele, V.; De Filippis, A.; et al. Prevalence and Antibiotic Resistance Profile of Bacterial Pathogens in Aerobic Vaginitis: A Retrospective Study in Italy. Antibiotics 2021, 10, 1133. [Google Scholar] [CrossRef] [PubMed]
- Aziz, K.; McMillan, D.D.; Andrews, W.; Pendray, M.; Qiu, Z.; Karuri, S.; Lee, S.K. Variations in rates of nosocomial infection among Canadian neonatal intensive care units may be practice-related. BMC Pediatr. 2005, 5, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casula, P. [Infectious monitoring in Neonatal Intensive Care Unit: The role of the reference nurse][Article in Italian]• Monitoraggio infettivologico in Terapia Intensiva Neonatale: L’infermiere di riferimento. J. Pediatr. Neonatal Individ. Med. (JPNIM) 2013, 2, IT1-6. [Google Scholar]
- Bearman, G.M.; Sessler, C.N.; Munro, C.; Wenzel, R.P. Infection control and the prevention of nosocomial infections in the intensive care unit. In Seminars in Respiratory and Critical Care Medicine; Copyright© 2006 by Thieme Medical Publishers, Inc.: New York, NY, USA, 2006; Volume 27, pp. 310–324. [Google Scholar]
- Mielke, M. Prevention and control of nosocomial infections and resistance to antibiotics in Europe–Primum non-nocere: Elements of successful prevention and control of healthcare-associated infections. Int. J. Med. Microbiol. 2010, 300, 346–350. [Google Scholar] [CrossRef]
- Petrillo, F.; Pignataro, D.; Lella, F.M.D.; Reibaldi, M.; Fallico, M.; Castellino, N.; Parisi, G.; Trotta, M.C.; D’Amico, M.; Santella, B.; et al. Antimicrobial Susceptibility Patterns and Resistance Trends of Staphylococcus aureus and Coagulase-Negative Staphylococci Strains Isolated from Ocular Infections. Antibiotics 2021, 10, 527. [Google Scholar] [CrossRef]
- Nambiar, S.; Singh, N. Change in epidemiology of health care-associated infections in a neonatal intensive care unit. Pediatr. Infect. Dis. J. 2002, 21, 839–842. [Google Scholar] [CrossRef]
- Santella, B.; Folliero, V.; Pirofalo, G.M.; Serretiello, E.; Zannella, C.; Moccia, G.; Santoro, E.; Sanna, G.; Motta, O.; De Caro, F.; et al. Sepsis—A Retrospective Cohort Study of Bloodstream Infections. Antibiotics 2020, 9, 851. [Google Scholar] [CrossRef]
- Santella, B.; Serretiello, E.; De Filippis, A.; Folliero, V.; Iervolino, D.; Dell’Annunziata, F.; Manente, R.; Valitutti, F.; Santoro, E.; Pagliano, P.; et al. Lower Respiratory Tract Pathogens and Their Antimicrobial Susceptibility Pattern: A 5-Year Study. Antibiotics 2021, 10, 851. [Google Scholar] [CrossRef]
- Serretiello, E.; Folliero, V.; Santella, B.; Giordano, G.; Santoro, M.; De Caro, F.; Pagliano, P.; Ferro, M.; Aliberti, S.M.; Capunzo, M.; et al. Trend of Bacterial Uropathogens and Their Susceptibility Pattern: Study of Single Academic High-Volume Center in Italy (2015–2019). Int. J. Microbiol. 2021, 2021, 5541706. [Google Scholar] [CrossRef] [PubMed]
- Scala, A.; Loperto, I.; Carrano, R.; Stefano, F.; Triassi, M.; Improta, G. Assessment of proteinuria level in nephrology patients using a machine learning approach. In 2021 5th International Conference on Medical and Health Informatics; Association for Computing Machinery: New York, NY, USA, 2021; pp. 13–16. [Google Scholar]
- Megna, R.; Petretta, M.; Assante, R.; Zampella, E.; Nappi, C.; Gaudieri, V.; Mannarino, T.; D’Antonio, A.; Green, R.; Cantoni, V.; et al. A Comparison among Different Machine Learning Pretest Approaches to Predict Stress-Induced Ischemia at PET/CT Myocardial Perfusion Imaging. Comput. Math. Methods Med. 2021, 2021, 3551756. [Google Scholar] [CrossRef] [PubMed]
- Ricciardi, C.; Cuocolo, R.; Megna, R.; Cesarelli, M.; Petretta, M. Machine learning analysis: General features, requirements and cardiovascular applications. Minerva Cardiol. Angiol. 2021. [Google Scholar] [CrossRef] [PubMed]
- Barchitta, M.; Maugeri, A.; Favara, G.; Riela, P.M.; Gallo, G.; Mura, I.; Agodi, A.; Network, S.U. A machine learning approach to predict healthcare-associated infections at intensive care unit admission: Findings from the SPIN-UTI project. J. Hosp. Infect. 2021, 112, 77–86. [Google Scholar] [CrossRef]
- Barchitta, M.; Maugeri, A.; Favara, G.; Riela, P.M.; Gallo, G.; Mura, I.; Agodi, A. Early prediction of seven-day mortality in intensive care unit using a machine learning model: Results from the SPIN-uti project. J. Clin. Med. 2021, 10, 992. [Google Scholar] [CrossRef]
- Barchitta, M.; Maugeri, A.; Favara, G.; Riela, P.; La Mastra, C.; La Rosa, M.; San Lio, R.M.; Gallo, G.; Mura, I.; Agodi, A.; et al. Cluster analysis identifies patients at risk of catheter-associated urinary tract infections in intensive care units: Findings from the SPIN-UTI Network. J. Hosp. Infect. 2021, 107, 57–63. [Google Scholar] [CrossRef]
- Horan, T.C.; Andrus, M.; Dudeck, M.A. CDC/NHSN surveillance definition of health care–associated infection and criteria for specific types of infections in the acute care setting. Am. J. Infect. Control 2008, 36, 309–332. [Google Scholar] [CrossRef]
- Tremolada, S.; Delbue, S.; Ferrante, P. Infezioni virali congenite, perinatali e neonatali viral infections of the fetus and newborn infant. La Pediatr. Med. E Chir. Med. Surg. Pediatr. 2008, 30, 177. [Google Scholar]
- Kumar, S.; Shankar, B.; Arya, S.; Deb, M.; Chellani, H. Healthcare associated infections in neonatal intensive care unit and its correlation with environmental surveillance. J. Infect. Public Health 2018, 11, 275–279. [Google Scholar] [CrossRef]
- Borghesi, A.; Stronati, M. Strategies for the prevention of hospital-acquired infections in the neonatal intensive care unit. J. Hosp. Infect. 2008, 68, 293–300. [Google Scholar] [CrossRef]
- Carrieri, M.P.; Stolfi, I.; Moro, M.L.; Italian Study Group on Hospital Acquired Infections in Neonatal Intensive Care Units. Intercenter variability and time of onset: Two crucial issues in the analysis of risk factors for nosocomial sepsis. Pediatr. Infect. Dis. J. 2003, 22, 599–609. [Google Scholar] [CrossRef] [PubMed]
- Improta, G.; Perrone, A.; Russo, M.A.; Triassi, M. Health technology assessment (HTA) of optoelectronic biosensors for oncology by analytic hierarchy process (AHP) and Likert scale. BMC Med. Res. Methodol. 2019, 19, 140. [Google Scholar] [CrossRef] [PubMed]
- Improta, G.; Converso, G.; Murino, T.; Gallo, M.; Perrone, A.; Romano, M. Analytic hierarchy process (AHP) in dynamic configuration as a tool for health technology assessment (HTA): The case of biosensing optoelectronics in oncology. Int. J. Inf. Technol. Decis. Mak. 2019, 18, 1533–1550. [Google Scholar] [CrossRef] [Green Version]
- Improta, G.; Triassi, M.; Guizzi, G.; Santillo, L.C.; Revetria, R.; Catania, A.; Cassettari, L. An innovative contribution to health technology assessment. Mod. Adv. Intell. Syst. Tools 2012, 431, 127–131. [Google Scholar]
- Scala, A.; Trunfio, T.A.; Borrelli, A.; Ferrucci, G.; Triassi, M.; Improta, G. Modelling the hospital length of stay for patients undergoing laparoscopic cholecystectomy through a multiple regression model. In 2021 5th International Conference on Medical and Health Informatics; Association for Computing Machinery: New York, NY, USA, 2021; pp. 68–72. [Google Scholar]
- Combes, C.; Kadri, F.; Chaabane, S. Predicting hospital length of stay using regression models: Application to emergency department. In Proceedings of the 10ème Conférence Francophone de Modélisation, Optimisation et Simulation-MOSIM’14, Nancy, France, 5–7 November 2014. [Google Scholar]
- Romano, M.; Bifulco, P.; Ponsiglione, A.M.; Gargiulo, G.D.; Amato, F.; Cesarelli, M. Evaluation of floatingline and foetal heart rate variability. Biomed. Signal Process. Control 2018, 39, 185–196. [Google Scholar] [CrossRef]
- Cesarelli, M.; Romano, M.; Bifulco, P.; Improta, G.; D’Addio, G. An application of symbolic dynamics for FHRV assessment. Stud. Health Technol. Inform. 2012, 180, 123–127. [Google Scholar] [PubMed]
- Sorrentino, A.; Scala, A.; Fiorillo, A.; Latessa, I.; Abbate, V.; Dell’Aversana Orabona, G. Six sigma approach for a first evaluation of a pharmacological therapy in tongue cancer. In European Medical and Biological Engineering Conference; Springer: Cham, Switzerland, 2020; pp. 1028–1037. [Google Scholar]
- Trunfio, T.A.; Scala, A.; Borrelli, A.; Sparano, M.; Triassi, M.; Improta, G. Application of the Lean Six Sigma approach to the study of the LOS of patients who undergo laparoscopic cholecystectomy at the San Giovanni di Dio and Ruggi d’Aragona University Hospital. In 2021 5th International Conference on Medical and Health Informatics; Association for Computing Machinery: New York, NY, USA, 2021; pp. 50–54. [Google Scholar]
- Scala, A.; Ponsiglione, A.M.; Loperto, I.; Della Vecchia, A.; Borrelli, A.; Russo, G.; Triassi, M.; Improta, G. Lean six sigma approach for reducing length of hospital stay for patients with femur fracture in a university hospital. Int. J. Environ. Res. Public Health 2021, 18, 2843. [Google Scholar] [CrossRef]
- Cesarelli, G.; Montella, E.; Scala, A.; Raiola, E.; Triassi, M.; Improta, G. DMAIC approach for the reduction of healthcare-associated infections in the neonatal intensive care unit of the university hospital of Naples ‘federico II’. In European Medical and Biological Engineering Conference; Springer: Berlin/Heidelberg, Germany, 2020; pp. 414–423. [Google Scholar]
- Montella, E.; Di Cicco, M.V.; Ferraro, A.; Centobelli, P.; Raiola, E.; Triassi, M.; Improta, G. The application of Lean Six Sigma methodology to reduce the risk of healthcare–associated infections in surgery departments. J. Eval. Clin. Pract. 2017, 23, 530–539. [Google Scholar] [CrossRef]
- Improta, G.; Cesarelli, M.; Montuori, P.; Santillo, L.C.; Triassi, M. Reducing the risk of healthcare-associated infections through Lean Six Sigma: The case of the medicine areas at the Federico II University Hospital in Naples (Italy). J. Eval. Clin. Pract. 2018, 24, 338–346. [Google Scholar] [CrossRef] [Green Version]
- Christina, N.; Ioanna, P.; George, L.; Konstantinos, T.; Georgios, S. Risk factors for nosocomial infections in neonatal intensive care units (NICU). Health Sci. J. 2015, 9, 1. [Google Scholar]
Parameters | Description |
---|---|
C, alpha | Regularization parameter |
Gamma | Kernel coefficient |
Kernel | Type of kernel |
n_estimators | The number of trees in the forest. |
learning_rate | Learning rate schedule for weight updates. |
objective | Objective function to optimize the model’s parameter |
rule | Rule for splitting information |
min_node_size | Minimum size of each node in the tree |
hidden_layer_size | Number of neurons in hidden layer |
max_iteration | Maximum number of iteration |
solver | Solver for weight optimization |
criterion | The function to measure the quality of a split. |
max_features | The number of features to consider when looking for the best split |
penalty | The norm of the penalty |
HABSIs N = 65 | Non-HABSIs N = 1138 | p-Value | |
---|---|---|---|
Sex, boys | 38 (5.71%) | 628 (94.29%) | 0.222 |
Gestational age, weeks (Median, IQR) | 30 (27–33) | 34 (32–37) | <0.000 |
Birthweight, gr (Median, IQR) | 1140 (820–1470) | 1940 (1442.50–2833.75) | <0.000 |
Length of total hospital stay, days (Median, IQR) | 54 (26–83) | 20 (12–33) | <0.000 |
Umbilical line catheterization, days (Median, IQR) | 5 (0–8) | 0 (0–6) | <0.000 |
Central line catheterization, days (Median, IQR) | 14 (7–38) | 0 (0–4) | <0.000 |
OR | 95% CI | p-Value | |
---|---|---|---|
Sex, boys | 1.031 | 0.263–3.891 | 0.510 |
Gestational age, weeks | 1.011 | 1.048–1.137 | 0.859 |
Birthweight, gr | 0.999 | 0.999–1.098 | 0.038 |
Length of total hospital stay, days | 1.023 | 0.994–1.098 | 0.327 |
Umbilical line catheterization, days | 1.072 | 0.994–1.098 | 0.934 |
Central line catheterization, days | 1.000 | 1.008–1.149 | 0.000 |
AI Model | Parameters |
---|---|
SVC | ‘C’: 1, ‘gamma’: 0.0001, ‘kernel’: ‘rbf’ |
CATBOOST | ‘n_estimators’: 100, ‘learning_rate’: 0.01 |
XGB | ‘learning_rate’: 0.01, ‘n_estimators ’: 100, ‘objective’: ‘binary’ |
RFC | ‘min_node_size’: 0, ‘rule’: ‘gini’, ‘n_estimators’: 100 |
MLP | ‘alpha’: 1e-05, ‘hidden_layer_sizes’: 14, ‘max_iter’: 1000, ‘random_state’: 1, |
‘solver’: ‘lbfgs’ | |
RF | ‘criterion’: ’entropy’, ‘max_depth’: 4, ‘max_features’: ‘auto’, ‘n_estimators’: 200 |
LR | ‘C’: 1.0, ‘penalty’: ‘l2’ |
AI Model | Train | Test | |||
---|---|---|---|---|---|
Accuracy | Accuracy | AUC | F1-Score | F1-Macro | |
SVC | 0.9501 | 0.9461 | 0.5357 | 0.95 | 0.5527 |
CATBOOST | 0.9438 | 0.9419 | 0.5670 | 0.94 | 0.5670 |
XGB | 0.9428 | 0.9378 | 0.5313 | 0.94 | 0.5427 |
RFC | 0.9469 | 0.9419 | 0.5335 | 0.94 | 0.5474 |
MLP | 0.9511 | 0.9461 | 0.6027 | 0.95 | 0.6439 |
RF | 0.9511 | 0.9419 | 0.5335 | 0.94 | 0.5475 |
LR | 0.9490 | 0.9461 | 0.6027 | 0.95 | 0.6439 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montella, E.; Ferraro, A.; Sperlì, G.; Triassi, M.; Santini, S.; Improta, G. Predictive Analysis of Healthcare-Associated Blood Stream Infections in the Neonatal Intensive Care Unit Using Artificial Intelligence: A Single Center Study. Int. J. Environ. Res. Public Health 2022, 19, 2498. https://doi.org/10.3390/ijerph19052498
Montella E, Ferraro A, Sperlì G, Triassi M, Santini S, Improta G. Predictive Analysis of Healthcare-Associated Blood Stream Infections in the Neonatal Intensive Care Unit Using Artificial Intelligence: A Single Center Study. International Journal of Environmental Research and Public Health. 2022; 19(5):2498. https://doi.org/10.3390/ijerph19052498
Chicago/Turabian StyleMontella, Emma, Antonino Ferraro, Giancarlo Sperlì, Maria Triassi, Stefania Santini, and Giovanni Improta. 2022. "Predictive Analysis of Healthcare-Associated Blood Stream Infections in the Neonatal Intensive Care Unit Using Artificial Intelligence: A Single Center Study" International Journal of Environmental Research and Public Health 19, no. 5: 2498. https://doi.org/10.3390/ijerph19052498
APA StyleMontella, E., Ferraro, A., Sperlì, G., Triassi, M., Santini, S., & Improta, G. (2022). Predictive Analysis of Healthcare-Associated Blood Stream Infections in the Neonatal Intensive Care Unit Using Artificial Intelligence: A Single Center Study. International Journal of Environmental Research and Public Health, 19(5), 2498. https://doi.org/10.3390/ijerph19052498