A Bibliometric Analysis of the Literature on Norovirus Disease from 1991–2021
Abstract
:1. Background
2. Search Strategy and Research Methodology
2.1. Search Strategy
2.2. Research Methodology
3. Results and Discussions
3.1. Historical Analysis
3.2. Local Citations and Global Citations from the Historical Analysis
3.3. Analysis of the Main Researchers
3.4. Academic Collaboration
3.5. Multiple Correspondence Analysis and Cluster Analysis of High-Frequency Keywords
3.6. Thematic Evolution Analysis
3.7. Funding Analysis
3.8. Strengths and Limitations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Adler, J.L.; Zickl, R. Winter vomiting disease. J. Infect. Dis. 1969, 119, 668–673. [Google Scholar] [CrossRef]
- Green, K.Y.; Kaufman, S.S.; Nagata, B.M.; Chaimongkol, N.; Kim, D.Y.; Levenson, E.A.; Tin, C.M.; Yardley, A.B.; Johnson, J.A.; Barletta, A.B.F. Human norovirus targets enteroendocrine epithelial cells in the small intestine. Nat. Commun. 2020, 11, 2759. [Google Scholar] [CrossRef]
- Munjita, S.M. Current status of norovirus infections in children in Sub-Saharan Africa. J. Trop. Med. 2015, 2015, 309648. [Google Scholar] [CrossRef] [Green Version]
- Park, S.; Jung, J.; Oh, S.; Jung, H.; Oh, Y.; Cho, S.; Cho, S.; Cho, S.; Park, H.; Jo, N.; et al. Characterization of norovirus infections in Seoul, Korea. Microbiol. Immunol. 2012, 56, 700–707. [Google Scholar] [CrossRef]
- Vinjé, J. Advances in laboratory methods for detection and typing of norovirus. J. Clin. Microbiol. 2015, 53, 373–381. [Google Scholar] [CrossRef] [Green Version]
- Chhabra, P.; de Graaf, M.; Parra, G.I.; Chan, M.C.-W.; Green, K.; Martella, V.; Wang, Q.; White, P.A.; Katayama, K.; Vennema, H. Updated classification of norovirus genogroups and genotypes. J. Gen. Virol. 2019, 100, 1393. [Google Scholar] [CrossRef]
- Ebenezer, O.; Damoyi, N.; Jordaan, M.A.; Shapi, M. Unveiling of Pyrimidindinones as Potential Anti-Norovirus Agents—A Pharmacoinformatic-Based Approach. Molecules 2022, 27, 380. [Google Scholar] [CrossRef]
- Lindesmith, L.C.; Donaldson, E.F.; Baric, R.S. Norovirus GII. 4 strain antigenic variation. J. Virol. 2011, 85, 231–242. [Google Scholar] [CrossRef] [Green Version]
- Burch, T. Validation of Quantitative Microbial Risk Assessment Using Epidemiological Data from Outbreaks of Waterborne Gastrointestinal Disease. Risk Anal. 2019, 39, 599–615. [Google Scholar] [CrossRef]
- Hamano, M.; Kuzuya, M.; Fujii, R.; Ogura, H.; Yamada, M. Epidemiology of acute gastroenteritis outbreaks caused by Noroviruses in Okayama, Japan. J. Med. Virol. 2005, 77, 282–289. [Google Scholar] [CrossRef]
- Torner, N.; Martinez, A.; Broner, S.; Moreno, A.; Camps, N.; Dominguez, A.; Working Grp Study Acute, V. Epidemiology of Acute Gastroenteritis Outbreaks Caused by Human Calicivirus (Norovirus and Sapovirus) in Catalonia: A Two Year Prospective Study, 2010–2011. PLoS ONE 2016, 11, e0152503. [Google Scholar] [CrossRef] [Green Version]
- Anderson, A.D.; Heryford, A.G.; Sarisky, J.P.; Higgins, C.; Monroe, S.S.; Beard, R.S.; Newport, C.M.; Cashdollar, J.L.; Fout, G.S.; Robbins, D.E.; et al. A waterborne outbreak of Norwalk-like virus among Snowmobilers-Wyoming, 2001. J. Infect. Dis. 2003, 187, 303–306. [Google Scholar] [CrossRef]
- Widdowson, M.A.; Sulka, A.; Bulens, S.N.; Beard, R.S.; Chaves, S.S.; Hammond, R.; Salehi, E.D.P.; Swanson, E.; Totaro, J.; Woron, R.; et al. Norovirus and foodborne disease, United States, 1991–2000. Emerg. Infect. Dis. 2005, 11, 95–102. [Google Scholar] [CrossRef]
- Barrabeig, I.; Rovira, A.; Buesa, J.; Bartolome, R.; Pinto, R.; Prellezo, H.; Dominguez, A. Foodborne norovirus outbreak: The role of an asymptomatic food handler. BMC Infect. Dis. 2010, 10, 269. [Google Scholar] [CrossRef] [Green Version]
- Barclay, L.; Davis, T.; Vinje, J. Rare Norovirus GIV Foodborne Outbreak, Wisconsin, USA. Emerg. Infect. Dis. 2021, 27, 1151–1154. [Google Scholar] [CrossRef]
- Chhabra, P.; Payne, D.C.; Szilagyi, P.G.; Edwards, K.M.; Staat, M.A.; Shirley, S.H.; Wikswo, M.; Nix, W.A.; Lu, X.Y.; Parashar, U.D.; et al. Etiology of Viral Gastroenteritis in Children <5 Years of Age in the United States, 2008–2009. J. Infect. Dis. 2013, 208, 790–800. [Google Scholar] [CrossRef] [Green Version]
- De Grazia, S.; Lanave, G.; Giammanco, G.M.; Medici, M.C.; De Conto, F.; Tummolo, F.; Calderaro, A.; Bonura, F.; Urone, N.; Morea, A.; et al. Sentinel hospital-based surveillance for norovirus infection in children with gastroenteritis between 2015 and 2016 in Italy. PLoS ONE 2018, 13, e0208184. [Google Scholar] [CrossRef] [Green Version]
- Domenech-Sanchez, A. Gastroenteritis outbreak caused by norovirus associated with the children’s club of a hotel located in Majorca, Spain. Clin. Microbiol. Infect. 2011, 17, 949–951. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Ojeda-Thies, C.; Renz, N.; Margaryan, D.; Perka, C.; Trampuz, A. The global state of clinical research and trends in periprosthetic joint infection: A bibliometric analysis. Int. J. Infect. Dis. 2020, 96, 696–709. [Google Scholar] [CrossRef]
- Unkel, S.; Farrington, C.P.; Garthwaite, P.H.; Robertson, C.; Andrews, N. Statistical methods for the prospective detection of infectious disease outbreaks: A review. J. R. Stat. Soc. Ser. A Stat. Soc. 2012, 175, 49–82. [Google Scholar] [CrossRef] [Green Version]
- Deng, Z.; Chen, J.; Wang, T. Bibliometric and visualization analysis of human coronaviruses: Prospects and implications for COVID-19 research. Front. Cell. Infect. Microbiol. 2020, 10, 529. [Google Scholar] [CrossRef] [PubMed]
- Deng, Z.; Wang, H.; Chen, Z.; Wang, T. Bibliometric analysis of dendritic epidermal T cell (DETC) research from 1983 to 2019. Front. Immunol. 2020, 11, 259. [Google Scholar] [CrossRef] [PubMed]
- Roth, G.A.; Johnson, C.; Abajobir, A.; Abd-Allah, F.; Abera, S.F.; Abyu, G.; Ahmed, M.; Aksut, B.; Alam, T.; Alam, K. Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015. J. Am. Coll. Cardiol. 2017, 70, 1–25. [Google Scholar] [CrossRef]
- Aria, M.; Cuccurullo, C. bibliometrix: An R-tool for comprehensive science mapping analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Van Eck, N.J.; Waltman, L. VOSviewer manual. Leiden Univeristeit Leiden 2013, 1, 1–53. [Google Scholar]
- Kuchenmüller, T.; Hird, S.; Stein, C.; Kramarz, P.; Nanda, A.; Havelaar, A. Estimating the global burden of foodborne diseases-a collaborative effort. Eurosurveillance 2009, 14, 19195. [Google Scholar] [CrossRef]
- Kirk, M.D.; Pires, S.M.; Black, R.E.; Caipo, M.; Crump, J.A.; Devleesschauwer, B.; Döpfer, D.; Fazil, A.; Fischer-Walker, C.L.; Hald, T. World Health Organization estimates of the global and regional disease burden of 22 foodborne bacterial, protozoal, and viral diseases, 2010: A data synthesis. PLoS Med. 2015, 12, e1001921. [Google Scholar]
- The MAL-ED study: A multinational and multidisciplinary approach to understand the relationship between enteric pathogens, malnutrition, gut physiology, physical growth, cognitive development, and immune responses in infants and children up to 2 years of age in resource-poor environments. Clin. Infect. Dis. 2014, 59, S193–S206.
- Platts-Mills, J.A.; Babji, S.; Bodhidatta, L.; Gratz, J.; Haque, R.; Havt, A.; McCormick, B.J.; McGrath, M.; Olortegui, M.P.; Samie, A. Pathogen-specific burdens of community diarrhoea in developing countries: A multisite birth cohort study (MAL-ED). Lancet Glob. Health 2015, 3, e564–e575. [Google Scholar] [CrossRef] [Green Version]
- Ettayebi, K.; Crawford, S.E.; Murakami, K.; Broughman, J.R.; Karandikar, U.; Tenge, V.R.; Neill, F.H.; Blutt, S.E.; Zeng, X.-L.; Qu, L. Replication of human noroviruses in stem cell–derived human enteroids. Science 2016, 353, 1387–1393. [Google Scholar] [CrossRef]
- Baldridge, M.T.; Nice, T.J.; McCune, B.T.; Yokoyama, C.C.; Kambal, A.; Wheadon, M.; Diamond, M.S.; Ivanova, Y.; Artyomov, M.; Virgin, H.W. Commensal microbes and interferon-λ determine persistence of enteric murine norovirus infection. Science 2015, 347, 266–269. [Google Scholar] [CrossRef] [Green Version]
- Xi, J.A.; Min, W.; Graham, D.Y.; Estes, M.K. Expression, Self-Assembly, and Antigenicity of the Norwalk Virus Capsid Protein. J. Virol. 1992, 66, 6527–6532. [Google Scholar] [CrossRef] [Green Version]
- Graham, D.Y.; Jiang, X.; Tanaka, T.; Opekun, A.R.; Madore, H.P.; Estes, M.K. Norwalk Virus-Infection Of Volunteers—New Insights Based On Improved Assays. J. Infect. Dis. 1994, 170, 34–43. [Google Scholar] [CrossRef]
- Kageyama, T.; Kojima, S.; Shinohara, M.; Uchida, K.; Fukushi, S.; Hoshino, F.B.; Takeda, N.; Katayama, K. Broadly reactive and highly sensitive assay for Norwalk-like viruses based on real-time quantitative reverse transcription-PCR. J. Clin. Microbiol. 2003, 41, 1548–1557. [Google Scholar] [CrossRef] [Green Version]
- Caul, E.; Appleton, H. The electron microscopical and physical characteristics of small round human fecal viruses: An interim scheme for classification. J. Med. Virol. 1982, 9, 257–265. [Google Scholar] [CrossRef]
- Kapikian, A.Z.; Wyatt, R.G.; Dolin, R.; Thornhill, T.S.; Kalica, A.R.; Chanock, R.M. Visualization by immune electron microscopy of a 27-nm particle associated with acute infectious nonbacterial gastroenteritis. J. Virol. 1972, 10, 1075–1081. [Google Scholar] [CrossRef] [Green Version]
- Glass, R.I.; Noel, J.; Ando, T.; Fankhauser, R.; Belliot, G.; Mounts, A.; Parashar, U.D.; Bresee, J.S.; Monroe, S.S. The epidemiology of enteric caliciviruses from humans: A reassessment using new diagnostics. J. Infect. Dis. 2000, 181, S254–S261. [Google Scholar] [CrossRef]
- Zheng, D.P.; Ando, T.; Fankhauser, R.L.; Beard, R.S.; Glass, R.I.; Monroe, S.S. Norovirus classification and proposed strain nomenclature. Virology 2006, 346, 312–323. [Google Scholar] [CrossRef] [Green Version]
- Patel, M.M.; Widdowson, M.A.; Glass, R.I.; Akazawa, K.; Vinje, J.; Parashar, U.D. Systematic literature review of role of noroviruses in sporadic gastroenteritis. Emerg. Infect. Dis. 2008, 14, 1224–1231. [Google Scholar] [CrossRef]
- Teunis, P.F.M.; Moe, C.L.; Liu, P.; Miller, S.E.; Lindesmith, L.; Baric, R.S.; Le Pendu, J.; Calderon, R.L. Norwalk virus: How infectious is it? J. Med. Virol. 2008, 80, 1468–1476. [Google Scholar] [CrossRef]
- Wobus, C.E.; Karst, S.M.; Thackray, L.B.; Chang, K.O.; Sosnovtsev, S.V.; Belliot, G.; Krug, A.; Mackenzie, J.M.; Green, K.Y.; Virgin, H.W. Replication of Norovirus in cell culture reveals a tropism for dendritic cells and macrophages. PLoS Biol. 2004, 2, 2076–2084. [Google Scholar] [CrossRef] [PubMed]
- Lindesmith, L.; Moe, C.; Marionneau, S.; Ruvoen, N.; Jiang, X.; Lindbland, L.; Stewart, P.; LePendu, J.; Baric, R. Human susceptibility and resistance to Norwalk virus infection. Nat. Med. 2003, 9, 548–553. [Google Scholar] [CrossRef] [PubMed]
- Karst, S.M.; Wobus, C.E.; Lay, M.; Davidson, J.; Virgin, H.W. STAT1-dependent innate immunity to a Norwalk-like virus. Science 2003, 299, 1575–1578. [Google Scholar] [CrossRef]
- Atmar, R.L.; Opekun, A.R.; Gilger, M.A.; Estes, M.K.; Crawford, S.E.; Neill, F.H.; Graham, D.Y. Norwalk virus shedding after experimental human infection. Emerg. Infect. Dis. 2008, 14, 1553–1557. [Google Scholar] [CrossRef]
- Lindesmith, L.C.; Donaldson, E.F.; Lobue, A.D.; Cannon, J.L.; Zheng, D.P.; Vinje, J.; Baric, R.S. Mechanisms of GII.4 norovirus persistence in human populations. PLoS Med. 2008, 5, 269–290. [Google Scholar] [CrossRef]
- Kageyama, T.; Shinohara, M.; Uchida, K.; Fukushi, S.; Hoshino, F.B.; Kojima, S.; Takai, R.; Oka, T.; Takeda, N.; Katayama, K. Coexistence of multiple genotypes, including newly identified genotypes, in outbreaks of gastroenteritis due to Norovirus in Japan. J. Clin. Microbiol. 2004, 42, 2988–2995. [Google Scholar] [CrossRef] [Green Version]
- Scallan, E.; Hoekstra, R.M.; Angulo, F.J.; Tauxe, R.V.; Widdowson, M.A.; Roy, S.L.; Jones, J.L.; Griffin, P.M. Foodborne Illness Acquired in the United States-Major Pathogens. Emerg. Infect. Dis. 2011, 17, 7–15. [Google Scholar] [CrossRef]
- Kulldorff, M.; Heffernan, R.; Hartman, J.; Assuncao, R.; Mostashari, F. A space-time permutation scan statistic for disease outbreak detection. PLoS Med. 2005, 2, 216–224. [Google Scholar] [CrossRef] [Green Version]
- Cadwell, K.; Patel, K.K.; Maloney, N.S.; Liu, T.C.; Ng, A.C.Y.; Storer, C.E.; Head, R.D.; Xavier, R.; Stappenbeck, T.S.; Virgin, H.W. Virus-Plus-Susceptibility Gene Interaction Determines Crohn’s Disease Gene Atg16L1 Phenotypes in Intestine. Cell 2010, 141, 1135–1164. [Google Scholar] [CrossRef] [Green Version]
- Duizer, E.; Schwab, K.J.; Neill, F.H.; Atmar, R.L.; Koopmans, M.P.G.; Estes, M.K. Laboratory efforts to cultivate noroviruses. J. Gen. Virol. 2004, 85, 79–87. [Google Scholar] [CrossRef]
- Kroneman, A.; Vennema, H.; Deforche, K.; von der Avoort, H.; Penaranda, S.; Oberste, S.; Vinje, J.; Koopmans, M. An automated genotyping tool for enteroviruses and noroviruses. J. Clin. Virol. 2011, 51, 121–125. [Google Scholar] [CrossRef] [PubMed]
- Kroneman, A.; Vega, E.; Vennema, H.; Vinje, J.; White, P.A.; Hansman, G.; Green, K.; Martella, V.; Katayama, K.; Koopmans, M. Proposal for a unified norovirus nomenclature and genotyping. Arch. Virol. 2013, 158, 2059–2068. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, M.K.; Watanabe, M.; Zhu, S.; Graves, C.L.; Keyes, L.R.; Grau, K.R.; Gonzalez-Hernandez, M.B.; Iovine, N.M.; Wobus, C.E.; Vinje, J.; et al. Enteric bacteria promote human and mouse norovirus infection of B cells. Science 2014, 346, 755–759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, H.; Zhang, Y.; Wu, Z.; Lv, T. A bibliometric analysis on land degradation: Current status, development, and future directions. Land 2020, 9, 28. [Google Scholar] [CrossRef] [Green Version]
- Lopman, B.; Vennema, H.; Kohli, E.; Pothier, P.; Sanchez, A.; Negredo, A.; Buesa, J.; Schreier, E.; Reacher, M.; Brown, D.; et al. Increase in viral gastroenteritis outbreaks in Europe and epidemic spread of new norovirus variant. Lancet 2004, 363, 682–688. [Google Scholar] [CrossRef]
- Ekundayo, T.C.; Okoh, A.I. A global bibliometric analysis of Plesiomonas-related research (1990–2017). PLoS ONE 2018, 13, e0207655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogunsakin, R.E.; Moyo, S.; Olugbara, O.; Israel, C. Relating Student Engagement Indicators to Academic Performance Using Multiple Correspondence Analysis. Cybern. Inf. Technol. 2021, 21, 87–102. [Google Scholar] [CrossRef]
- Das, S.; Sun, X. Association knowledge for fatal run-off-road crashes by multiple correspondence analysis. IATSS Res. 2016, 39, 146–155. [Google Scholar] [CrossRef] [Green Version]
- Platts-Mills, J.A.; Liu, J.; Rogawski, E.T.; Kabir, F.; Lertsethtakarn, P.; Siguas, M.; Khan, S.S.; Praharaj, I.; Murei, A.; Nshama, R.; et al. Use of quantitative molecular diagnostic methods to assess the aetiology, burden, and clinical characteristics of diarrhoea in children in low-resource settings: A reanalysis of the MAL-ED cohort study. Lancet Glob. Health 2018, 6, E1309–E1318. [Google Scholar] [CrossRef] [Green Version]
- de Bruin, E.; Duizer, E.; Vennema, H.; Koopmans, M.P. Diagnosis of Norovirus outbreaks by commercial ELISA or RT-PCR. J. Virol. Methods 2006, 137, 259–264. [Google Scholar] [CrossRef] [Green Version]
- Nenonen, N.P.; Hannoun, C.; Larsson, C.U.; Bergstrom, T. Marked Genomic Diversity of Norovirus Genogroup I Strains in a Waterborne Outbreak. Appl. Environ. Microbiol. 2012, 78, 1846–1852. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mormann, S.; Dabisch, M.; Becker, B. Effects of Technological Processes on the Tenacity and Inactivation of Norovirus Genogroup II in Experimentally Contaminated Foods. Appl. Environ. Microbiol. 2010, 76, 536–545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Graaf, M.; van Beek, J.; Vennema, H.; Podkolzin, A.T.; Hewitt, J.; Bucardo, F.; Templeton, K.; Mans, J.; Nordgren, J.; Reuter, G.; et al. Emergence of a novel GII.17 norovirus—End of the GII.4 era? Eurosurveillance 2015, 20, 8–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, M.C.W.; Roy, S.; Bonifacio, J.; Zhang, L.Y.; Chhabra, P.; Chan, J.C.M.; Celma, C.; Igoy, M.A.; Lau, S.L.; Mohammad, K.N.; et al. Detection of Norovirus Variant GII.4 Hong Kong in Asia and Europe, 2017–2019. Emerg. Infect. Dis. 2021, 27, 289–293. [Google Scholar] [CrossRef] [PubMed]
- Cates, J.E.; Vinjé, J.; Parashar, U.; Hall, A.J. Recent advances in human norovirus research and implications for candidate vaccines. Expert Rev. Vaccines 2020, 19, 539–548. [Google Scholar] [CrossRef] [PubMed]
- Burke, R.M.; Shah, M.P.; Wikswo, M.E.; Barclay, L.; Kambhampati, A.; Marsh, Z.; Cannon, J.L.; Parashar, U.D.; Vinje, J.; Hall, A.J. The Norovirus Epidemiologic Triad: Predictors of Severe Outcomes in US Norovirus Outbreaks, 2009–2016. J. Infect. Dis. 2019, 219, 1364–1372. [Google Scholar] [CrossRef]
- Ferreira, M.S.R.; Victoria, M.; Carvalho-Costa, F.A.; Vieira, C.B.; Xavier, M.; Fioretti, J.M.; Andrade, J.; Volotao, E.M.; Rocha, M.; Leite, J.P.G.; et al. Surveillance of Norovirus Infections in the State of Rio De Janeiro, Brazil 2005–2008. J. Med. Virol. 2010, 82, 1442–1448. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.F.; Huang, Q.; Long, Y.; Jiang, X.; Zhang, T.; Tan, M.; Zhang, Q.L.; Huang, Z.Y.; Li, Y.H.; Ding, Y.Q.; et al. An outbreak caused by GII.17 norovirus with a wide spectrum of HBGA-associated susceptibility. Sci. Rep. 2015, 5, 17687. [Google Scholar] [CrossRef]
- Chan, M.C.W.; Lee, N.; Hung, T.N.; Kwok, K.; Cheung, K.; Tin, E.K.Y.; Lai, R.W.M.; Nelson, E.A.S.; Leung, T.F.; Chan, P.K.S. Rapid emergence and predominance of a broadly recognizing and fast-evolving norovirus GII.17 variant in late 2014. Nat. Commun. 2015, 6, 10061. [Google Scholar] [CrossRef] [Green Version]
- Han, J.K.; Ji, L.; Shen, Y.H.; Wu, X.F.; Xu, D.S.; Chen, L.P. Emergence and predominance of norovirus GII.17 in Huzhou, China, 2014–2015. Virol. J. 2015, 12, 139. [Google Scholar] [CrossRef] [Green Version]
- Han, J.K.; Wu, X.F.; Chen, L.P.; Fu, Y.; Xu, D.S.; Zhang, P.; Ji, L. Emergence of norovirus GII.P16-GII.2 strains in patients with acute gastroenteritis in Huzhou, China, 2016–2017. Bmc Infect. Dis. 2018, 18, 342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ji, L.; Chen, L.P.; Xu, D.S.; Wu, X.F.; Han, J.K. Nearly complete genome sequence of one GII.17 Norovirus identified by direct sequencing from HuZhou, China. Mol. Genet. Genom. Med. 2018, 6, 796–804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, P.; Chen, L.P.; Fu, Y.; Ji, L.; Wu, X.F.; Xu, D.S.; Han, J.K. Clinical and molecular analyses of norovirus-associated sporadic acute gastroenteritis: The emergence of GII.17 over GII.4, Huzhou, China, 2015. BMC Infect. Dis. 2016, 16, 717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yi, Y.F.; Wang, X.L.; Wang, S.X.; Xiong, P.; Liu, Q.W.; Zhang, C.; Yin, F.F.; Huang, Z. Identification of a blockade epitope of human norovirus GII.17. Emerg. Microbes Infect. 2021, 10, 954–963. [Google Scholar] [CrossRef]
- Fino, V.R.; Kniel, K.E. UV light inactivation of hepatitis A virus, Aichi virus, and feline calicivirus on strawberries, green onions, and lettuce. J. Food Prot. 2008, 71, 908–913. [Google Scholar] [CrossRef]
- Wei, J.; Jin, Y.; Sims, T.; Kniel, K.E. Survival of Murine Norovirus and Hepatitis A Virus in Different Types of Manure and Biosolids. Foodborne Pathog. Dis. 2010, 7, 901–906. [Google Scholar] [CrossRef]
- Wobus, C.E.; Thackray, L.B.; Virgin IV, H.W. Murine norovirus: A model system to study norovirus biology and pathogenesis. J. Virol. 2006, 80, 5104–5112. [Google Scholar] [CrossRef] [Green Version]
- Akasaka, T.; Shimizu-Onda, Y.; Hayakawa, S.; Ushijima, H. The virucidal effects against murine norovirus and feline calicivirus F4 as surrogates for human norovirus by the different additive concentrations of ethanol-based sanitizers. J. Infect. Chemother. 2016, 22, 191–193. [Google Scholar] [CrossRef]
- Cobo, M.J.; López-Herrera, A.G.; Herrera-Viedma, E.; Herrera, F. An approach for detecting, quantifying, and visualizing the evolution of a research field: A practical application to the fuzzy sets theory field. J. Informetr. 2011, 5, 146–166. [Google Scholar] [CrossRef]
- Schmid, M.; Oehme, R.; Schalasta, G.; Brockmann, S.; Kimmig, P.; Enders, G. Fast detection of Noroviruses using a real-time PCR assay and automated sample preparation. BMC Infect. Dis. 2004, 4, 15. [Google Scholar] [CrossRef] [Green Version]
- Neesanant, P.; Sirinarumitr, T.; Chantakru, S.; Boonyaprakob, U.; Chuwongkomon, K.; Bodhidatta, L.; Sethabutr, O.; Abente, E.J.; Supawat, K.; Mason, C.J. Optimization of one-step real-time reverse transcription-polymerase chain reaction assays for norovirus detection and molecular epidemiology of noroviruses in Thailand. J. Virol. Methods 2013, 194, 317–325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siebenga, J.J.; Vennema, H.; Renckens, B.; de Bruin, E.; van der Veer, B.; Siezen, R.J.; Koopmans, M. Epochal evolution of GGII. 4 norovirus capsid proteins from 1995 to 2006. J. Virol. 2007, 81, 9932–9941. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xi, J.; Wang, J.X.; Graham, D.Y.; Estes, M.K. Detection of norwalk virus in stool by polymerase chain-reaction. J. Clin. Microbiol. 1992, 30, 2529–2534. [Google Scholar] [CrossRef] [Green Version]
- Laverick, M.A.; Wyn-Jones, A.P.; Carter, M.J. Quantitative RT-PCR for the enumeration of noroviruses (Norwalk-like viruses) in water and sewage. Lett. Appl. Microbiol. 2004, 39, 127–136. [Google Scholar] [CrossRef]
- Lee, M.H.; Lee, B.H.; Jung, J.Y.; Cheon, D.S.; Kim, K.T.; Choi, C. Antiviral Effect of Korean Red Ginseng Extract and Ginsenosides on Murine Norovirus and Feline Calicivirus as Surrogates for Human Norovirus. J. Ginseng Res. 2011, 35, 429–435. [Google Scholar] [CrossRef] [Green Version]
- Arias, A.; Thorne, L.; Goodfellow, I. Favipiravir elicits antiviral mutagenesis during virus replication in vivo. eLife 2014, 3, e03679. [Google Scholar] [CrossRef]
- Rocha-Pereira, J.; Van Dycke, J.; Neyts, J. Treatment with a Nucleoside Polymerase Inhibitor Reduces Shedding of Murine Norovirus in Stool to Undetectable Levels without Emergence of Drug-Resistant Variants. Antimicrob. Agents Chemother. 2016, 60, 1907–1911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rocha-Pereira, J.; Jochmans, D.; Neyts, J. Prophylactic treatment with the nucleoside analogue 2′-C-methylcytidine completely prevents transmission of norovirus. J. Antimicrob. Chemother. 2015, 70, 190–197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kolawole, A.O.; Rocha-Pereira, J.; Elftman, M.D.; Neyts, J.; Wobus, C.E. Inhibition of human norovirus by a viral polymerase inhibitor in the B cell culture system and in the mouse model. Antivir. Res. 2016, 132, 46–49. [Google Scholar] [CrossRef] [Green Version]
- Rocha-Pereira, J.; Kolawole, A.O.; Verbeken, E.; Wobus, C.E.; Neyts, J. Post-exposure antiviral treatment of norovirus infections effectively protects against diarrhea and reduces virus shedding in the stool in a mortality mouse model. Antivir. Res. 2016, 132, 76–84. [Google Scholar] [CrossRef]
- Santos-Ferreira, N.; Van Dycke, J.; Neyts, J.; Rocha-Pereira, J. Current and Future Antiviral Strategies to Tackle Gastrointestinal Viral Infections. Microorganisms 2021, 9, 1599. [Google Scholar] [CrossRef] [PubMed]
- Chang, K.O.; George, D.W. Interferons and ribavirin effectively inhibit Norwalk virus replication in replicon-bearing cells. J. Virol. 2007, 81, 12111–12118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ebenezer, O.; Jordaan, M.A.; Damoyi, N.; Shapi, M. Discovery of Potential Inhibitors for RNA-Dependent RNA Polymerase of Norovirus: Virtual Screening, and Molecular Dynamics. Int. J. Mol. Sci. 2021, 22, 171. [Google Scholar] [CrossRef] [PubMed]
- Kankanamalage, A.C.G.; Kim, Y.; Weerawarna, P.M.; Uy, R.A.Z.; Damalanka, V.C.; Mandadapu, S.R.; Alliston, K.R.; Mehzabeen, N.; Battaile, K.P.; Lovell, S.; et al. Structure-Guided Design and Optimization of Dipeptidyl Inhibitors of Norovirus 3CL Protease. Structure-Activity Relationships and Biochemical, X-ray Crystallographic, Cell-Based, and In Vivo Studies. J. Med. Chem. 2015, 58, 3144–3155. [Google Scholar] [CrossRef]
- Mastrangelo, E.; Pezzullo, M.; Tarantino, D.; Petazzi, R.; Germani, F.; Kramer, D.; Robel, I.; Rohayem, J.; Bolognesi, M.; Milani, M. Structure-Based Inhibition of Norovirus RNA-Dependent RNA Polymerases. J. Mol. Biol. 2012, 419, 198–210. [Google Scholar] [CrossRef]
- Tarantino, D.; Pezzullo, M.; Mastrangelo, E.; Croci, R.; Rohayem, J.; Robel, I.; Bolognesi, M.; Milani, M. Naphthalene-sulfonate inhibitors of human norovirus RNA-dependent RNA-polymerase. Antivir. Res. 2014, 102, 23–28. [Google Scholar] [CrossRef] [Green Version]
- Croci, R.; Tarantino, D.; Milani, M.; Pezzullo, M.; Rohayem, J.; Bolognesi, M.; Mastrangelo, E. PPNDS inhibits murine Norovirus RNA-dependent RNA-polymerase mimicking two RNA stacking bases. FEBS Lett. 2014, 588, 1720–1725. [Google Scholar] [CrossRef]
- Wang, X.L.; Ku, Z.Q.; Dai, W.L.; Chen, T.; Ye, X.H.; Zhang, C.; Zhang, Y.Y.; Liu, Q.W.; Jin, X.; Huang, Z. A bivalent virus-like particle based vaccine induces a balanced antibody response against both enterovirus 71 and norovirus in mice. Vaccine 2015, 33, 5779–5785. [Google Scholar] [CrossRef]
- Ball, J.P.; Springer, M.J.; Ni, Y.W.; Finger-Baker, I.; Martinez, J.; Hahn, J.; Suber, J.F.; DiMarco, A.V.; Talton, J.D.; Cobb, R.R. Intranasal delivery of a bivalent norovirus vaccine formulated in an in situ gelling dry powder. PLoS ONE 2017, 12, e0177310. [Google Scholar] [CrossRef]
- Treanor, J.J.; Atmar, R.L.; Frey, S.E.; Gormley, R.; Chen, W.H.; Ferreira, J.; Goodwin, R.; Borkowski, A.; Clemens, R.; Mendelman, P.M. A Novel Intramuscular Bivalent Norovirus Virus-Like Particle Vaccine Candidate-Reactogenicity, Safety, and Immunogenicity in a Phase 1 Trial in Healthy Adults. J. Infect. Dis. 2014, 210, 1763–1771. [Google Scholar] [CrossRef] [Green Version]
- Gong, X.; Yin, H.; Shi, Y.; He, X.; Yu, Y.; Guan, S.; Kuai, Z.; Haji, N.M.; Haji, N.M.; Kong, W. Evaluation of the immunogenicity and protective effects of a trivalent chimeric norovirus P particle immunogen displaying influenza HA2 from subtypes H1, H3 and B. Emerg. Microbes Infect. 2016, 5, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.Y.; Huang, P.W.; Fang, H.; Xia, M.; Zhong, W.M.; McNeal, M.M.; Jiang, X.; Tan, M. Polyvalent complexes for vaccine development. Biomaterials 2013, 34, 4480–4492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atmar, R.L.; Bernstein, D.I.; Harro, C.D.; Al-Ibrahim, M.S.; Chen, W.H.; Ferreira, J.; Estes, M.K.; Graham, D.Y.; Opekun, A.R.; Richardson, C.; et al. Norovirus Vaccine against Experimental Human Norwalk Virus Illness. N. Engl. J. Med. 2011, 365, 2178–2187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Articles | DOI | Year | LCS | GCS |
---|---|---|---|---|
KAGEYAMA T, 2003, J CLIN MICROBIOL [34] | 10.1128/JCM.41.4.1548-1557.2003 | 2003 | 530 | 1043 |
ZHENG DP, 2006, VIROLOGY [38] | 10.1016/j.virol.2005.11.015 | 2006 | 477 | 843 |
PATEL MM, 2008, EMERG INFECT DIS [39] | 10.3201/eid1408.071114 | 2008 | 446 | 697 |
TEUNIS PFM, 2008, J MED VIROL [40] | 10.1002/jmv.21237 | 2008 | 354 | 794 |
WOBUS CE, 2004, PLOS BIOL [41] | 10.1371/journal.pbio.0020432 | 2004 | 335 | 624 |
LINDESMITH L, 2003, NAT MED [42] | 10.1038/nm860 | 2003 | 305 | 688 |
KARST SM, 2003, SCIENCE [43] | 10.1126/science.1077905 | 2003 | 295 | 584 |
ATMAR RL, 2008, EMERG INFECT DIS [44] | 10.3201/eid1410.080117 | 2008 | 270 | 478 |
XI JA, 1992, J VIROL [32] | 10.1128/JVI.66.11.6527-6532.1992 | 1992 | 258 | 652 |
LINDESMITH LC, 2008, PLOS MED [45] | 10.1371/journal.pmed.0050031 | 2008 | 256 | 407 |
Articles | DOI | Year | LCS | GCS |
---|---|---|---|---|
SCALLAN E, 2011, EMERG INFECT DIS [47] | 10.3201/eid1701.P11101 | 2011 | 67 | 1230 |
KAGEYAMA T, 2003, J CLIN MICROBIOL [34] | 10.1128/JCM.41.4.1548-1557.2003 | 2003 | 530 | 1043 |
ZHENG DP, 2006, VIROLOGY [38] | 10.1016/j.virol.2005.11.015 | 2006 | 477 | 843 |
TEUNIS PFM, 2008, J MED VIROL [40] | 10.1002/jmv.21237 | 2008 | 354 | 794 |
PATEL MM, 2008, EMERG INFECT DIS [39] | 10.3201/eid1408.071114 | 2008 | 446 | 697 |
KULLDORFF M, 2005, PLOS MED [48] | 10.1371/journal.pmed.0020059 | 2005 | 2 | 689 |
LINDESMITH L, 2003, NAT MED [42] | 10.1038/nm860 | 2003 | 305 | 688 |
XI JA, 1992, J VIROL [32] | 10.1128/JVI.66.11.6527-6532.1992 | 1992 | 258 | 652 |
ETTAYEBI K, 2016, SCIENCE [30] | 10.1126/science.aaf5211 | 2016 | 210 | 639 |
CADWELL K, 2010, CELL [49] | 10.1016/j.cell.2010.05.009 | 2010 | 49 | 628 |
Authors | Articles | h Index | g Index | Publication Year Start |
---|---|---|---|---|
Jiang X | 135 | 45 | 76 | 1991 |
Vinje J | 119 | 43 | 91 | 2002 |
Estes MK | 82 | 36 | 76 | 1991 |
Hall AJ | 67 | 27 | 64 | 2010 |
Tan M | 65 | 30 | 54 | 2003 |
Atmar RL | 60 | 30 | 60 | 1998 |
Takeda N | 59 | 27 | 58 | 2000 |
Li Y | 58 | 12 | 23 | 2009 |
Katayama K | 57 | 29 | 55 | 2003 |
Ushijima H | 54 | 24 | 38 | 2003 |
Vennema H | 51 | 33 | 51 | 2002 |
Koopmans M | 46 | 34 | 46 | 2002 |
Baric RS | 45 | 28 | 44 | 2002 |
Green KY | 45 | 26 | 44 | 1991 |
Hansman GS | 44 | 26 | 43 | 2004 |
Wobus CE | 44 | 23 | 44 | 2003 |
Xia M | 44 | 23 | 38 | 2007 |
Lopman BA | 42 | 21 | 40 | 2003 |
Vesikari T | 39 | 19 | 30 | 1999 |
Oka T | 38 | 25 | 38 | 2004 |
Productivity Based on No. of Articles | Most Cited Countries | ||||||||
---|---|---|---|---|---|---|---|---|---|
Entry | Country | Articles | Freq | SCP | MCP | MCP_Ratio | Country | TC | AAC |
1 | USA | 1185 | 27.6 | 913 | 272 | 0.2295 | USA | 55,528 | 46.86 |
2 | CHINA | 421 | 9.8 | 334 | 87 | 0.2067 | UNITED KINGDOM | 10,736 | 36.64 |
3 | JAPAN | 369 | 8.6 | 267 | 102 | 0.2764 | NETHERLANDS | 10,392 | 71.18 |
4 | UNITED KINGDOM | 293 | 6.8 | 193 | 100 | 0.3413 | JAPAN | 9689 | 26.26 |
5 | GERMANY | 197 | 4.6 | 153 | 44 | 0.2234 | CHINA | 5629 | 13.37 |
6 | KOREA | 165 | 3.9 | 151 | 14 | 0.0848 | GERMANY | 5319 | 27 |
7 | NETHERLANDS | 146 | 3.4 | 92 | 54 | 0.3699 | FRANCE | 4695 | 36.4 |
8 | ITALY | 131 | 3.1 | 103 | 28 | 0.2137 | AUSTRALIA | 4301 | 35.55 |
9 | FRANCE | 129 | 3 | 91 | 38 | 0.2946 | SWEDEN | 3342 | 32.76 |
10 | AUSTRALIA | 121 | 2.8 | 91 | 30 | 0.2479 | ITALY | 3025 | 23.09 |
11 | BRAZIL | 109 | 2.5 | 88 | 21 | 0.1927 | KOREA | 2456 | 14.88 |
12 | SPAIN | 105 | 2.5 | 82 | 23 | 0.219 | FINLAND | 2405 | 27.97 |
13 | SWEDEN | 102 | 2.4 | 58 | 44 | 0.4314 | CANADA | 2320 | 24.95 |
14 | CANADA | 93 | 2.2 | 72 | 21 | 0.2258 | SPAIN | 2061 | 19.63 |
15 | FINLAND | 86 | 2 | 72 | 14 | 0.1628 | BRAZIL | 1449 | 13.29 |
16 | BELGIUM | 56 | 1.3 | 30 | 26 | 0.4643 | BELGIUM | 1163 | 20.77 |
17 | SWITZERLAND | 37 | 0.8 | 23 | 14 | 0.3784 | SWITZERLAND | 1112 | 30.05 |
18 | INDIA | 35 | 0.8 | 21 | 14 | 0.4 | NEW ZEALAND | 1014 | 37.56 |
19 | DENMARK | 32 | 0.8 | 17 | 15 | 0.4688 | DENMARK | 806 | 25.19 |
20 | THAILAND | 32 | 0.8 | 13 | 19 | 0.5938 | INDIA | 703 | 20.09 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ogunsakin, R.E.; Ebenezer, O.; Ginindza, T.G. A Bibliometric Analysis of the Literature on Norovirus Disease from 1991–2021. Int. J. Environ. Res. Public Health 2022, 19, 2508. https://doi.org/10.3390/ijerph19052508
Ogunsakin RE, Ebenezer O, Ginindza TG. A Bibliometric Analysis of the Literature on Norovirus Disease from 1991–2021. International Journal of Environmental Research and Public Health. 2022; 19(5):2508. https://doi.org/10.3390/ijerph19052508
Chicago/Turabian StyleOgunsakin, Ropo E., Oluwakemi Ebenezer, and Themba G. Ginindza. 2022. "A Bibliometric Analysis of the Literature on Norovirus Disease from 1991–2021" International Journal of Environmental Research and Public Health 19, no. 5: 2508. https://doi.org/10.3390/ijerph19052508
APA StyleOgunsakin, R. E., Ebenezer, O., & Ginindza, T. G. (2022). A Bibliometric Analysis of the Literature on Norovirus Disease from 1991–2021. International Journal of Environmental Research and Public Health, 19(5), 2508. https://doi.org/10.3390/ijerph19052508