A Non-Exercise Model for Predicting Cardiovascular Risks among Apparently Healthy Male Office Workers—Cross-Sectional Analysis: A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
3.1. Characteristics of the Study Population
3.2. Mortality Risk Measure and Its Classification
3.3. Factors Related to the Lifestyle vs. Point Measure of Mortality Risk
3.4. Somatic Factors vs. Mortality Risk Classification
p = | exp(−42.8530 + 0.5051 × Age [years] + 4.5376 × Smoking cigarettes + 0.2720 × WHtR) |
1 + exp(−42.8530 + 0.5051 × Age [years] + 4.5376 × Smoking cigarettes + 0.2720 × WHtR) |
4. Discussion
Limitations of Our Studies
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wojtyniak, B.; Stokwiszewski, J.; Zdrojewski, T.; Goryński, P. Długość życia i umieralność ludności Polski. In Sytuacja Zdrowotna Ludności Polski i Jej Uwarunkowania; Narodowy Instytut Zdrowia Publicznego—Państwowy Zakład Higieny: Warszawa, Poland, 2016; pp. 49–134. ISBN 978-83-89379-49-8. [Google Scholar]
- Ciabiada-Bryła, B.; Pikala, M.; Burzyńska, M.; Drygas, W.; Maniecka-Bryla, I. Trends in excess male mortality in the working age population in a region with the highest mortality rates in Poland. Med. Pract. 2020, 71, 325–335. [Google Scholar] [CrossRef]
- Wojtyniak, B.; Stokwiszewski, J. Trendy czasowe umieralności ogółem oraz z powodu głównych grup przyczyn: Chorób układu krążenia, nowotworów złośliwych oraz przyczyn zewnętrznych w Polsce na tle sytuacji w krajach UE15. Zdr. Publiczne I Zarządzanie 2016, 2015, 316–327. [Google Scholar] [CrossRef]
- Puchalski, K.; Korzeniowska, E. Health promotion—The rationale and the obstacles in workplaces with different employment and financial soundness. Med. Pract. 2013, 64, 743–754. [Google Scholar] [CrossRef] [PubMed]
- Proper, K.I.; Staal, B.J.; Hildebrandt, V.H.; van der Beek, A.J.; van Mechelen, W. Effectiveness of physical activity programs at worksites with respect to work-related outcomes. Scand. J. Work Env. Health 2002, 28, 75–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malińska, M. Skuteczność programów interwencyjnych promujących aktywność fizyczną w miejscu pracy. Med. Pract. 2017, 68, 277–301. [Google Scholar] [CrossRef] [Green Version]
- Puchalski, K.; Korzeniowska, E. Health promotion in medium-sized and large companies in Poland in 2017—activities, implementation, effects and difficulties. Med. Pract. 2019, 70, 275–294. [Google Scholar] [CrossRef] [PubMed]
- Rapisarda, V.; Cannizzaro, E.; Barchitta, M.; Vitale, E.; Cinà, D.; Minciullo, F.; Matera, S.; Bracci, M.; Agodi, A.; Ledda, C. A Combined Multidisciplinary Intervention for Health Promotion in the Workplace: A Pilot Study. J. Clin. Med. 2021, 10, 1512. [Google Scholar] [CrossRef] [PubMed]
- Korzeniowska, E.; Puchalski, K. Co Firmy Powinny Wiedzieć, by Skutecznie Promować Zdrowe Odżywianie i Aktywność Fizyczną?: Raport z wyników Reprezentatywnego Badania 1000 Pracowników Średnich i Dużych Firm w POLSCE; Instytut Medycyny Pracy im. Prof. Dr Med. J. Nofera: Łódź, Poland, 2019; ISBN 978-83-63253-17-2. [Google Scholar]
- Sangroula, R.K.; Subedi, H.P.; Tiwari, K. Factors Associated with the Nutritional Status among Male Workers of Iron and Steel Industries in Bara District, Nepal. Available online: https://www.hindawi.com/journals/jnme/2020/7432716/ (accessed on 30 December 2020).
- Heleniak, A. Społeczno-Kulturowe Uwarunkowania Palenia Papierosów w Polsce w Latach 1974–2019. Fabrica Societatis 2020, 3, 170–189. [Google Scholar] [CrossRef]
- Berrington de Gonzalez, A.; Hartge, P.; Cerhan, J.R.; Flint, A.J.; Hannan, L.; MacInnis, R.J.; Moore, S.C.; Tobias, G.S.; Anton-Culver, H.; Freeman, L.B.; et al. Body-mass index and mortality among 1.46 million white adults. N. Engl. J. Med. 2010, 363, 2211–2219. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.; Cupples, L.A.; Stokes, A.; Liu, C.-T. Association of Obesity With Mortality Over 24 Years of Weight History: Findings From the Framingham Heart Study. JAMA Netw. Open 2018, 1, e184587. [Google Scholar] [CrossRef] [PubMed]
- Al-Mallah, M.H.; Sakr, S.; Al-Qunaibet, A. Cardiorespiratory Fitness and Cardiovascular Disease Prevention: An Update. Curr. Atheroscler. Rep. 2018, 20, 1. [Google Scholar] [CrossRef] [PubMed]
- Berry, J.D.; Willis, B.; Gupta, S.; Barlow, C.E.; Lakoski, S.G.; Khera, A.; Rohatgi, A.; De, L.J.A.; Haskell, W.; Lloyd-Jones Donald, M. Lifetime Risks for Cardiovascular Disease Mortality by Cardiorespiratory Fitness Levels Measured at Ages 45, 55, and 65 Years in Men. J. Am. Coll. Cardiol. 2011, 57, 1604–1610. [Google Scholar] [CrossRef] [Green Version]
- Clarke, S.L.; Reaven, G.M.; Leonard, D.; Barlow, C.E.; Haskell, W.L.; Willis, B.L.; DeFina, L.; Knowles, J.W.; Maron, D.J. Cardiorespiratory Fitness, Body Mass Index, and Markers of Insulin Resistance in Apparently Healthy Women and Men. Am. J. Med. 2020, 133, 825–830.e2. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Rohatgi, A.; Ayers, C.R.; Willis, B.L.; Haskell, W.L.; Khera, A.; Drazner, M.H.; de Lemos, J.A.; Berry, J.D. Cardiorespiratory Fitness and Classification of Risk of Cardiovascular Disease Mortality. Circulation 2011, 123, 1377–1383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stamatakis, E.; Hamer, M.; O’Donovan, G.; Batty, G.D.; Kivimaki, M. A non-exercise testing method for estimating cardiorespiratory fitness: Associations with all-cause and cardiovascular mortality in a pooled analysis of eight population-based cohorts. Eur. Heart J. 2013, 34, 750–758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nes, B.M.; Vatten, L.J.; Nauman, J.; Janszky, I.; Wisløff, U. A simple nonexercise model of cardiorespiratory fitness predicts long-term mortality. Med. Sci. Sports Exerc. 2014, 46, 1159–1165. [Google Scholar] [CrossRef]
- Sloan, R.A.; Scarzanella, M.V.; Gando, Y.; Sawada, S.S. Accuracy of Non-Exercise Estimated Cardiorespiratory Fitness in Japanese Adults. Int. J. Environ. Res. Public Health 2021, 18, 12288. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, S.; Lavie, C.J.; Zhang, J.; Sui, X. An Overview of Non-exercise Estimated Cardiorespiratory Fitness: Estimation Equations, Cross-Validation and Application. J. Sci. Sport Exerc. 2019, 1, 38–53. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Cardiovascular disease risk charts: Revised models to estimate risk in 21 global regions. Lancet Glob. Health 2019, 7, e1332–e1345. [Google Scholar] [CrossRef] [Green Version]
- Dzenkeviciute, V.; Sapoka, V.; Kasiulevicius, V.; Rinkuniene, E.; Steponeniene, R.; Einikyte, R.; Dapkeviciute, A. Value of Duke treadmill score in predicting coronary artery lesion and the need for revascularisation. Kardiol. Pol. 2017, 75, 439–444. [Google Scholar] [CrossRef]
- Israel, A.; Kivity, S.; Sidi, Y.; Segev, S.; Berkovitch, A.; Klempfner, R.; Lavi, B.; Goldenberg, I.; Maor, E. Use of exercise capacity to improve SCORE risk prediction model in asymptomatic adults. Eur. Heart J. 2016, 37, 2300–2306. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, H.M.; Al-Mallah, M.H.; McEvoy, J.W.; Nasir, K.; Blumenthal, R.S.; Jones, S.R.; Brawner, C.A.; Keteyian, S.J.; Blaha, M.J. Maximal exercise testing variables and 10-year survival: Fitness risk score derivation from the FIT Project. Mayo. Clin. Proc. 2015, 90, 346–355. [Google Scholar] [CrossRef] [PubMed]
- Veronesi, G.; Borchini, R.; Landsbergis, P.; Iacoviello, L.; Gianfagna, F.; Tayoun, P.; Grassi, G.; Cesana, G.; Ferrario, M.M. Cardiovascular disease prevention at the workplace: Assessing the prognostic value of lifestyle risk factors and job-related conditions. Int. J. Public Health 2018, 63, 723–732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diederichs, C.; Neuhauser, H.; Rücker, V.; Busch, M.A.; Keil, U.; Fitzgerald, A.P.; Heuschmann, P.U. Predicted 10-year risk of cardiovascular mortality in the 40 to 69 year old general population without cardiovascular diseases in Germany. PLoS ONE 2018, 13, e0190441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Waist Circumference and Waist-hip Ratio: Report of a WHO Expert Consultation; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Abdelaal, M.; le Roux, C.W.; Docherty, N.G. Morbidity and mortality associated with obesity. Ann. Transl. Med. 2017, 5(7), 161. [Google Scholar] [CrossRef] [Green Version]
- Alshamiri, M.Q.; Mohd A Habbab, F.; Al-Qahtani, S.S.; Alghalayini, K.A.; Al-Qattan, O.M.; El-Shaer, F. Waist-to-Height Ratio (WHtR) in Predicting Coronary Artery Disease Compared to Body Mass Index and Waist Circumference in a Single Center from Saudi Arabia. Cardiol. Res. Pract. 2020, 2020, 4250793. [Google Scholar] [CrossRef] [Green Version]
- Body Mass Index—BMI. Available online: https://www.euro.who.int/en/health-topics/disease-prevention/nutrition/a-healthy-lifestyle/body-mass-index-bmi (accessed on 16 February 2021).
- Abiodun, O.O.; Balogun, M.O.; Akintomide, A.O.; Adebayo, R.A.; Ajayi, O.E.; Ogunyemi, S.A.; Amadi, V.N.; Adeyeye, V.O. Comparison between treadmill and bicycle ergometer exercise tests in mild-to-moderate hypertensive Nigerians. IBPC 2015, 8, 51–55. [Google Scholar] [CrossRef] [Green Version]
- Rapp, D.; Scharhag, J.; Wagenpfeil, S.; Scholl, J. Reference values for peak oxygen uptake: Cross-sectional analysis of cycle ergometry-based cardiopulmonary exercise tests of 10 090 adult German volunteers from the Prevention First Registry. BMJ Open 2018, 8, e018697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peterman, J.E.; Arena, R.; Myers, J.; Marzolini, S.; Ross, R.; Lavie, C.J.; Wisløff, U.; Stensvold, D.; Kaminsky, L.A. Development of Global Reference Standards for Directly Measured Cardiorespiratory Fitness: A Report From the Fitness Registry and Importance of Exercise National Database (FRIEND). Mayo. Clin. Proc. 2020, 95, 255–264. [Google Scholar] [CrossRef]
- Sarzynski, M.A.; Rankinen, T.; Earnest, C.P.; Leon, A.S.; Rao, D.C.; Skinner, J.S.; Bouchard, C. Measured Maximal Heart Rates Compared to Commonly Used Age-Based Prediction Equations in the Heritage Family Study. Am. J. Hum. Biol. 2013, 25, 695–701. [Google Scholar] [CrossRef] [Green Version]
- Bays, H.E.; Taub, P.R.; Epstein, E.; Michos, E.D.; Ferraro, R.A.; Bailey, A.L.; Kelli, H.M.; Ferdinand, K.C.; Echols, M.R.; Weintraub, H.; et al. Ten things to know about ten cardiovascular disease risk factors. Am. J. Prev. Cardiol. 2021, 5, 100149. [Google Scholar] [CrossRef] [PubMed]
- Ashwell, M.; Gibson, S. Waist-to-height ratio as an indicator of “early health risk”: Simpler and more predictive than using a “matrix” based on BMI and waist circumference. BMJ Open 2016, 6, e010159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pasdar, Y.; Moradi, S.; Moludi, J.; Saiedi, S.; Moradinazar, M.; Hamzeh, B.; Jafarabadi, M.A.; Najafi, F. Waist-to-height ratio is a better discriminator of cardiovascular disease than other anthropometric indicators in Kurdish adults. Sci. Rep. 2020, 10, 16228. [Google Scholar] [CrossRef] [PubMed]
- Shen, S.; Lu, Y.; Qi, H.; Li, F.; Shen, Z.; Wu, L.; Yang, C.; Wang, L.; Shui, K.; Yao, W.; et al. Waist-to-height ratio is an effective indicator for comprehensive cardiovascular health. Sci. Rep. 2017, 7, 43046. [Google Scholar] [CrossRef] [PubMed]
- Cai, L.; Liu, A.; Zhang, Y.; Wang, P. Waist-to-Height Ratio and Cardiovascular Risk Factors among Chinese Adults in Beijing. PLoS ONE 2013, 8, e69298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duncan, M.S.; Freiberg, M.S.; Greevy, R.A.; Kundu, S.; Vasan, R.S.; Tindle, H.A. Association of Smoking Cessation With Subsequent Risk of Cardiovascular Disease. JAMA 2019, 322, 642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grundy, S.M.; Barlow, C.E.; Farrell, S.W.; Vega, G.L.; Haskell, W.L. Cardiorespiratory Fitness and Metabolic Risk. Am. J. Cardiol. 2012, 109, 988–993. [Google Scholar] [CrossRef] [PubMed]
- Strauss, M.; Foshag, P.; Leischik, R. Prospective Evaluation of Cardiovascular, Cardiorespiratory, and Metabolic Risk of German Office Workers in Comparison to International Data. Int. J. Env. Res. Public Health 2020, 17, 1590. [Google Scholar] [CrossRef] [Green Version]
- Strauss, M.; Foshag, P.; Brzęk, A.; Vollenberg, R.; Jehn, U.; Littwitz, H.; Leischik, R. Cardiorespiratory Fitness Is Associated with a Reduced Cardiovascular Risk in Occupational Groups with Different Working Conditions: A Cross-Sectional Study among Police Officers and Office Workers. J. Clin. Med. 2021, 10, 2025. [Google Scholar] [CrossRef] [PubMed]
- Saidj, M.; Jørgensen, T.; Jacobsen, R.K.; Linneberg, A.; Aadahl, M. Differential cross-sectional associations of work- and leisure-time sitting, with cardiorespiratory and muscular fitness among working adults. Scand. J. Work Environ. Health 2014, 40, 531–538. [Google Scholar] [CrossRef] [Green Version]
- Wittczak, T.; Wittczak, A.; Jakubowski, J. Promocja zdrowia w praktyce lekarzy medycyny pracy w Polsce—doświadczenia pacjentów. Med. Og. Nauk. Zdr. 2020, 26, 286–290. [Google Scholar] [CrossRef]
- Rosberg, V.; Vishram-Nielsen, J.K.; Kristensen, A.M.D.; Pareek, M.; Sehested, T.S.G.; Nilsson, P.M.; Linneberg, A.; Palmieri, L.; Giampaoli, S.; Donfrancesco, C.; et al. Simple cardiovascular risk stratification by replacing total serum cholesterol with anthropometric measures: The MORGAM prospective cohort project. Prev. Med. Rep. 2022, 26, 101700. [Google Scholar] [CrossRef] [PubMed]
- Cuenza, L.R.; Yap, E.M.L.; Ebba, E. Assessment of the prognostic utility of the FIT treadmill score in coronary artery disease patients undergoing cardiac rehabilitation. J. Cardiovasc. Thorac. Res. 2019, 11, 8–13. [Google Scholar] [CrossRef] [PubMed]
FIT Treadmill Score | Risk of Mortality in 10 Years |
---|---|
≥100 | 2% |
[0; 100) | 3% |
[−100; 0) | 11% |
<−100 | 38% |
Age and Somatic Characteristics | Mean (95% CI) | Std. Dev. | Minimum | Median | Maximum |
---|---|---|---|---|---|
Age (years) | 38.7 (37.1; 40.4) | 10.0 | 25 | 30 | 60 |
BMI (kg/m2) | 26.4 (25.9; 26.9) | 3.3 | 16.9 | 26.1 | 34.7 |
Fat (%) | 21.0 (20.2; 21.9) | 5.3 | 3.8 | 20.9 | 39.1 |
WC (cm) | 95.2 (93.7; 96.6) | 8.7 | 70 | 96 | 117 |
WHtR | 53.8 (53.0; 54.6) | 4.9 | 41.2 | 53.7 | 67.5 |
Body height (cm) | 177.0 (176.1; 177.9) | 5.7 | 166 | 176 | 194 |
MET | 10.7 (10.4; 11.0) | 2.0 | 6.7 | 10.8 | 16.2 |
HR max (bpm) | 176.4 (173.9; 178.9) | 15.5 | 126 | 177 | 210 |
Mean (95% CI) | Std. Dev. | Min | Median | Max | |
---|---|---|---|---|---|
FIT Treadmill Score | 69.4 (60.3; 78.6) | 56.1 | −59.1 | 82.6 | 190.3 |
Independent Features | FIT Treadmill Score | ||
---|---|---|---|
R2 = 88.7%, F = 366.9, p ≤ 0.001, SSE = 19.1 | |||
B (95% CI) | p | β | |
Age (years) | −4.58 (−4.92; −4.24) | ≤0.001 | −0.82 |
Smoking cigarettes | −11.20 (−19.59; −2.81) | 0.009 | −0.08 |
WHtR (0–100) | −2.64 (−3.33; −1.94) | ≤0.001 | −0.23 |
Independent Features | Modelling Probability of 11% Mortality Risk Occurrence AUC (95% CI): 0.986 (0.967–1.000) | |
---|---|---|
OR (95% p.u.) | p | |
Age (years) | 1.66 (1.26–2.17) | ≤0.001 |
Smoking cigarettes | 93.47 (3.82–2287.76) | 0.005 |
WHtR | 1.31 (1.02–1.69) | 0.035 |
Prognosis of the 11% Mortality Risk Based on the Model | Observed Condition (11% Mortality Risk) | |
---|---|---|
Yes | No | |
Yes | 19 | 2 |
No | 2 | 123 |
Total | 21 (TPR = 90%) | 125 (TNR = 98%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zadarko, E.; Zadarko-Domaradzka, M.; Barabasz, Z.; Sobolewski, M. A Non-Exercise Model for Predicting Cardiovascular Risks among Apparently Healthy Male Office Workers—Cross-Sectional Analysis: A Pilot Study. Int. J. Environ. Res. Public Health 2022, 19, 2643. https://doi.org/10.3390/ijerph19052643
Zadarko E, Zadarko-Domaradzka M, Barabasz Z, Sobolewski M. A Non-Exercise Model for Predicting Cardiovascular Risks among Apparently Healthy Male Office Workers—Cross-Sectional Analysis: A Pilot Study. International Journal of Environmental Research and Public Health. 2022; 19(5):2643. https://doi.org/10.3390/ijerph19052643
Chicago/Turabian StyleZadarko, Emilian, Maria Zadarko-Domaradzka, Zbigniew Barabasz, and Marek Sobolewski. 2022. "A Non-Exercise Model for Predicting Cardiovascular Risks among Apparently Healthy Male Office Workers—Cross-Sectional Analysis: A Pilot Study" International Journal of Environmental Research and Public Health 19, no. 5: 2643. https://doi.org/10.3390/ijerph19052643
APA StyleZadarko, E., Zadarko-Domaradzka, M., Barabasz, Z., & Sobolewski, M. (2022). A Non-Exercise Model for Predicting Cardiovascular Risks among Apparently Healthy Male Office Workers—Cross-Sectional Analysis: A Pilot Study. International Journal of Environmental Research and Public Health, 19(5), 2643. https://doi.org/10.3390/ijerph19052643