Modification Strategies of Kapok Fiber Composites and Its Application in the Adsorption of Heavy Metal Ions and Dyes from Aqueous Solutions: A Systematic Review
Abstract
:1. Introduction
2. Kapok Fibers
2.1. Structure and Properties
2.2. Composition of Kapok Fibers
2.3. Adsorption Performance of Raw KF
3. Pre-Treatments and Surface Modification of Kapok Fibers
3.1. Pretreatments of Kapok Fibers
3.1.1. Acid/Alkaline Pretreatment of Kapok Fiber
3.1.2. Kapok Fiber Treated with Fenton Reaction
3.1.3. Kapok Fiber Treated with Oxidation
3.2. Surface Modification of Kapok Fibers
3.2.1. Polyaniline and Kapok Fiber
3.2.2. Polyacrylonitrile-Coated KF
3.2.3. KF with the Self-Polymerized Dopamine (DA)
3.2.4. DTPA Modified Kapok Fiber
4. Summary
4.1. Comparative Analysis on Results from Different Characterizations of KF Composites
4.2. Adsorption Capacity of Various KF Composites
4.3. Heavy Metal and Dye Adsorption Kinetic Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chung, B.-Y.; Cho, J.-Y.; Lee, M.-H.; Wi, S.-G.; Kim, J.-H.; Kim, J.-S.; Kang, P.-H.; Nho, Y.-C. Adsorption of Heavy Metal Ions onto Chemically Oxidized Ceiba Pentandra (L.) Gaertn. (Kapok) Fibers. J. Appl. Biol. Chem. 2008, 51, 28–35. [Google Scholar] [CrossRef]
- Rezić, I. Cellulosic Fibers—Biosorptive Materials and Indicators of Heavy Metals Pollution. Microchem. J. 2013, 107, 63–69. [Google Scholar] [CrossRef]
- Jezierska, B.; Ługowska, K.; Witeska, M. The Effects of Heavy Metals on Embryonic Development of Fish (a Review). Fish Physiol. Biochem. 2009, 35, 625–640. [Google Scholar] [CrossRef] [PubMed]
- Hussein, T.K.; Jasim, N.A. A Comparison Study between Chemical Coagulation and Electro-Coagulation Processes for the Treatment of Wastewater Containing Reactive Blue Dye. Mater. Today Proc. 2021, 42, 1946–1950. [Google Scholar] [CrossRef]
- Barakat, M.A. New Trends in Removing Heavy Metals from Industrial Wastewater. Arab. J. Chem. 2011, 4, 361–377. [Google Scholar] [CrossRef] [Green Version]
- Escobar, E.C.; Navarro, R.R.; Nayve, F.R.P.; Borines, M.G.; Ventura, J.-R.S. Copper (II) Removal from Industrial Effluent Using a Coagulation- Flocculation Process Employing Rhizobium Extracellular Polysaccharide. Philipp. E-J. Appl. Res. Dev. 2015, 5, 10. [Google Scholar]
- Leff, T.; Stemmer, P.; Tyrrell, J.; Jog, R. Diabetes and Exposure to Environmental Lead (Pb). Toxics 2018, 6, 54. [Google Scholar] [CrossRef] [Green Version]
- Agcaoili, A.R.; Herrera, M.U.; Futalan, C.M.; Balela, M.D.L. Fabrication of Polyacrylonitrile-Coated Kapok Hollow Microtubes for Adsorption of Methyl Orange and Cu(II) Ions in Aqueous Solution. J. Taiwan Inst. Chem. Eng. 2017, 78, 359–369. [Google Scholar] [CrossRef]
- Naseem, R.; Tahir, S.S. Removal of Pb(II) from Aqueous/Acidic Solutions by Using Bentonite as an Adsorbent. Water Res. 2001, 35, 3982–3986. [Google Scholar] [CrossRef]
- Wang, J.; Zheng, Y.; Wang, A. Effect of Kapok Fiber Treated with Various Solvents on Oil Absorbency. Ind. Crop. Prod. 2012, 40, 178–184. [Google Scholar] [CrossRef]
- Hemalatha, D.; Narayanan, R.; Sanchitha, S. Removal of Zinc and Chromium from Industrial Wastewater Using Water Hyacinth (E. Crassipes) Petiole, Leaves and Root Powder: Equilibrium Study. Mater. Today Proc. 2021, 43, 1834–1838. [Google Scholar] [CrossRef]
- Chen, Y.-G.; He, X.-L.-S.; Huang, J.-H.; Luo, R.; Ge, H.-Z.; Wołowicz, A.; Wawrzkiewicz, M.; Gładysz-Płaska, A.; Li, B.; Yu, Q.-X.; et al. Impacts of Heavy Metals and Medicinal Crops on Ecological Systems, Environmental Pollution, Cultivation, and Production Processes in China. Ecotoxicol. Environ. Saf. 2021, 219, 112336. [Google Scholar] [CrossRef] [PubMed]
- Surucu, O. Electrochemical Removal and Simultaneous Sensing of Mercury with Inductively Coupled Plasma-Mass Spectrometry from Drinking Water. Mater. Today Chem. 2022, 23, 100639. [Google Scholar] [CrossRef]
- Wang, G.; Wu, M.; Chu, L.T.; Chen, T.-H. Portable Microfluidic Device with Thermometer-like Display for Real-Time Visual Quantitation of Cadmium(II) Contamination in Drinking Water. Anal. Chim. Acta 2021, 1160, 338444. [Google Scholar] [CrossRef]
- Asokan, K.; Vivekanand, P.A.; Muniraj, S. An Eco- Friendly Method to Remove Copper Ion from Drinking Water by Using Homemade Bio-Adsorbent in Tip-Tea-Bag. Mater. Today Proc. 2021, 36, 883–885. [Google Scholar] [CrossRef]
- Shi, Y.; Ren, X.; Zheng, H.; Zhang, Y.; Zuo, Q. Hierarchical 13X Zeolite/Reduced Graphene Oxide Porous Material for Trace Pb (II) Capturing from Drinking Water. Microporous Mesoporous Mater. 2022, 329, 111540. [Google Scholar] [CrossRef]
- Wawrzkiewicz, M.; Polska-Adach, E. Physicochemical Interactions in Systems C.I. Direct Yellow 50—Weakly Basic Resins: Kinetic, Equilibrium, and Auxiliaries Addition Aspects. Water 2021, 13, 385. [Google Scholar] [CrossRef]
- Sahu, O.; Singh, N. 13—Significance of Bioadsorption Process on Textile Industry Wastewater. In The Impact and Prospects of Green Chemistry for Textile Technology; Butola, B.S., Ed.; The Textile Institute Book Series; Woodhead Publishing: Sawston, UK, 2019; pp. 367–416. ISBN 978-0-08-102491-1. [Google Scholar]
- Kubra, K.T.; Salman, M.S.; Hasan, M.N. Enhanced Toxic Dye Removal from Wastewater Using Biodegradable Polymeric Natural Adsorbent. J. Mol. Liq. 2021, 328, 115468. [Google Scholar] [CrossRef]
- Mohd Nazri, M.K.H.; Sapawe, N. Removal of Methyl Orange over Low-Cost Silica Nanoparticles Extrated from Bamboo Leaves Ash. Mater. Today Proc. 2020, 31, A54–A57. [Google Scholar] [CrossRef]
- Nordin, A.H.; Ahmad, K.; Kai Xin, L.; Syieluing, W.; Ngadi, N. Efficient Adsorptive Removal of Methylene Blue from Synthetic Dye Wastewater by Green Alginate Modified with Pandan. Mater. Today Proc. 2021, 39, 979–982. [Google Scholar] [CrossRef]
- Banerjee, S.; Dubey, S.; Gautam, R.K.; Chattopadhyaya, M.C.; Sharma, Y.C. Adsorption Characteristics of Alumina Nanoparticles for the Removal of Hazardous Dye, Orange G from Aqueous Solutions. Arab. J. Chem. 2019, 12, 5339–5354. [Google Scholar] [CrossRef]
- Yılmazoğlu, M.; Turan, B.; Demircivi, P.; Hızal, J. Synthesis and Characterization of Imidazolium Based Ionic Liquid Modified Montmorillonite for the Adsorption of Orange II Dye: Effect of Chain Length. J. Mol. Struct. 2022, 1249, 131628. [Google Scholar] [CrossRef]
- Zhou, Y.; Lu, J.; Zhou, Y.; Liu, Y. Recent Advances for Dyes Removal Using Novel Adsorbents: A Review. Environ. Pollut. 2019, 252, 352–365. [Google Scholar] [CrossRef] [PubMed]
- Ligaray, M.; Futalan, C.M.; de Luna, M.D.; Wan, M.-W. Removal of Chemical Oxygen Demand from Thin-Film Transistor Liquid-Crystal Display Wastewater Using Chitosan-Coated Bentonite: Isotherm, Kinetics and Optimization Studies. J. Clean. Prod. 2018, 175, 145–154. [Google Scholar] [CrossRef]
- Nageeb, M. Adsorption Technique for the Removal of Organic Pollutants from Water and Wastewater. In Organic Pollutants—Monitoring, Risk and Treatment; Rashed, M.N., Ed.; InTech: Milton, QLD, Australia, 2013; ISBN 978-953-51-0948-8. [Google Scholar]
- Renu; Agarwal, M.; Singh, K. Heavy Metal Removal from Wastewater Using Various Adsorbents: A Review. J. Water Reuse Desalin. 2016, 7, 387–419. [Google Scholar] [CrossRef]
- Herrera, M.U.; Futalan, C.M.; Gapusan, R.; Balela, M.D.L. Removal of Methyl Orange Dye and Copper (II) Ions from Aqueous Solution Using Polyaniline-Coated Kapok (Ceiba Pentandra) Fibers. Water Sci. Technol. 2018, 78, 1137–1147. [Google Scholar] [CrossRef]
- Kobya, M.; Demirbas, E.; Bayramoglu, M. Modelling the Effects of Adsorbent Dose and Particle Size on the Adsorption of Cr(VI) Ions from Aqueous Solutions. Adsorpt. Sci. Technol. 2004, 22, 583–594. [Google Scholar] [CrossRef]
- Zheng, Y.; Wang, J.; Zhu, Y.; Wang, A. Research and Application of Kapok Fiber as an Absorbing Material: A Mini Review. J. Environ. Sci. 2015, 27, 21–32. [Google Scholar] [CrossRef]
- Vílchez, R.; Gómez-Silván, C.; Purswani, J.; González-López, J.; Rodelas, B. Characterization of Bacterial Communities Exposed to Cr(III) and Pb(II) in Submerged Fixed-Bed Biofilms for Groundwater Treatment. Ecotoxicology 2011, 20, 779–792. [Google Scholar] [CrossRef]
- Balela, M.D.L.; Intila, N.M.; Salvanera, S.R. Adsorptive Removal of Lead Ions in Aqueous Solution by Kapok-Polyacrylonitrile Nanocomposites. Mater. Today Proc. 2019, 17, 672–678. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhu, Y.; Wang, A. Kapok Fiber Structure-Oriented Polyallylthiourea: Efficient Adsorptive Reduction for Au(III) for Catalytic Application. Polymer 2014, 55, 5211–5217. [Google Scholar] [CrossRef]
- Prachayawarakorn, J.; Chaiwatyothin, S.; Mueangta, S.; Hanchana, A. Effect of Jute and Kapok Fibers on Properties of Thermoplastic Cassava Starch Composites. Mater. Des. 2013, 47, 309–315. [Google Scholar] [CrossRef]
- Nilsson, T.; Björdal, C. The Use of Kapok Fibres for Enrichment Cultures of Lignocellulose-Degrading Bacteria. Int. Biodeterior. Biodegrad. 2008, 61, 11–16. [Google Scholar] [CrossRef]
- Naharudin, A.U.; Shaarani, S.H.N.; Rou, L.M.; Hamidi, N.H.; Ahmad, N.; Rasid, R. Kapok as an Adsorbent for Industrial Wastewater. J. Chem. Eng. Ind. Biotechnol. 2019, 5, 48–54. [Google Scholar] [CrossRef]
- Mahadeva, S.K.; Yun, S.; Kim, J. Flexible Humidity and Temperature Sensor Based on Cellulose–Polypyrrole Nanocomposite. Sens. Actuators A Phys. 2011, 165, 194–199. [Google Scholar] [CrossRef]
- Smole, M.; Hribernik, S.; Stana-Kleinschek, K.; Kreze, T. Plant Fibres for Textile and Technical Applications. In Advances in Agrophysical Research; Magnum Publishing LLC: New York, NY, USA, 2013; ISBN 978-953-51-1184-9. [Google Scholar]
- Zheng, Y.; Wang, A. Kapok Fiber: Applications. In Biomass and Bioenergy: Applications; Hakeem, K.R., Jawaid, M., Rashid, U., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 251–266. ISBN 978-3-319-07578-5. [Google Scholar]
- Rahimzadeh, H.; Bafekrpoor, H.; Jeddi, A. Influence of Punch Density and Fiber Blends on Thermal Conductivity on Nonwoven. Open Text. J. 2011, 4, 1–6. [Google Scholar] [CrossRef]
- Xu, Y.; Shen, H.; Cao, L.; Xu, G. Oil Release Behavior and Kinetics of Oil-Impregnated Kapok Fiber Powder. Cellulose 2020, 27, 5845–5853. [Google Scholar] [CrossRef]
- Zhang, X.; Fu, W.; Duan, C.; Xiao, H.; Shi, M.; Zhao, N.; Xu, J. Superhydrophobicity Determines the Buoyancy Performance of Kapok Fiber Aggregates. Appl. Surf. Sci. 2013, 266, 225–229. [Google Scholar] [CrossRef]
- Huang, X.; Lim, T.-T. Performance and Mechanism of a Hydrophobic–Oleophilic Kapok Filter for Oil/Water Separation. Desalination 2006, 190, 295–307. [Google Scholar] [CrossRef]
- Vanson, J.-M.; Boutin, A.; Klotz, M.; Coudert, F.-X. Transport and Adsorption under Liquid Flow: The Role of Pore Geometry. Soft Matter 2017, 13, 875–885. [Google Scholar] [CrossRef] [Green Version]
- Staszak, M. A Linear Diffusion Model of Adsorption Kinetics at Fluid/Fluid Interfaces. J. Surfactants Deterg. 2016, 19, 297–314. [Google Scholar] [CrossRef] [Green Version]
- Dong, T.; Wang, F.; Xu, G. Theoretical and Experimental Study on the Oil Sorption Behavior of Kapok Assemblies. Ind. Crop. Prod. 2014, 61, 325–330. [Google Scholar] [CrossRef]
- Xiang, H.; Wang, D.; Liua, H.; Zhao, N.; Xu, J. Investigation on Sound Absorption Properties of Kapok Fibers. Chin. J. Polym. Sci. 2013, 31, 521–529. [Google Scholar] [CrossRef]
- Ito, E.N.; Macedo, M.J.P.; Silva, G.S.; Feitor, M.C.; Costa, T.H.; Melo, J.D. Surface Modification of Kapok Fibers by Cold Plasma Surface Treatment. J. Mater. Res. Technol. 2020, 9, 2467–2476. [Google Scholar] [CrossRef]
- Song, P.; Cui, J.; Di, J.; Liu, D.; Xu, M.; Tang, B.; Zeng, Q.; Xiong, J.; Wang, C.; He, Q.; et al. Carbon Microtube Aerogel Derived from Kapok Fiber: An Efficient and Recyclable Sorbent for Oils and Organic Solvents. ACS Nano 2020, 14, 595–602. [Google Scholar] [CrossRef]
- Lim, T.-T.; Huang, X. Evaluation of Hydrophobicity/Oleophilicity of Kapok and Its Performance in Oily Water Filtration: Comparison of Raw and Solvent-Treated Fibers. Ind. Crop. Prod. 2007, 26, 125–134. [Google Scholar] [CrossRef]
- Purnawati, R.; Febrianto, F.; Wistara, I.N.J.; Nikmatin, S.; Hidayat, W.; Lee, S.H.; Kim, N.H. Physical and Chemical Properties of Kapok (Ceiba Pentandra) and Balsa (Ochroma Pyramidale) Fibers. J. Korean Wood Sci. Technol. 2018, 46, 393–401. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, J.; Zheng, Y.; Wang, A. Adsorption of Methylene Blue by Kapok Fiber Treated by Sodium Chlorite Optimized with Response Surface Methodology. Chem. Eng. J. 2012, 184, 248–255. [Google Scholar] [CrossRef]
- Zheng, Y.; Wang, W.; Huang, D.; Wang, A. Kapok Fiber Oriented-Polyaniline Nanofibers for Efficient Cr(VI) Removal. Chem. Eng. J. 2012, 191, 154–161. [Google Scholar] [CrossRef]
- Matuana, L.M.; Balatinecz, J.J.; Sodhi, R.N.S.; Park, C.B. Surface Characterization of Esterified Cellulosic Fibers by XPS and FTIR Spectroscopy. Wood Sci. Technol. 2001, 35, 191–201. [Google Scholar] [CrossRef]
- Zhou, J.; Du, E.; He, Y.; Fan, Y.; Ye, Y.; Tang, B. Preparation of Carbonized Kapok Fiber/Reduced Graphene Oxide Aerogel for Oil-Water Separation. Chem. Eng. Technol. 2020, 43, 2418–2427. [Google Scholar] [CrossRef]
- Yang, N.; Shin, C.-H.; Kim, D.; Park, J.-S.; Rao, P.; Wang, R. Synthesis, Characterization, and Mercury Removal Application of Surface Modified Kapok Fibers with Dopamine (DA): Investigation of Bidentate Adsorption. Environ. Earth Sci. 2020, 79, 264. [Google Scholar] [CrossRef]
- Cao, Y.; Xie, L.; Sun, G.; Su, F.; Kong, Q.-Q.; Li, F.; Ma, W.; Shi, J.; Jiang, D.; Lu, C.; et al. Hollow Carbon Microtubes from Kapok Fiber: Structural Evolution and Energy Storage Performance. Sustain. Energy Fuels 2018, 2, 455–465. [Google Scholar] [CrossRef]
- Fletcher, A.J.; Uygur, Y.; Thomas, K.M. Role of Surface Functional Groups in the Adsorption Kinetics of Water Vapor on Microporous Activated Carbons. J. Phys. Chem. C 2007, 111, 8349–8359. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Wang, A. Acetylated Modification of Kapok Fiber and Application for Oil Absorption. Fibers Polym. 2013, 14, 1834–1840. [Google Scholar] [CrossRef]
- Wang, J.-R.; Wan, F.; Lü, Q.-F.; Chen, F.; Lin, Q. Self-Nitrogen-Doped Porous Biochar Derived from Kapok (Ceiba Insignis) Fibers: Effect of Pyrolysis Temperature and High Electrochemical Performance. J. Mater. Sci. Technol. 2018, 34, 1959–1968. [Google Scholar] [CrossRef]
- Astuti, W.; Bendiyasa, I.M.; Wahyuni, E.T.; Prasetya, A. The Effect of Coal Fly Ash Crystallinity toward Methyl Violet Adsorption Capacity. ASEAN J. Chem. Eng. 2010, 10, 8–13. [Google Scholar] [CrossRef]
- Adeleke, O.A.; Latiff, A.A.A.; Saphira, M.R.; Daud, Z.; Ismail, N.; Ahsan, A.; Ab Aziz, N.A.; Al-Gheethi, A.; Kumar, V.; Fadilat, A.; et al. 1—Principles and Mechanism of Adsorption for the Effective Treatment of Palm Oil Mill Effluent for Water Reuse. In Nanotechnology in Water and Wastewater Treatment; Ahsan, A., Ismail, A.F., Eds.; Micro and Nano Technologies; Elsevier: Amsterdam, The Netherlands, 2019; pp. 1–33. ISBN 978-0-12-813902-8. [Google Scholar]
- Xu, W.; Mu, B.; Wang, A. Three-Dimensional Hollow Microtubular Carbonized Kapok Fiber/Cobalt-Nickel Binary Oxide Composites for High-Performance Electrode Materials of Supercapacitors. Electrochim. Acta 2017, 224, 113–124. [Google Scholar] [CrossRef]
- Yang, H.; Yan, R.; Chen, H.; Lee, D.H.; Zheng, C. Characteristics of Hemicellulose, Cellulose and Lignin Pyrolysis. Fuel 2007, 86, 1781–1788. [Google Scholar] [CrossRef]
- Abdullah, M.; Shah, N.A.F.N.M.A.; Saadun, M.A.A.M.; Kadiran, K.A.; Zaiton, S.N.; Azman, H.A.; Othman, Z.S.; Osman, M.S. Comparative Study of Acid-Treated and Alkali-Treated Carbonised Kapok–Fibres for Oil/Water Absorption System. J. Phys. Conf. Ser. 2019, 1349, 012104. [Google Scholar] [CrossRef]
- Draman, S.F.S.; Daik, R.; Latif, F.A.; El-Sheikh, S.M. Characterization and Thermal Decomposition Kinetics of Kapok (Ceiba Pentandra L.)–Based Cellulose. BioResources 2014, 9, 8–23. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Liu, Y.; Zhang, D.; Zhang, R.; Li, Z. Kapok Fiber: A Natural Biomaterial for Highly Specific and Efficient Enrichment of Sialoglycopeptides. Anal. Chem. 2016, 88, 1067–1072. [Google Scholar] [CrossRef] [Green Version]
- Gapusan, R.B.; Balela, M.D.L. Adsorption of Anionic Methyl Orange Dye and Lead(II) Heavy Metal Ion by Polyaniline-Kapok Fiber Nanocomposite. Mater. Chem. Phys. 2020, 243, 122682. [Google Scholar] [CrossRef]
- Mwaikambo, L.Y.; Ansell, M.P. Chemical Modification of Hemp, Sisal, Jute, and Kapok Fibers by Alkalization. J. Appl. Polym. Sci. 2002, 84, 2222–2234. [Google Scholar] [CrossRef]
- Wang, R.; Shin, C.-H.; Park, S.; Park, J.-S.; Kim, D.; Cui, L.; Ryu, M. Removal of Lead (II) from Aqueous Stream by Chemically Enhanced Kapok Fiber Adsorption. Environ. Earth Sci. 2014, 72, 5221–5227. [Google Scholar] [CrossRef]
- Zheng, Y.; Liu, Y.; Wang, A. Kapok Fiber Oriented Polyaniline for Removal of Sulfonated Dyes. Ind. Eng. Chem. Res. 2012, 51, 10079–10087. [Google Scholar] [CrossRef]
- Wen, Y.; Yuan, Z.; Qu, J.; Wang, C.; Wang, A. Evaluation of Ultraviolet Light and Hydrogen Peroxide Enhanced Ozone Oxidation Treatment for the Production of Cellulose Nanofibrils. ACS Sustain. Chem. Eng. 2020, 8, 2688–2697. [Google Scholar] [CrossRef]
- Wang, D.; Kim, D.; Shin, C.-H.; Zhao, Y.; Park, J.-S.; Ryu, M. Removal of Lead(II) from Aqueous Stream by Hydrophilic Modified Kapok Fiber Using the Fenton Reaction. Environ. Earth Sci. 2018, 77, 653. [Google Scholar] [CrossRef]
- Mozetič, M. Surface Modification to Improve Properties of Materials. Materials 2019, 12, 441. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Wang, F. Influence of Mercerization on Micro-Structure and Properties of Kapok Blended Yarns with Different Blending Ratios. J. Eng. Fibers Fabr. 2011, 6, 155892501100600320. [Google Scholar] [CrossRef]
- Kalia, S.; Kaith, B.S.; Kaur, I. Pretreatments of Natural Fibers and Their Application as Reinforcing Material in Polymer Composites—A Review. Polym. Eng. Sci. 2009, 49, 1253–1272. [Google Scholar] [CrossRef]
- Mu, B.; Zhang, W.; Xu, W.; Wang, A. Hollowed-out Tubular Carbon@MnO2 Hybrid Composites with Controlled Morphology Derived from Kapok Fibers for Supercapacitor Electrode Materials. Electrochim. Acta 2015, 178, 709–720. [Google Scholar] [CrossRef]
- Koohestani, B.; Darban, A.K.; Mokhtari, P.; Yilmaz, E.; Darezereshki, E. Comparison of Different Natural Fiber Treatments: A Literature Review. Int. J. Environ. Sci. Technol. 2019, 16, 629–642. [Google Scholar] [CrossRef]
- Kabir, M.M.; Wang, H.; Lau, K.T.; Cardona, F. Chemical Treatments on Plant-Based Natural Fibre Reinforced Polymer Composites: An Overview. Compos. Part B Eng. 2012, 43, 2883–2892. [Google Scholar] [CrossRef]
- Nazari, L.; Sarathy, S.; Santoro, D.; Ho, D.; Ray, M.B.; Xu, C. (Charles) Recent Advances in Energy Recovery from Wastewater Sludge. In Direct Thermochemical Liquefaction for Energy Applications; Rosendahl, L., Ed.; Woodhead Publishing: Oxford, UK, 2018; pp. 67–100. ISBN 978-0-08-101029-7. [Google Scholar]
- Zhang, M.; Dong, H.; Zhao, L.; Wang, D.; Meng, D. A Review on Fenton Process for Organic Wastewater Treatment Based on Optimization Perspective. Sci. Total Environ. 2019, 670, 110–121. [Google Scholar] [CrossRef]
- Crini, G. Non-Conventional Low-Cost Adsorbents for Dye Removal: A Review. Bioresour. Technol. 2006, 97, 1061–1085. [Google Scholar] [CrossRef]
- Nidheesh, P.V.; Gandhimathi, R.; Ramesh, S.T. Degradation of Dyes from Aqueous Solution by Fenton Processes: A Review. Environ. Sci. Pollut. Res. 2013, 20, 2099–2132. [Google Scholar] [CrossRef]
- Kihlman, M.; Medronho, B.F.; Romano, A.L.; Germgård, U.; Lindman, B. Cellulose Dissolution in an Alkali Based Solvent: Influence of Additives and Pretreatments. J. Braz. Chem. Soc. 2013, 24, 295–303. [Google Scholar] [CrossRef]
- Reddy, K.O.; Maheswari, C.U.; Dhlamini, M.S.; Kommula, V.P. Exploration on the Characteristics of Cellulose Microfibers from Palmyra Palm Fruits. Int. J. Polym. Anal. Charact. 2016, 21, 286–295. [Google Scholar] [CrossRef]
- Mogili, N.V.; Murugesan, N.; Ayothiraman, S.; Gautam, R.; Deshavath, N.N.; Reddy Erva, R. Chapter 6—Biohydrogen Production from Wastewater and Organic Solid Wastes. In Waste-to-Energy Approaches Towards Zero Waste; Hussain, C.M., Singh, S., Goswami, L., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 165–195. ISBN 978-0-323-85387-3. [Google Scholar]
- Chand, N.; Fahim, M. (Eds.) 1—Natural Fibers and Their Composites. In Tribology of Natural Fiber Polymer Composites; Woodhead Publishing Series in Composites Science and Engineering; Woodhead Publishing: Sawston, UK, 2008; pp. 1–58. ISBN 978-1-84569-393-0. [Google Scholar]
- Dong, T.; Wang, F.; Xu, G. Sorption Kinetics and Mechanism of Various Oils into Kapok Assembly. Mar. Pollut. Bull. 2015, 91, 230–237. [Google Scholar] [CrossRef]
- Fortunati, E.; Armentano, I.; Zhou, Q.; Iannoni, A.; Saino, E.; Visai, L.; Berglund, L.A.; Kenny, J.M. Multifunctional Bionanocomposite Films of Poly(Lactic Acid), Cellulose Nanocrystals and Silver Nanoparticles. Carbohydr. Polym. 2012, 87, 1596–1605. [Google Scholar] [CrossRef]
- Sartika, D.; Syamsu, K.; Warsiki, E.; Fahma, F. Isolation of Microfiber Cellulose from Kapok Fiber (Ceiba Pentandra) by Using Chemical-Hydrothermal Treatment. Ecol. Environ. Conserv. 2020, 26, 2020–2654. [Google Scholar]
- Sun, S.; Zhang, L.; Liu, F.; Fan, X.; Sun, R.-C. One-Step Process of Hydrothermal and Alkaline Treatment of Wheat Straw for Improving the Enzymatic Saccharification. Biotechnol. Biofuels 2018, 11, 137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, P.P.; Tong, D.S.; Lin, C.X.; Yang, H.M.; Zhong, Z.K.; Yu, W.H.; Wang, H.; Zhou, C.H. Effects of Acid Treatments on Bamboo Cellulose Nanocrystals. Asia-Pac. J. Chem. Eng. 2014, 9, 686–695. [Google Scholar] [CrossRef]
- Natalio, F.; Fuchs, R.; Cohen, S.; Leitus, G.; Fritz-Popovski, G.; Paris, O.; Kappl, M.; Butt, H.-J. Biological Fabrication of Cellulose Fibers with Tailored Properties. Science 2017, 357, 1118–1122. [Google Scholar] [CrossRef] [Green Version]
- Khenblouche, A.; Bechki, D.; Gouamid, M.; Charradi, K.; Segni, L.; Hadjadj, M.; Boughali, S. Extraction and Characterization of Cellulose Microfibers from Retama Raetam Stems. Polímeros 2019, 29, 1–8. [Google Scholar] [CrossRef]
- Quek, C.S.; Ngadi, N.; Ahmad Zaini, M.A. The Oil-Absorbing Properties of Kapok Fibre—A Commentary. J. Taibah Univ. Sci. 2020, 14, 507–512. [Google Scholar] [CrossRef] [Green Version]
- Gerbin, E.; Frapart, Y.-M.; Marcuello, C.; Cottyn, B.; Foulon, L.; Pernes, M.; Crônier, D.; Molinari, M.; Chabbert, B.; Ducrot, P.-H.; et al. Dual Antioxidant Properties and Organic Radical Stabilization in Cellulose Nanocomposite Films Functionalized by In Situ Polymerization of Coniferyl Alcohol. Biomacromolecules 2020, 21, 3163–3175. [Google Scholar] [CrossRef]
- Morone, A.; Mulay, P.; Kamble, S.P. 8—Removal of Pharmaceutical and Personal Care Products from Wastewater Using Advanced Materials. In Pharmaceuticals and Personal Care Products: Waste Management and Treatment Technology; Prasad, M.N.V., Vithanage, M., Kapley, A., Eds.; Butterworth-Heinemann: Oxford, UK, 2019; pp. 173–212. ISBN 978-0-12-816189-0. [Google Scholar]
- Areskogh, D.; Henriksson, G. Chemical Pulping: Fenton’s Reaction: A Simple and Versatile Method to Structurally Modify Commercial Lignosulphonates. Nord. Pulp Pap. Res. J. 2011, 26, 90–98. [Google Scholar] [CrossRef]
- Sun, X.-F.; Sun, R.C.; Sun, J.X. A Convenient Acetylation of Sugarcane Bagasse Using NBS as a Catalyst for the Preparation of Oil Sorption-Active Materials. J. Mater. Sci. 2003, 38, 3915–3923. [Google Scholar] [CrossRef]
- Sun, R.; Lu, Q.; Sun, X.F. Physico-Chemical and Thermal Characterization of Lignins from Caligonum monogoliacum and Tamarix spp. Polym. Degrad. Stab. 2001, 72, 229–238. [Google Scholar] [CrossRef]
- Rengasamy, R.S.; Das, D.; Karan, C.P. Study of Oil Sorption Behavior of Filled and Structured Fiber Assemblies Made from Polypropylene, Kapok and Milkweed Fibers. J. Hazard. Mater. 2011, 186, 526–532. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, S.; Sen, R.; Pandey, R.A.; Chakrabarti, T.; Satpute, D.; Giri, B.S.; Mudliar, S. Evaluation of Wet Air Oxidation as a Pretreatment Strategy for Bioethanol Production from Rice Husk and Process Optimization. Biomass Bioenergy 2009, 33, 1680–1686. [Google Scholar] [CrossRef]
- Palonen, H.; Thomsen, A.B.; Tenkanen, M.; Schmidt, A.S.; Viikari, L. Evaluation of Wet Oxidation Pretreatment for Enzymatic Hydrolysis of Softwood. Appl. Biochem. Biotechnol. 2004, 117, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Kang, P.; Jeun, J.; Chung, B.; Kim, J.; Nho, Y. Preparation and Characterization of Glycidyl Methacrylate (GMA) Grafted Kapok Fiber by Using Radiation Induced-Grafting Technique. J. Ind. Eng. Chem. 2007, 13, 956–958. [Google Scholar]
- Liang, G.-T.; Li, H.; Mi, X.; Zhao, W. Enhanced adsorption of Orange II on bagasse-derived biochar by direct addition of CTAB. Korean J. Chem. Eng. 2019, 36, 1274–1280. [Google Scholar] [CrossRef]
- Keshk, S.; Suwinarti, W.; Sameshima, K. Physicochemical Characterization of Different Treatment Sequences on Kenaf Bast Fiber. Carbohydr. Polym. 2006, 65, 202–206. [Google Scholar] [CrossRef]
- Wang, F.; Zheng, Y.; Zhu, Y.; Wang, A. Oriented Functionalization of Natural Hollow Kapok Fiber for Highly Efficient Removal of Toxic Hg(II) from Aqueous Solution. Front. Environ. Sci. 2016, 4, 4. [Google Scholar] [CrossRef] [Green Version]
- Wolok, E.; Lahay, I.H.; Machmoed, B.R.; Pakaya, F. Modification and Characterization of Ceiba Pentandra (L.) Gaertn. (Kapok) Fiber: Physical Properties. Int. J. Res. Granthaalayah 2019, 7, 381–390. [Google Scholar] [CrossRef]
- Abdullah, M.A.; Rahmah, A.U.; Man, Z. Physicochemical and Sorption Characteristics of Malaysian Ceiba Pentandra (L.) Gaertn. as a Natural Oil Sorbent. J. Hazard. Mater. 2010, 177, 683–691. [Google Scholar] [CrossRef]
- Wang, J.; Geng, G.; Liu, X.; Han, F.; Xu, J. Magnetically Superhydrophobic Kapok Fiber for Selective Sorption and Continuous Separation of Oil from Water. Chem. Eng. Res. Des. 2016, 115, 122–130. [Google Scholar] [CrossRef]
- Lugito, G.; Kustiana, A.; Martuani, R.; Wenten, I.G. Kapok Fibre as Potential Oil-Absorbing Material: Modification Mechanism and Performance Evaluation. IOP Conf. Ser. Mater. Sci. Eng. 2020, 823, 012033. [Google Scholar] [CrossRef]
- Tye, Y.Y.; Lee, K.T.; Wan Abdullah, W.N.; Leh, C.P. Potential of Ceiba Pentandra (L.) Gaertn. (Kapok Fiber) as a Resource for Second Generation Bioethanol: Effect of Various Simple Pretreatment Methods on Sugar Production. Bioresour. Technol. 2012, 116, 536–539. [Google Scholar] [CrossRef]
- Wahi, R.; Chuah, L.A.; Choong, T.S.Y.; Ngaini, Z.; Nourouzi, M.M. Oil Removal from Aqueous State by Natural Fibrous Sorbent: An Overview. Sep. Purif. Technol. 2013, 113, 51–63. [Google Scholar] [CrossRef]
- Trchová, M.; Stejskal, J. Polyaniline: The infrared spectroscopy of conducting polymer nanotubes (IUPAC Technical Report). Pure Appl. Chem. 2011, 83, 1803–1817. [Google Scholar] [CrossRef]
- Joseph, N.; Varghese, J.; Sebastian, M.T. In Situ Polymerized Polyaniline Nanofiber-Based Functional Cotton and Nylon Fabrics as Millimeter-Wave Absorbers. Polym. J. 2017, 49, 391–399. [Google Scholar] [CrossRef]
- Liao, Y.; Wang, Y.; Feng, X.; Wang, W.; Xu, F.; Zhang, L. Antibacterial Surfaces through Dopamine Functionalization and Silver Nanoparticle Immobilization. Mater. Chem. Phys. 2010, 121, 534–540. [Google Scholar] [CrossRef]
- Duan, C.; Zhao, N.; Yu, X.; Zhang, X.; Xu, J. Chemically Modified Kapok Fiber for Fast Adsorption of Pb2+, Cd2+, Cu2+ from Aqueous Solution. Cellulose 2013, 20, 849–860. [Google Scholar] [CrossRef]
- Al-Ghouti, M.A.; Da’ana, D.A. Guidelines for the Use and Interpretation of Adsorption Isotherm Models: A Review. J. Hazard. Mater. 2020, 393, 122383. [Google Scholar] [CrossRef]
- Afroze, S.; Sen, T.K. A Review on Heavy Metal Ions and Dye Adsorption from Water by Agricultural Solid Waste Adsorbents. Water Air Soil Pollut. 2018, 229, 225. [Google Scholar] [CrossRef]
- Sahmoune, M.N. Evaluation of Thermodynamic Parameters for Adsorption of Heavy Metals by Green Adsorbents. Env. Chem. Lett. 2019, 17, 697–704. [Google Scholar] [CrossRef]
- Jain, C.K.; Malik, D.S.; Yadav, A.K. Applicability of Plant Based Biosorbents in the Removal of Heavy Metals: A Review. Environ. Process. 2016, 3, 495–523. [Google Scholar] [CrossRef]
- Liu, X.; Lee, D.-J. Thermodynamic Parameters for Adsorption Equilibrium of Heavy Metals and Dyes from Wastewaters. Bioresour. Technol. 2014, 160, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Yagub, M.T.; Sen, T.K.; Afroze, S.; Ang, H.M. Dye and Its Removal from Aqueous Solution by Adsorption: A Review. Adv. Colloid Interface Sci. 2014, 209, 172–184. [Google Scholar] [CrossRef]
- Dhir, B. Potential of Biological Materials for Removing Heavy Metals from Wastewater. Environ. Sci. Pollut. Res. Int. 2014, 21, 1614–1627. [Google Scholar] [CrossRef]
Composite | Adsorbate | Operational Parameters | Adsorption Capacity (mg/g) | Isotherm | Kinetic | Reference |
---|---|---|---|---|---|---|
Raw KF | Hg | pH = 8.0; 0.1 g adsorbent; volume = 100 mL | 39.9 | Langmuir | Pseudo-second order | [56,70] |
Pb | pH = 4.5; 0.1 g adsorbent; volume = 100 mL | 4.70 | ||||
Alkali-treated KF | Pb | pH = 4.5; 0.1 g adsorbent; volume = 100 mL | 23.4 | Langmuir | Pseudo-second order | [70] |
Fenton Reaction | Pb | pH = 6.0; 0.1 g adsorbent; volume = 30 mL; temperature = 25 °C | 94.41 | Langmuir | Pseudo-second order | [73] |
NaClO2 treated KF | Methyl Blue | pH = 6.0; 0.05 g adsorbent; volume = 25 mL; temperature = 30 °C | 110.13 | Langmuir | Pseudo-second order | [52] |
PANI-coated KF | Cu | pH = 4.3; 0.03 g adsorbent; volume = 20 mL; temperature = 25 °C | 81.04 | Langmuir | Pseudo-second order | [28] |
Methyl Orange | pH = 6.5; 0.03 g adsorbent; volume = 20 mL; temperature = 25 °C | 75.76 | ||||
PANI-oriented KF | Congo Red | pH = natural pH; 0.025 g adsorbent; volume = 25 mL; temperature = 25 °C | 40.82 | Langmuir | Pseudo-second order | [71] |
Orange II | 188.7 | |||||
Orange G | 192.3 | |||||
PANI-nanocomposite | Methyl Orange | pH = 6.0; 0.04 g adsorbent; volume = 50 mL; temperature = 25 °C | 136.75 | Langmuir | Pseudo-second order | [68] |
Pb | pH = 6.0; 0.04 g adsorbent; volume = 50 mL; temperature = 25 °C | 63.60 | ||||
PAN-coated KF | Cu | pH = not given; 0.03 g adsorbent; volume = 20 mL; temperature = 25 °C | 90.09 | Langmuir | Pseudo-second order | [8] |
Methyl Orange | 34.72 | |||||
DA-coated KF | Hg | pH = 8.0; 0.1 g adsorbent; volume = 100 mL | 235.7 | Langmuir | Pseudo-second order | [56] |
DTPA modified KF | Cu | pH = 4.5; 1.0 g adsorbent; volume = 1000 mL; temperature = 25 °C | 101.0 | Langmuir | Pseudo-second order | [117] |
Pb | pH = 4.5; 0.8 g adsorbent; volume = 1000 mL; temperature = 25 °C | 310.6 | ||||
Cd | pH = 4.5; 1.0 g adsorbent; volume = 1000 mL; temperature = 25 °C | 163.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Futalan, C.M.; Choi, A.E.S.; Soriano, H.G.O.; Cabacungan, M.K.B.; Millare, J.C. Modification Strategies of Kapok Fiber Composites and Its Application in the Adsorption of Heavy Metal Ions and Dyes from Aqueous Solutions: A Systematic Review. Int. J. Environ. Res. Public Health 2022, 19, 2703. https://doi.org/10.3390/ijerph19052703
Futalan CM, Choi AES, Soriano HGO, Cabacungan MKB, Millare JC. Modification Strategies of Kapok Fiber Composites and Its Application in the Adsorption of Heavy Metal Ions and Dyes from Aqueous Solutions: A Systematic Review. International Journal of Environmental Research and Public Health. 2022; 19(5):2703. https://doi.org/10.3390/ijerph19052703
Chicago/Turabian StyleFutalan, Cybelle Morales, Angelo Earvin S. Choi, Hannah Georgia O. Soriano, Melbourne Klein B. Cabacungan, and Jeremiah C. Millare. 2022. "Modification Strategies of Kapok Fiber Composites and Its Application in the Adsorption of Heavy Metal Ions and Dyes from Aqueous Solutions: A Systematic Review" International Journal of Environmental Research and Public Health 19, no. 5: 2703. https://doi.org/10.3390/ijerph19052703
APA StyleFutalan, C. M., Choi, A. E. S., Soriano, H. G. O., Cabacungan, M. K. B., & Millare, J. C. (2022). Modification Strategies of Kapok Fiber Composites and Its Application in the Adsorption of Heavy Metal Ions and Dyes from Aqueous Solutions: A Systematic Review. International Journal of Environmental Research and Public Health, 19(5), 2703. https://doi.org/10.3390/ijerph19052703